冰蓄冷技术及其应用

合集下载

冰蓄冷技术

冰蓄冷技术

1.技术原理冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。

(1)削峰填谷、平衡电力负荷。

(2)改善发电机组效率、减少环境污染。

(3)减小机组装机容量、节省空调用户的电力花费。

(4)改善制冷机组运行效率。

(5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。

(6)应用蓄冷空调技术,可扩大空调区域使用面积。

(7)适合于应急设备所处的环境,计算机房、军事设施、电话机房和易燃易爆物品仓库等。

2.冰蓄冷空调系统组成冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。

相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置3..工艺流程冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。

冰盘管冰蓄冷工艺流程:、4.适用范围:商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。

5.冰蓄冷空调系统的适用条件执行峰谷电价,且差价较大的地区。

(峰谷电价比至少要达到4:1,否则无经济性可言)空调冷负荷高峰与电网高峰时段重合,且在电网低谷时段空调负荷较小的空调工程。

在一昼夜或者某一周期内,最大冷负荷高出平均负荷较多,并经常处于部分负荷运行的空调工程。

电力容量或电力供应受到限制的空调工程。

冰蓄冷设计手册

冰蓄冷设计手册

冰蓄冷设计手册冰蓄冷是一种利用冰块或冰水蓄冷技术,用于降低空调系统的能耗,提高能源利用效率的节能技术。

随着人们对能源节约和环保意识的提高,冰蓄冷技术在建筑空调系统中的应用越来越广泛。

为了帮助工程师和设计师更好地理解和应用冰蓄冷技术,本手册将介绍冰蓄冷技术的原理、设计方法、应用领域和优缺点。

一、冰蓄冷技术原理冰蓄冷技术利用低价电能在夜间或低峰时段制冷,将制冷负荷转移到夜间,然后在白天或高峰时段利用储存的冰块或冰水进行空调制冷。

这样可以有效降低白天空调系统的能耗,减少用电高峰期的负荷压力,提高能源利用效率。

通常,冰蓄冷系统包括冰蓄冷装置、冷冻水系统、冰蓄冷储罐、冰蓄冷管道和热交换设备等组成。

二、冰蓄冷系统设计方法1. 制冷负荷计算:根据建筑的制冷负荷特性和用能需求,确定冰蓄冷系统的制冷负荷和需求量。

需要考虑的因素包括建筑的大小、朝向、外墙材料、窗户面积、人员密度、设备散热量等。

2. 冰蓄冷储罐设计:根据制冷负荷计算结果确定冰蓄冷储罐的容量和结构。

储罐的设计应考虑制冷介质的密封性、保温性能和耐压性能。

3. 冷冻水系统设计:设计冰蓄冷系统的冷冻水系统,包括冷冻水制冷机组、冰蓄冷储罐、冷冻水泵和冷冻水管道等。

应根据设计需求选择合适的制冷机组和泵站,保证冰蓄冷系统的安全可靠运行。

4. 热交换设备选型:根据建筑的特点和使用需求选择合适的热交换设备,如冷凝器、蒸发器、冷却塔等,保证冷热介质的传热效率和系统的热力平衡。

三、冰蓄冷系统应用领域冰蓄冷技术适用于各类建筑空调系统,特别适用于商业综合体、写字楼、酒店、医院、会展中心、工厂车间等大型建筑。

冰蓄冷系统可以灵活应对夏季高温,显著降低空调系统的能耗,减少用电高峰负荷,提高能源利用效率。

冰蓄冷系统还可以与分布式能源系统、太阳能光伏系统、风能系统等相结合,实现能源的综合利用和智能调度。

四、冰蓄冷系统优缺点1. 优点:(1)节能环保:冰蓄冷系统能够有效降低空调系统的能耗,减少对传统能源的消耗,有利于环境保护和可持续发展。

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析1. 引言1.1 冰蓄冷空调系统介绍冰蓄冷空调系统是一种利用冰的蓄冷效应来降低空调系统运行能耗的节能技术。

通常在夜间电力供应较为充裕时,利用低峰电力时段制冷,将水制成冰块并存储起来。

白天高峰电力时段,通过冰蓄冷系统释放存储的冰块来提供冷却效果,从而降低空调系统的电能消耗。

冰蓄冷空调系统不仅可以减少耗电量,还可以优化电力利用效率,降低用电峰值,减少供电紧张情况发生的可能性。

冰蓄冷空调系统适用于各类建筑物,包括商业建筑、办公楼、酒店、医院等。

它不仅可以为建筑物提供舒适的室内环境,还可以降低空调系统的运行成本,节约能源资源。

由于冰蓄冷空调系统具有节能环保的特点,受到了越来越多企业和政府机构的重视和推广。

通过合理规划和设计,冰蓄冷空调系统可以有效地提高建筑物的能源利用效率,同时降低运行成本,为企业和社会带来可观的经济效益和环境效益。

1.2 冰蓄冷空调系统的优势1. 节能环保:冰蓄冷空调系统采用冷冻水进行储存和循环利用,相比传统空调系统,具有更高的能效比和节能效果。

在峰电时段利用低成本的电力制冷水,然后在用冷却的过程中,据需求释放制冷水中的冷量,降低建筑物的负荷需求,从而有效降低了建筑物的全年度电力需求。

2. 调峰平谷:冰蓄冷空调系统可以根据电网的峰谷电价差异,合理利用低谷时段的电力进行制冷水的储存,从而在高峰时段减少电力需求,降低用电成本。

3. 稳定性强:冰蓄冷空调系统储存的冷水可以提供长时间的稳定制冷效果,避免了传统空调系统频繁启停带来的温度波动,提高了室内舒适度。

4. 声音低:由于制冷机组设在噪音较大的低谷时段运行,采用隔音的冰箱组,可以有效降低室内外的噪音污染。

2. 正文2.1 冰蓄冷空调系统的原理冰蓄冷空调系统的原理是利用冰的蓄冷储能特性,在夜间低峰期通过制冷机组将水冷却至冰点以下并冻结成冰块,然后将这些冰块储存在特殊设计的冰块储存装置中。

白天高峰期,空调系统需要制冷时,冰块被融化而释放出储存的冷量,冷水通过冰块储存装置输送至空调系统的蒸发器,实现空调系统的制冷作用。

冰蓄冷知识点总结

冰蓄冷知识点总结

冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。

当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。

2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。

在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。

二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。

2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。

3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。

4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。

5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。

三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。

2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。

3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。

4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。

四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。

2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。

3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。

4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。

冰蓄冷储能 示范作用-概述说明以及解释

冰蓄冷储能 示范作用-概述说明以及解释

冰蓄冷储能示范作用-概述说明以及解释1.引言1.1 概述概述冰蓄冷储能作为一种新兴的储能技术,在能源管理和节能领域发挥着重要的作用。

它利用低峰时段的电能,将电能转化为冷能,然后储存起来,在高峰用电时释放出冷能,从而实现了能源的高效利用和需求的灵活调节。

冰蓄冷储能系统具有大容量、高效性、可靠性等优点,因此在建筑物空调、工业制冷、能源供应管理等领域具有广泛应用前景。

本文将对冰蓄冷储能的原理、应用领域以及其示范作用进行详细探讨。

首先,我们将介绍冰蓄冷储能的基本原理,包括冰蓄冷储能的工作原理和基本组成部分。

然后,我们将探讨冰蓄冷储能在建筑物空调、工业制冷以及能源供应管理中的应用领域,包括其在节能减排、电力峰谷填谷、可再生能源利用等方面的价值和潜力。

通过对冰蓄冷储能的示范作用的分析,我们将探讨其在能源领域中的重要作用。

冰蓄冷储能可以通过平衡电网负荷、提高节能效果、增强电力系统的稳定性等方面,为未来能源供应提供重要支持。

同时,我们也将对未来冰蓄冷储能技术的发展前景进行展望,包括其在能源管理、可再生能源发展等方面的应用前景。

综上所述,冰蓄冷储能作为一种新型的节能技术,具有广泛的应用前景和示范作用。

通过深入研究和应用冰蓄冷储能技术,我们可以实现能源的高效利用、电力系统的可靠稳定以及减少对传统能源的依赖,进一步推动可持续能源的发展。

1.2文章结构文章结构部分的内容可以描述整篇文章的框架和主要内容安排,为读者提供一个清晰的大纲,使其能够更好地理解文章的组织结构和内容安排。

在介绍文章结构时,可以使用下述内容:本文将按照以下结构来组织论述内容:第一部分是引言部分,主要包括三个方面的内容:概述、文章结构和目的。

在概述中,将简要介绍冰蓄冷储能的背景和概念,引发读者对该技术的兴趣。

随后,将详细介绍本文的结构,包括各个部分的标题和主要内容,以便读者能够清晰地了解全文的组织结构。

最后,明确本文的目的,即通过论述冰蓄冷储能的示范作用和未来发展前景,提高读者对冰蓄冷储能技术的认识和了解。

冰蓄冷空调技术探讨与应用

冰蓄冷空调技术探讨与应用

冰蓄冷空调技术探讨与应用从冰蓄冷空调工作的原理,蓄冷方式,系统的流程配置等方面对冰蓄冷空调技术进行了一定的探讨,同时就其在北京周边的华北地区的应用进行了一定的分析。

标签:冰蓄冷空调;蓄冷系统;应用1 引言在夏季,我国各省市电力供应紧缺的形势日益严峻,特别是在大城市,白天时空调负荷量很大,在这种情况下,大城市应用蓄冷空调技术便是必不可少的。

因为蓄冷空调技术不仅可以很好地转移尖峰用电至低谷用电的时间段,也能在一定程度上改善城市峰谷供电平衡,减少电站新建数量和输配电的损失量,同时,采用蓄冷空调技术也可以起到削峰的作用。

现如今大部分的国家都在研究开发区域性蓄冷空调供冷站,冰蓄冷低温送风空调系统,开发新型的蓄冷空调机组等。

2 冰蓄冷空调工作的原理空调蓄冷的原理就在于其是将电网低谷时间段“便宜能源”储存起来,当处于需要用大量能量的峰值时段时,将事先贮存的冷能释放出来,满足峰值时期负荷的要求。

目前,由于各国着力研究空调工程的蓄冷,蓄冷方式种类比较多,如果按贮存冷能的方式来划分的话,则可以分为显热蓄冷和潜热蓄冷。

在夜间,由于电力负荷程度很低,则可以采用电动制冷机制冷,以使水结冰,进而利用冰的相变潜热达到冷量贮存的效果;而当白天电力达到高峰负荷时期时,便可以利用空调在工作时发出的热量将冰释冷,进而在一定程度上满足生产需要。

3 蓄冷常用方式3.1 水蓄冷系统水蓄冷系统的工作原理在于利用水的显热进行冷量蓄存,现如今这种方式的主要缺点在于:由于利用的是水显热进行冷量蓄存,但是水的蓄冷密度较低,所以可以利用的温差小,同时冷损耗大。

3.2 冰盘管式蓄冷系统冰盘管式蓄冷系统的工作原理在于采用载冷剂间接冷却,在冷却的过程中,低温载冷剂将从冷水机组进入盘管内循环,以使得管外的水转化为冰。

在释冷这个过程中,将空调系统的回水送入到蓄冰槽中去,与管道外部的冰接触,以使得冰融化,进而达到制冷的效果。

3.3 冰晶式蓄冷系统冰晶式蓄冷系统的工作原理在于将水与乙二醇或丙二醇的混合溶液的温度降至冻结点温度以下,以使其产生冰晶。

冰蓄冷原理

冰蓄冷原理

冰蓄冷原理冰蓄冷是一种利用低温冰块来储存冷量,然后在需要时释放冷量的技术。

它在工业生产和生活中有着广泛的应用,能够有效地节约能源,提高能源利用效率。

冰蓄冷原理是基于物质的相变过程和热力学原理,下面我们来详细介绍一下冰蓄冷的原理和应用。

首先,冰蓄冷的原理是利用冰的相变过程。

在冰的温度保持在零度时,将其加热,直到冰完全融化为止,所需的热量称为融化热。

而在冰的温度保持在零度时,将其冷却,直到冰完全凝固为止,释放的热量也称为凝固热。

这两个过程中的热量变化是相等的,这就是冰的相变热原理。

因此,当我们需要冷量时,只需将冰块从零度的状态转变为融化状态,就可以释放大量的冷量。

其次,冰蓄冷的原理还涉及到热力学的热量平衡。

在冰的相变过程中,无论是融化还是凝固,都需要吸收或释放大量的热量。

这种热量的吸收和释放是通过冰块与外界的热交换来实现的。

当冰块吸收热量时,周围的环境就会变得更冷,从而实现了冷却的效果。

而当冰块释放热量时,周围的环境就会变得更热,从而实现了加热的效果。

这种热量平衡的原理是冰蓄冷技术能够实现节能的关键。

最后,冰蓄冷技术的应用非常广泛。

在工业生产中,冰蓄冷可以用于空调系统、冷冻设备、制冷车辆等领域,能够有效地降低能源消耗,提高生产效率。

在生活中,冰蓄冷可以用于制冷剂、冷藏食品、冷藏药品等领域,能够延长物品的保鲜期,提高生活质量。

此外,冰蓄冷还可以用于储能系统,将低峰期的电能转化为冷能,然后在高峰期释放冷量,实现电能的储存和调峰。

总之,冰蓄冷技术是一种高效节能的制冷技术,其原理是基于冰的相变和热量平衡。

它在工业生产和生活中有着广泛的应用,能够提高能源利用效率,降低能源消耗,是一种非常值得推广和应用的技术。

希望通过本文的介绍,能够更多地了解冰蓄冷的原理和应用,促进其在各个领域的推广和发展。

动态冰蓄冷技术在数据中心的应用

动态冰蓄冷技术在数据中心的应用

动态冰蓄冷技术在数据中心的应用
动态冰蓄冷技术在数据中心的应用主要是为了解决数据中心散热的问题,提高能效,并降低运营成本。

以下是动态冰蓄冷技术在数据中心的具体应用方面:
1. 高效散热:动态冰蓄冷技术利用夜间电力低谷时段,通过制冷机组将冷凝水制成冰,然后将冰应用于数据中心空调系统中,以提供冷却效果。

相比传统冷却方式,动态冰蓄冷技术具有更高的冷却效率,并且能够大幅度降低数据中心的耗电量。

2. 能源储存:动态冰蓄冷技术可以将夜间的低成本电能转化为冰的形式储存起来,在白天高峰期使用,实现能源的平衡利用。

这种方式可以减少对昂贵的电力峰值需求,降低数据中心的能源成本。

3. 空调控制优化:动态冰蓄冷技术可以与数据中心的空调系统相结合,通过智能化控制来优化空调运行。

根据数据中心的实际热负荷情况,控制制冷机组的运行,使其在高峰期发挥最大效果,同时在低峰期充分利用冰蓄冷系统对数据中心进行冷却。

4. 应急备用:动态冰蓄冷技术可以作为数据中心的应急备用冷却系统,当主要制冷设备发生故障或停机时,冰蓄冷系统可以立即发挥作用,提供冷却效果,保证数据中心的运行稳定性。

总之,动态冰蓄冷技术在数据中心的应用可以提供高效的散热解决方案,提高能源利用率,并降低运营成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2008 -2009 学年第二学期)课程论文题目:冰蓄冷技术及其应用研究生:欧阳光提交日期:年月日研究生签名:学号学院课程编号课程名称学位类别硕士任课教师制冷空调过程的节能新技术教师评语:成绩评定:分任课教师签名:年月日冰蓄冷技术及其应用摘要:本文在介绍了冰蓄冷技术的特点的基础上,论述了冰蓄冷技术对电力调峰、平衡电网及节能减排的意义;并结合工程实际,分析了与冰蓄冷空调相结合的低温送风系统的经济性;并简要介绍了冰蓄冷与热泵组合式空调系统的优势。

展望了新型冰蓄冷系统的发展前景。

关键词:冰蓄冷削峰填谷节能低温送风系统1 引言改革开放以来,我国经济的高速发展和人民物质生活水平的不断提高,对电力供应不断提出新的挑战。

尽管全国发电装机容量不断增大,然而,电力供应仍很紧张,尤其是夏季有些地方不得不采用拉闸限电的办法解燃眉之急。

因而,改善电力供应的紧张状况和电力负荷环境已成为一些大中城市的首要任务。

长期以来空调系统是能耗大户,而空调系统用电负荷一般集中在电力峰段,因此对城市电网具有很大的“削峰填谷”潜力。

基于这种“削峰填谷”的想法,空调系统中出现了冰蓄冷机组,它利用午夜以后的低谷电制冰,储存到白天用电高峰时供冷。

而冰蓄冷技术和低温送风空调系统相结合则更能增强它的竞争力,对于电力生产部门和用户都会产生良好的经济效益和社会效益,并可以实现整个能源系统的节能和环保。

因而随着国内冰蓄冷技术的成熟,它在我国将有更广阔的发展前景。

2 冰蓄冷空调系统简介冰蓄冷空调就是利用水或一些有机盐溶液作为蓄冷介质,在夜间电力供应的低谷期(同时也是空调负荷很低的时间)开机制冷,将它们制成冰或冰晶,到白天电力供应的高峰期(同时也是空调负荷高峰时间),利用冰或冰晶融解过程的潜热吸热作用,再将冷量释放出来满足高峰空调负荷的需要或生产工艺用冷的需求。

在用电低谷时不用或少用空调如办公室,写字楼,体育馆,影剧院,商业中心,文化馆场,健身娱乐城,国防科研,教学试验楼等冷负荷要求变化大的场所,特别适合于采用冰蓄冷技术。

这样制冷系统的大部分耗电发生在夜间用电低峰期,而在白天用电高峰期只有辅助设备在运行,从而能有效地解决大多数城市电网均面临高峰期电力不够、低谷期电力用不了的尴尬局面,实现用电负荷的“移峰填谷”。

图1为夜间中央空调主机蓄冰示意图,图2为白天依靠蓄冰装置制冷的示意图。

图1 夜间中央空调主机蓄冰图2 白天依靠蓄冰装置制冷2.1 冰蓄冷技术的分类冰蓄冷技术按是否使用载冷剂分为直接蒸发制冰和间接蒸发制冰。

直接蒸发制冰又按制冰装置有无运动部件分为静态制冰和动态制冰。

静态制冰是指制冰的制备和融化在同一位置,蓄冰设备和制冰设备部件为一体结构,具体形式有冰盘管式(外融冰式管外蓄冰)、完全冰结式(内融冰式管外蓄冰)、密封件蓄冰。

动态制冰是指冰的制备和融化不在同一位置,制冰机和蓄冰槽相对独立,具体形式有制冰滑落式、冰晶式。

图3所示为直接蒸发式外融冰工作原理图,来自用户侧温度较高的载冷剂(通常为乙二醇水溶液)在盘管内循环,通过管壁将热量传给冰层,将盘管表面的冰层由内向外融化,使载冷剂冷却到需要的温度,以供应外界负荷所需的冷量。

图3 直接蒸发式外融冰工作原理图2.2 冰蓄冷模式一般可把冰蓄冷空调系统划分为全量和部分蓄冰和部分蓄冰两种蓄冰模式。

(1)全量蓄冰制冷主机只负责在夜间电网低谷期制冰蓄冷,空调所需要的所有负荷全部由冰的融化来提供。

该方案配置由于所有冷负荷都在低谷电价时段制取,所以其运行费用最省;但由于设备的使用效率低(主机高峰期不运行),所需的主机和储冰器的容量较大,与主机配套的冷却塔和电力设备也大,一次投资费用最多。

因此,全量蓄冰空调系统只适用于负荷集中,使用时间短的建筑,在一般工程中较少采用。

(2)分量蓄冰制冷机在夜间低谷段制取部分冷量,以冰的形式储存。

在日间电力高峰期,由储冰机和制冷机联合供冷,以满足空调负荷的需要。

蓄冰负荷占总负荷的比例,可由技术经济分析的评估结果来决定,一般为30%-50%。

由于制冷机在日间和夜间都在运行,设备的使用效率高,相对于全量蓄冰模式,制冷机和蓄冰器的容量最多可减少至近一半。

由此可以实现最少的初期投资和最短的投资回收期,其运行费用比全量蓄冷高。

在过度季节,为减少运行电费,可把分量蓄冷转化为全量蓄冷运行模式。

分量蓄冷又分为制冷机优先和融冰优先两种运行策略。

2.3冰蓄冰空调的节能性分析2.3.1 冰蓄冰空调本身不节能文献[1]比较了活塞式、螺杆式和二级或三级离心式冷水机组在蓄冰和空调两种工况下的性能系数,结果表明,蓄冰工况的性能系数大于空调工况的性能系数,即提供同样冷量的前提下,采用蓄冰技术需要多耗能, 且在不同的蓄冷模式情况下,存在比常规空调多的蓄冷、释冷过程中高、低温热源之间的损失,因此蓄冰空调从其本身并不节能。

2.3.2 冰蓄冷空调的终端节能冰蓄冷系统本身并不节能,但它的移峰填谷作用将对电力供应和生产带来显著效益并节约能源,其具体表现在:移峰填谷使电网供电平衡,可降低输、配电损失5%~18%;充分利用移峰电力,可使发电的热质效率提高约25%;稳定用电,使功率因数改善,可节电1%~2%;由于削峰,避免了为几个小时的尖峰负载而新建电厂,据有关资料显示,要新建一个电站,每千瓦需投资3375~10000元人民币。

而采用蓄冰技术每转移1千瓦高峰负荷只需增加初投资100元左右。

总之,采用蓄冷技术,一是可以起到“削峰填谷”的作用;二是可以降低制冷设备的容量和配电容量;三是可以降低运行费用,延长系统寿命;四是可以作为备用冷源,特别适用于应急设备所取的环境,如医院、计算机房、军事设备及电话机房等。

通过“削峰填谷”可以降低装机容量和调峰容量,减少机组启停次数和低负荷运行时间,使机组大部分处于高效率的满负荷工况下运行,既能降低发电煤耗,又能提高能源利用率,真正做到终端节能。

这对于电力生产部门和用户都会产生良好的经济效益和社会效益,从而实现整个能源系统的节能,并产生较好的环保作用。

3 应用从世界范围来看,冰蓄冷技术在空调领域的应用从20世纪30~60年代以减小制冷机容量为主要目的的起步阶段到20世纪70~80年代以转移高峰用电时段空调用电负荷为主要目的的“移峰填谷”的快速发展阶段,再到20世纪90年代中期以来利用冰蓄冷的“高品位冷能”与其它空调装置的有机结合,以提高空调制冷系统整体能效和降低整体投资及建筑造价、改善室内空气品质和热舒适为目标的技术成熟阶段,经历了漫长的过程.目前我国的冰蓄冷空调技术也正在逐步接近世界先进水平,其中冰蓄冷与其他系统特别是低温送风空调系统及热泵系统结合越来越引起人们的重视。

3.1 冰蓄冷技术与低温送风相结合早在20世纪80年代国外发展冰蓄冷的经验就告诉我们,单纯的冰蓄冷,利用低谷电制冰,储存到用电高峰时段供冷,确实可以转移部分高峰电力负荷。

但是,这种方法不但使冷源建设投资增加到常规冷源的1.6-2倍,而且空调的实际用电量也比常规空调系统高出1.3倍之多。

解决这个问题的出路是走冰蓄冷与低温送风系统相结合的道路。

3.1.1 低温送风系统特点低温送风系统是利用冰蓄冷系统提供的低温介质,通过表面冷却器处理空气,从而得到较低温度空气的一种空调系统。

低温送风空调方式是指从集中空气处理机组送出较低的一次风,经高诱导比的末端送风装置进入空调房间。

它是相对于常规送风而言的,常规送风系统从空气处理器出来的空气温度为10~15℃,而低温送风空调方式的送风温度为3~11℃。

3.1.2 冰蓄冷与低温送风空调系统相结合的优势以及存在的问题低温送风系统所需的冷水温度一般为2~3℃,正好可以与冰蓄冷系统联合应用,两者的结合既可以有效地转移了一部分尖峰用电时段的空调电负荷以相应减少了输配电设备的容量,从而可减少输配电设备的投资和增容费;且由于低温送风降低了送风温度,增大了送风温差,从而减少了一次风量,也就减少了一次风的空气处理设备,其初投资可降低(见表1);再者,由于送风量减少,相应的空调设备和风道尺寸均减少,因而可以节省建筑物空间,降低建筑层高[5](见表2);同时, 它能降低房的相对湿度, 舒适性和室内空气品质也有所提高。

因而增加了冰蓄冷低温送风空调系统的竞争力。

然而,采用低温送风也有一些问题:低温送风因低温而减小了送风量,会使空调区域空气流速过低及气流循环量较低,一定程度上影响到空调区域的舒适性;对低温送风系统的送风温度若不进行优化设计,会因其低于空调区域空气的露点温度,引起气流的“白雾”。

在系统刚启动时,尤为明显,还会在送风口产生“结露”和滴水现象,影响室内环境。

当然,从设计、安装和调试三个环节进行技术管理和质量控制就能解决以上问题。

表1 几种空调系统投资比较表2 低温送风与常规空调方式比较3.1.3 工程实例杨向红[8]等对北京市中国大唐电力集团公司生产调度指挥中心的空调系统进行设计。

(1)工程简介中国大唐电力集团公司生产调度指挥中心位于北京市西城区金融街,总建筑面积4.83万m2,地上16层,地下5层,建筑总高度70m,标准层层高3.85 m。

该建筑属于电力部门的办公类建筑,夏季需要24小时供冷。

该工程设计总冷负荷(包括新风负荷)为44952Kw, 设计时采用冰蓄冷、大温差供水的低温变风量系统加独立的新风系统。

蓄冰模式为分量蓄冰模式,设计工况的供冷运行方式为主机优先模式,部分负荷时按融冰优先模式运行。

蓄冰装置采用5台钢制盘管成品蓄冰槽,总蓄冰量为13378 kWh,占设计日空调负荷总量的29.7%。

主机采用2台双工况螺杆式冷水机组,制冷工质为R22,载冷剂采用质量分数为25%的乙二醇溶液。

设计日冰蓄冷系统运行模式和冷负荷平衡情况为:100%冷负荷条件下,高峰供冷时段,融冰和主机同时供冷,满足高峰供冷的需要,超过75%的存冰量在电力高峰和尖峰两种时段内融化提供冷量。

该工程的另一特点是采用低温变风量系统,它是由变流量冷水系统(冷水泵为变频泵)和变风量空气输送系统(空气处理机组为低温变风量中央空气处理机组)低两大部分构成。

与常规空调送风相比,它在提高空调室内的空气品质的同时,能有效节省系统初投资、减少空调机房占用面积、降低长期运行能耗和减少维护成本。

(2)项目的经济性与非蓄冰常规送风系统相比,该工程具有明显的经济性:1)初投资减少约200万元;2)每年运行电费节约近55万元;3)系统电力配置容量降低350 kW,电力削峰容量近10%。

3.2 冰蓄冷与热泵组合式空调系统冰蓄冷技术和热泵技术的独立使用都具有一定的局限性,但在冰蓄冷与地源热泵泵组合式空调系统中,冰蓄冷技术是一种“日储能”系统,可以转移大量的日间高峰电力到夜间低谷时段使用,充分利用电网的日夜电差价,解决夏季供冷问题和热泵难以蓄冷的矛盾,热泵技术解决了冬季清洁供暖问题和冰蓄冷装置无法供热的矛盾。

相关文档
最新文档