倒立摆实验报告
倒立摆实验报告建筑结构抗震研究

倒立摆实验报告:建筑结构抗震研究一、引言随着我国经济的快速发展,高层建筑日益增多,建筑结构的抗震性能成为社会关注的焦点。
为了提高建筑物的抗震能力,保障人民生命财产安全,我国政府及相关部门对建筑结构抗震研究给予了高度重视。
本实验报告针对倒立摆实验在建筑结构抗震研究中的应用,分析了倒立摆实验的基本原理、实验方法、实验结果及其在建筑结构抗震研究中的应用前景。
二、倒立摆实验原理倒立摆实验是一种研究建筑结构抗震性能的有效方法。
它利用倒立摆的稳定性原理,模拟地震作用下的建筑物振动响应,从而评估建筑结构的抗震能力。
倒立摆实验系统由摆杆、质量块、基础和支撑装置组成。
当摆杆在一定角度范围内摆动时,质量块产生的惯性力使摆杆保持倒立状态。
通过调整摆杆长度、质量块质量和基础刚度等参数,可以模拟不同建筑结构的抗震性能。
三、实验方法本实验采用数值模拟与实验相结合的方法,研究倒立摆实验在建筑结构抗震研究中的应用。
首先,建立倒立摆实验的数值模型,分析摆杆长度、质量块质量和基础刚度等参数对建筑结构抗震性能的影响。
然后,设计并实施倒立摆实验,验证数值模型的准确性。
最后,根据实验结果,提出提高建筑结构抗震能力的措施。
四、实验结果与分析1.数值模拟结果通过数值模拟,得到了不同参数下建筑结构的抗震性能。
结果表明,摆杆长度、质量块质量和基础刚度对建筑结构的抗震性能有显著影响。
摆杆长度越长,建筑结构的抗震能力越强;质量块质量越大,建筑结构的抗震能力越弱;基础刚度越大,建筑结构的抗震能力越强。
2.实验结果根据实验方案,进行了倒立摆实验。
实验结果表明,倒立摆实验可以有效地模拟建筑结构在地震作用下的振动响应。
通过对比实验结果与数值模拟结果,验证了数值模型的准确性。
同时,实验结果也表明,倒立摆实验可以评估建筑结构的抗震能力,为建筑结构设计提供依据。
五、建筑结构抗震研究展望倒立摆实验作为一种有效的建筑结构抗震研究方法,具有广泛的应用前景。
未来研究方向主要包括:1.进一步优化倒立摆实验系统,提高实验精度和可靠性。
倒立摆实验报告(现代控制理论)

现代控制理论实验报告——倒立摆小组成员:指导老师:2013.5实验一建立一级倒立摆的数学模型一、实验目的学习建立一级倒立摆系统的数学模型,并进行Matlab仿真。
二、实验内容写出系统传递函数和状态空间方程,用Matlab进行仿真。
三、Matlab源程序及程序运行的结果(1)Matlab源程序见附页(2)给出系统的传递函数和状态方程(a)传递函数gs为摆杆的角度:>> gsTransfer function:2.054 s-----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013(b)传递函数gspo为小车的位移传递函数:>> gspoTransfer function:0.7391 s^2 - 20.13---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s(c)状态矩阵A,B,C,D:>> sysa =x1 x2 x3 x4x1 0 1 0 0x2 0 -0.07391 0.7175 0x3 0 0 0 1x4 0 -0.2054 29.23 0b =u1x1 0x2 0.7391x3 0x4 2.054c =x1 x2 x3 x4y1 1 0 0 0y2 0 0 1 0d =u1y1 0y2 0Continuous-time model.(3)给出传递函数极点和系统状态矩阵A的特征值(a)传递函数gs的极点>> PP =5.4042-5.4093-0.0689(b)传递函数gspo的极点>> PoPo =5.4042-5.4093-0.0689(c)状态矩阵A的特征值>> EE =-0.06895.4042-5.4093(4)给出系统开环脉冲响应和阶跃响应的曲线(a)开环脉冲响应曲线(b)阶跃响应曲线四、思考题(1)由状态空间方程转化为传递函数,是否与直接计算传递函数相等?答:由状态空间方程转化为传递函数:>> gso=tf(sys)Transfer function from input to output...0.7391 s^2 - 6.565e-016 s - 20.13#1: ---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s2.054 s + 4.587e-016#2: -----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013#1为gspo传递函数,#2为gs的传递函数而直接得到的传递函数为:>> gspoTransfer function:0.7391 s^2 - 20.13---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s>> gsTransfer function:2.054 s-----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013通过比较可以看到,gspo由状态空间方程转化的传递函数比直接得到的传递函数多了s的一次项,而6.565e-016非常小几乎可以忽略不计,因此可以认为两种方法得到的传递函数式相同的,同理传递函数gs也可以认为是相同的。
(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。
当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。
倒立摆实验报告自动化仓库货物搬运

倒立摆实验报告:自动化仓库货物搬运()一、引言随着我国经济的快速发展,物流行业日益繁荣,自动化仓库成为现代物流体系的重要组成部分。
自动化仓库货物搬运系统作为仓库管理的核心环节,其效率和稳定性直接影响到整个物流系统的运行。
倒立摆作为一种先进的自动化搬运技术,具有结构简单、响应速度快、控制精度高等优点,逐渐成为自动化仓库货物搬运领域的研究热点。
本实验报告以倒立摆实验为研究对象,探讨其在自动化仓库货物搬运中的应用前景。
二、实验目的1.研究倒立摆系统在自动化仓库货物搬运中的运动特性及稳定性。
2.分析倒立摆系统在不同工况下的控制策略及性能。
3.探讨倒立摆系统在实际应用中的可行性及优化方向。
三、实验原理倒立摆系统是一种典型的非线性、强耦合、不稳定系统,其基本原理如图1所示。
倒立摆由摆杆、质量块和驱动电机组成,通过控制电机的旋转速度,使摆杆在垂直平面内做往复运动,实现质量块的搬运。
图1倒立摆系统原理图四、实验方案1.实验设备:倒立摆实验平台、驱动电机、编码器、数据采集卡、计算机等。
2.实验步骤:a.搭建倒立摆实验平台,确保设备正常运行。
b.编写倒立摆系统控制程序,实现摆杆的运动控制。
c.采集倒立摆系统运动过程中的数据,包括摆杆角度、角速度、电机电流等。
d.分析倒立摆系统在不同工况下的运动特性及稳定性。
e.根据实验结果,优化控制策略,提高倒立摆系统的性能。
五、实验结果与分析1.倒立摆系统运动特性分析:通过实验观察到,倒立摆系统在运动过程中存在明显的非线性现象,如摆杆角度和角速度的周期性波动。
在初始阶段,摆杆角度波动较大,随着控制策略的优化,摆杆角度逐渐稳定在平衡位置附近。
此外,倒立摆系统在不同工况下的运动特性也存在差异,如在负载变化、外界干扰等因素影响下,摆杆角度波动幅度增大,稳定性降低。
2.倒立摆系统稳定性分析:实验结果表明,倒立摆系统的稳定性受到多种因素的影响,如控制参数、外界干扰等。
在控制参数合适的情况下,倒立摆系统可以保持较好的稳定性。
倒立摆实验报告根轨迹

专业实验报告(2)直线一级倒立摆根轨迹校正控制原理基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。
确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。
如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。
常见的校正器有超前校正、滞后校正以及超前滞后校正等。
2. 实验方法(1)直线倒立摆建模、仿真与分析利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MATLAB Simulink中的工具进行仿真分析。
(3)直线一级倒立摆根轨迹校正控制利用MATLAB Simulink来实现根轨迹校正控制参数设定和仿真,并利用该参数来设定只限一级倒立摆的根轨迹校正控制器值,分析和仿真倒立摆的运行情况。
3. 实验装置直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。
图1 一级倒立摆实验硬件结构图对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。
摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。
计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。
图2是一个典型的倒立摆装置。
铝制小车由6V 的直流电机通过齿轮和齿条机构来驱动。
小车可以沿不锈钢导轨做往复运动。
小车位移通过一个额外的与电机齿轮啮合的齿轮测得。
小车上面通过轴关节安装一个摆杆,摆杆可以绕轴做旋转运动。
倒立摆创新实践报告

一、倒立摆系统介绍1、倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
GIP 系列倒立摆系统是固高科技有限公司,为全方位满足各类电机拖动和自动控制课程的教学需要,而研制、开发的实验教学平台。
GIP 系列的主导产品由直线运动型、旋转运动型和平面运动型三个子系列组成。
虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性: 倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。
不确定性: 主要是模型误差以及机械传动间隙,各种阻力等,实际控制中,一般通过减少各种误差,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
耦合性:主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,倒立摆控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
开环不稳定性: 倒立摆的稳定状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
约束限制:由于机构的限制,如运动模块行程限制,电机力矩限制等。
为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立摆的摆起尤为突出,容易出现小车的撞边现象。
倒立摆作为典型的快速、多变量,高阶非线形不稳定系统,一直是控制领域研究的热点。
它不但是验证现代控制理论方法的典型实验装置,而且其控制方法在一般工业过程中亦有着广泛的应用。
对倒立摆控制系统的研究可归结为非线形多变量绝对不稳定系统的研究。
早期的倒立摆控制律大多采用状态反馈,近年来,随着智能控制理论的发展,有人开始将模糊控制算法,神经网络用于倒立摆的控制。
倒立摆系统__实验设计报告

倒立摆系统__实验设计报告一、实验目的本实验旨在通过对倒立摆系统的研究与实验,探讨倒立摆的运动规律,并分析其特点和影响因素。
二、实验原理与方法1.实验原理倒立摆是指在重力作用下,轴心静止在上方的直立摆。
倒立摆具有自然的稳定性,能够保持在平衡位置附近,且对微小干扰具有一定的抵抗能力。
其本质是控制系统的一个重要研究对象,在自动控制、机器人控制等领域有广泛的应用。
2.实验方法(1)搭建倒立摆系统:倒立摆由摆杆、轴心和电机组成,摆杆在轴心上下运动,电机用于控制倒立摆的运动。
(2)调节电机控制参数:根据实验需要,调节电机的参数,如转速、力矩等,控制倒立摆的运动状态。
(3)记录数据:通过相机或传感器等手段,记录倒立摆的位置、速度、加速度等相关数据,用于后续分析。
(4)分析数据:根据记录的数据,分析倒立摆的运动规律、特点和影响因素,在此基础上进行讨论和总结。
三、实验步骤1.搭建倒立摆系统:根据实验需要,选取合适的材料和设备,搭建倒立摆系统。
2.调节电机参数:根据实验目的,调节电机的转速、力矩、控制信号等参数,使倒立摆能够在一定范围内保持平衡。
3.记录数据:利用相机或传感器等设备,记录倒立摆的位置、速度、加速度等相关数据。
4.分析数据:通过对记录的数据进行分析,研究倒立摆的运动规律和特点,并探讨影响因素。
5.总结讨论:根据实验结果,进行总结和讨论,对倒立摆的运动规律、特点和影响因素进行深入理解和探究。
四、实验设备与器材1.倒立摆系统搭建材料:包括摆杆、轴心、电机等。
2.记录数据设备:相机、传感器等。
五、实验结果与分析通过实验记录的数据,分析倒立摆的运动规律和特点,找出影响因素,并进行讨论和总结。
六、实验结论根据实验结果和分析,得出倒立摆的运动规律和特点,并总结影响因素。
倒立摆具有一定的稳定性和抵抗干扰的能力,在控制系统中具有重要的应用价值。
七、实验感想通过参与倒立摆系统的搭建和实验,深入了解了倒立摆的运动规律和特点,对控制系统有了更深刻的理解。
倒立摆实验报告

倒立摆实验报告倒立摆实验报告引言:倒立摆是一种经典的力学实验,通过研究倒立摆的运动规律,可以深入理解物理学中的一些基本概念和原理。
本实验旨在通过搭建倒立摆模型并观察其运动过程,探究摆动周期与摆长、质量等因素之间的关系,并分析影响倒立摆稳定性的因素。
一、实验器材和原理实验器材:1. 木质支架2. 杆状物体(作为摆杆)3. 重物(作为摆锤)4. 弹簧5. 电子计时器实验原理:倒立摆实验基于牛顿第二定律和能量守恒定律。
当摆杆倾斜一定角度时,重力将产生一个力矩,使摆杆产生转动。
而弹簧的作用则是提供一个恢复力,使摆杆回到竖直位置。
通过调整摆杆长度、质量和弹簧的初始拉伸量,可以控制倒立摆的运动。
二、实验步骤1. 搭建实验装置:将木质支架固定在平稳的桌面上,将摆杆固定在支架上,并在摆杆的一端挂上重物。
2. 调整初始条件:调整摆杆的长度和重物的位置,使摆杆处于平衡位置。
同时,将弹簧的一端固定在摆杆上。
3. 测量实验数据:使用电子计时器记录倒立摆的摆动周期,重复多次测量,取平均值。
4. 改变实验参数:分别改变摆杆的长度、重物的质量和弹簧的初始拉伸量,再次进行测量和记录。
5. 数据分析:根据实验数据,绘制摆动周期与摆杆长度、重物质量、弹簧初始拉伸量之间的关系曲线,并进行分析和讨论。
三、实验结果与讨论根据实验数据,我们可以得出以下结论:1. 摆动周期与摆杆长度成正比:当摆杆长度增加时,摆动周期也随之增加。
这是因为较长的摆杆需要更多的时间来完成一次摆动。
2. 摆动周期与重物质量无直接关系:在一定范围内,重物质量的增加并不会显著影响摆动周期。
这是因为重物的质量只会影响倒立摆的稳定性,而不会改变其运动速度。
3. 弹簧初始拉伸量对摆动周期的影响:当弹簧的初始拉伸量增加时,摆动周期减小。
这是因为较大的初始拉伸量会提供更大的恢复力,使摆杆回到竖直位置的速度更快。
通过实验结果的分析,我们可以得出以下结论:1. 摆杆长度是影响倒立摆运动周期的主要因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业实验报告
图1.倒立摆系统抽象成小车和匀质刚性杆组成的系统和摆杆的力矩分析图对于摆杆可列出如下方程:
图2.直线一级倒立摆实物配置图
界面中的添加PID控制后的控制模型
图3. SISO界面中的控制模型及其响应曲线
图4.系统的状态空间模型以及极点配置图
图5.系统的状态空间模型仿真图
从仿真图中可以看出,小车位置应该很好的收敛到0.01,小车速度、摆杆角度和角速0,所以选择的极点效果比较好。
系统的状态空间模型实物控制图如图
示,选用了三组不同的参数值,其中,K=[-93 -32 110 18.8]时效果最好,结果如图
图6. 系统的状态空间模型实物控制图。