数据统计学处理方法与选择

合集下载

研究数据收集、处理和描述的统计学方法

研究数据收集、处理和描述的统计学方法

研究数据收集、处理和描述的统计学方法
1、数据收集:首先需要进行数据收集。

数据可以来自实验或观察,
可以是定性的或定量的。

定性数据是通过采访、调查或观察等方式收集的,而定量数据是通过测量工具或问卷等方式收集的。

2、数据处理:一旦收集到数据,就需要对数据进行处理。

数据处
理包括清洗数据、整理数据、验证数据的准确性和完整性等。

清洗数据是指删除或修正错误或缺失的数据,整理数据是指将数据进行转换和规范化,以便进行分析。

3、数据描述:数据描述是对数据进行统计分析的过程,包括对数
据的概括性描述和详细性描述。

概括性描述包括均值、中位数、众数等统计指标,而详细性描述包括直方图、箱线图、时间序列图等图表。

4、统计分析:根据研究目的和数据类型,选择适当的统计分析方
法,例如假设检验、方差分析、回归分析等。

这些方法可以帮助研究者确定数据之间的关系和模式,从而得出结论和建议。

5、报告结果:最后,研究者需要将分析结果以图表和文字的形式
呈现出来,以便其他人理解和使用。

统计学方法的分类和选择

统计学方法的分类和选择

统计学方法的分类和选择一、描述统计方法描述统计方法用于总结和概括数据的定量和定性特征,主要包括以下几种方法:1.频数统计:对数据进行分类,计算各类别的频数或频率。

2.平均数和标准差:计算数据的平均值和离均差的度量,用于描述数据的集中趋势和分散程度。

3.分位数和百分位数:计算数据按大小排序后的位置,用于描述数据的位置和分布。

4.统计图表:如直方图、饼图、散点图等,用于直观地展示数据的分布和关系。

二、推断统计方法推断统计方法用于从样本数据中推断总体的特征和进行假设检验,主要包括以下几种方法:1.参数估计:根据样本数据估计总体的参数,包括点估计和区间估计。

2.假设检验:根据样本数据判断总体参数的假设,包括一般假设检验和相关性检验。

3.方差分析:用于比较多个总体的均值是否有显著差异。

4.回归分析:建立变量之间的数学模型,用于预测因变量。

5.方差分析:用于比较多个总体的均值是否有显著差异。

三、统计学方法的选择选择适当的统计学方法应考虑以下几个方面:1.数据类型:根据数据的类型(定量或定性)选择合适的描述统计和推断统计方法。

2.研究目的:根据研究的目的和问题选择合适的统计学方法。

如果是描述总体特征,可以使用描述统计方法;如果需要推断总体特征或进行假设检验,则需要使用推断统计方法。

3.样本容量:样本容量的大小会影响统计学方法的选择。

当样本容量较大时,可以使用参数估计和假设检验方法;当样本容量较小时,可以使用非参数统计方法。

4.数据分布:数据的分布特征对统计学方法的选择也有影响。

当数据服从正态分布时,可以使用参数统计方法;当数据不服从正态分布时,可以使用非参数统计方法。

5.数据关系:如果数据之间存在关联或依赖关系,可以使用回归分析等方法来研究变量之间的影响。

总之,统计学方法的分类和选择应考虑数据的类型、研究目的、样本容量、数据分布和数据关系等因素。

选用合适的统计学方法能够提供准确的分析结果和科学的结论,从而对问题的解决和决策的制定有着重要的意义。

统计数据的采集整理与处理方法

统计数据的采集整理与处理方法

统计数据的采集整理与处理方法统计数据的采集、整理与处理方法在各个领域中扮演着重要的角色,它们为研究人员、决策者以及企业提供了有力的支持。

本文将介绍几种常见的统计数据的采集、整理与处理方法,并探讨它们的优缺点以及适用场景。

一、问卷调查法问卷调查是一种常见的统计数据采集方法,通过向被调查者提出特定问题,收集他们的意见和观点。

问卷调查既可以是纸质问卷,也可以是在线调查。

在实施问卷调查时,应注意设计合理的问题,并确保样本的代表性。

问卷调查的优点是能够快速收集大量的数据,但缺点是容易受到被调查者主观因素的影响,结果可能不够客观。

二、抽样调查法抽样调查法是一种通过对部分样本进行研究,推断总体特征的方法。

抽样调查需要根据目标总体的特点来选择合适的抽样方法,常见的抽样方法包括简单随机抽样、分层抽样和整群抽样等。

抽样调查的优点是能够通过有限的样本获得总体特征,并减少成本和时间,但也存在样本偏差的风险。

三、观察法观察法是通过观察和记录来收集统计数据的方法。

观察法分为实验观察和非实验观察两种形式。

实验观察是在控制条件下对被观察对象进行观察,非实验观察是在自然条件下进行观察。

观察法的优点是能够直接观察对象的行为和现象,但也受到观察者主观因素和环境变量的影响。

四、文献资料法文献资料法是通过收集、整理和分析已有的文献材料来获取统计数据的方法。

文献资料可以是书籍、论文、报告、统计年鉴等,通过对文献资料的综合分析和归纳总结,可以得出有关统计数据的结论。

文献资料法的优点是可以利用已有的资源进行分析,但也面临数据更新不及时和数据可信度的问题。

五、统计软件和工具随着计算机技术的发展,统计软件和工具成为统计数据采集、整理与处理的重要工具。

常见的统计软件包括SPSS、Excel、R等,它们提供了丰富的统计分析方法和数据处理函数,可以有效地处理大规模数据和进行复杂的统计计算。

使用统计软件和工具的优点是提高了工作效率和准确性,但也需要熟悉相应的软件操作和统计方法。

如何合理选择统计方法——常用统计学方法汇总推荐文档

如何合理选择统计方法——常用统计学方法汇总推荐文档

如何合理选择统计方法——常用统计学方法汇总推荐文档在科学研究和数据分析中,合理选择统计方法是非常重要的。

统计学方法涉及到数据的收集、整理、描述和分析,能够帮助我们得出准确的结论和有效的推断。

本文将介绍一些常用的统计学方法,并给出一些建议来合理选择适当的统计方法。

一、描绘性统计方法描绘性统计方法用于对数据进行整理和描述,以便更好地了解数据的分布、中心趋势和变异程度。

常用的描绘性统计方法包括:均值、中位数、众数、方差、标准差、百分位数等。

在选择描绘性统计方法时,需要根据数据的类型和分布特征来决定使用哪种方法。

如果数据呈正态分布,可以使用均值和标准差进行描述;如果数据分布严重偏斜,可以使用中位数和百分位数。

二、推断统计方法推断统计方法用于对整体的特征进行推断和估计,基于样本数据来推断总体的参数和特征。

常用的推断性统计方法包括:假设检验和置信区间估计。

假设检验用于测试关于总体特征的假设,例如比较两个总体均值是否有显著差异;而置信区间估计用于给出总体参数的估计范围。

在选择推断统计方法时,需要考虑研究问题的特点和数据的类型。

如果对总体均值或比例是否有显著性差异感兴趣,可以选择假设检验方法;如果对总体参数的估计范围感兴趣,可以选择置信区间估计方法。

三、回归分析方法回归分析是一种用于研究变量之间关系的统计方法,常用于预测和解释变量之间的关系。

回归分析方法包括线性回归、多元回归、逻辑回归等。

在选择回归分析方法时,需要考虑自变量和因变量的类型和分布特征,以及变量之间是否存在线性关系。

如果自变量和因变量均为连续变量,并且存在线性关系,可以选择线性回归方法;如果因变量为二分类变量,可以选择逻辑回归方法。

四、方差分析方法方差分析是一种比较多个样本均值是否存在显著差异的统计方法,常用于实验设计和因素分析。

方差分析方法包括单因素方差分析和多因素方差分析。

在选择方差分析方法时,需要考虑自变量的类型和水平数目,以及因变量的类型和数据分布特征。

统计学中缺失数据的处理方法

统计学中缺失数据的处理方法

统计学中缺失数据的处理方法在统计学中,数据的完整性对于研究结果的准确性至关重要。

然而,在实际数据收集和处理过程中,经常会遇到数据缺失的情况。

数据缺失可能是由于调查对象未提供相关信息、记录错误、设备故障等原因造成的。

如何有效地处理缺失数据,成为统计学研究中一个重要的问题。

本文将介绍统计学中常用的几种处理缺失数据的方法。

一、删除法删除法是最简单直接的缺失数据处理方法之一。

当数据中存在缺失值时,可以选择直接删除缺失值所在的行或列。

这样做的好处是简单快捷,不会对原始数据进行修改,但缺点是可能会造成数据量的减少,丢失了一部分信息,从而影响统计结果的准确性。

二、均值、中位数、众数插补法均值、中位数、众数插补法是一种常用的缺失数据处理方法。

对于数值型数据,可以用整个变量的均值、中位数或众数来替代缺失值;对于分类变量,可以用出现频率最高的类别来替代缺失值。

这种方法的优点是简单易行,不会改变原始数据的分布特征,但缺点是可能会引入一定的偏差。

三、最近邻插补法最近邻插补法是一种基于样本相似性的缺失数据处理方法。

该方法的思想是找到与缺失样本最相似的样本,然后用这些样本的观测值来插补缺失值。

这种方法的优点是能够更好地保留原始数据的特征,缺点是对样本相似性的定义和计算比较主观,可能会引入较大的误差。

四、回归插补法回归插补法是一种基于回归分析的缺失数据处理方法。

该方法的思想是利用其他变量的信息来预测缺失变量的取值。

通过建立回归模型,利用已有数据对缺失值进行估计。

这种方法的优点是能够利用其他变量之间的相关性来填补缺失值,缺点是对模型的选择和拟合要求较高。

五、多重插补法多重插补法是一种结合模型建立和随机抽样的缺失数据处理方法。

该方法的思想是通过多次模拟,生成多个完整数据集,然后对这些数据集进行分析,最后将结果进行汇总。

多重插补法能够更好地反映数据的不确定性,提高了数据处理的准确性。

六、EM算法EM算法是一种迭代优化算法,常用于缺失数据的处理。

如何合理选择统计方法——常用统计学方法汇总

如何合理选择统计方法——常用统计学方法汇总

如何合理选择统计方法——常用统计学方法汇总在研究或分析数据时,选择合适的统计方法非常重要。

合理选择统计方法能够确保分析结果的准确性和可靠性。

下面是一些常用的统计学方法汇总,以便能够更好地进行数据分析和解释。

1.描述统计学方法:描述统计学方法主要用于总结和描绘数据的特征和分布。

常用的描述统计学方法包括均值、中位数、众数、标准差、方差、百分位数等。

这些方法能够帮助我们了解数据的中心趋势、离散程度以及分布形态。

通过描述统计学方法,我们可以获得关于数据的直观认识,并为后续的进一步分析提供基础。

2.推论统计学方法:推论统计学方法主要用于通过样本数据,推断总体的特征和参数。

常用的推论统计学方法包括假设检验、置信区间估计、回归分析、方差分析等。

这些方法可以帮助我们从样本数据中获取有关总体的信息,例如总体均值、总体差异等。

在推论统计学方法中,我们需要根据问题的要求和数据的特性选择合适的方法。

3.相关分析方法:相关分析方法主要用于研究两个或多个变量之间的关系。

常用的相关分析方法包括相关系数、回归分析、因子分析等。

这些方法可以帮助我们确定变量之间的相关性、影响因素以及隐藏的因素。

通过相关分析方法,我们可以探索变量之间的关系,并进一步理解变量的相互作用和影响。

4.非参数统计学方法:非参数统计学方法主要用于处理数据不满足正态分布假设或无法满足其他假设条件的情况。

常用的非参数统计学方法包括Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis检验等。

这些方法在处理小样本数据、有序数据或分布不确定的数据时非常有用。

选择非参数统计学方法需要考虑数据的性质和问题的要求。

5.多元统计学方法:多元统计学方法主要用于处理多个变量之间的关系和多个因素共同作用的情况。

常用的多元统计学方法包括因子分析、主成分分析、聚类分析等。

这些方法可以帮助我们从多个维度进行数据分析和解释,发现变量之间的模式和结构。

在选择多元统计学方法时,我们需要考虑变量的数量、关系的复杂程度以及分析目标。

如何选用统计学方法


单变量等级资料的分析
若为两组配对等级资料的比较,选 Wilcoxon单样本秩和检验;
若为两组独立样本等级资料的比较, 选Wilcoxon两样本样本秩和检验;
若为多组独立样本等级资料的比较, 选Kruskal-Wallis秩和检验。
双变量资料的分析
1.简单相关分析 分析两变量的相关关系时,若 两变量满足二元正态分布,可选Pearson 积矩相关分 析 (Pearson correlation) ;若两变量不满足二元正态 分 布 , 可 选 Spearman 秩 相 关 分 析 (Spearman correlation)。 2.线性回归分析 分析两变量的回归关系时,若 两变量关系呈线性趋势,可选简单线性回归分析 (linear regression)。 3.曲线回归分析 分析两变量的回归关系时,若 两变量关系呈曲线趋势,可按曲线类型选指数曲线, 多项式曲线,生长曲线, Logistic 曲线等。也可选用 非线性回归分析方法。
原始数据的记录形式
医学研究的原始数据常列成类似下表的二维结构, 即行与列结构 的数据集形式。在下表中,每一行称为一个记录 (record),或一个观 察单位(case);每一列称为一个变量(variable),用以表示变量、项目 或观察指标等。下表记录的原始数据是一个由 274 例观察单位和 11 个变量组成的数据集。 肾衰病人预后研究的临床资料记录
单变量计量资料的分析
(4) 多因素方差分析且分析交互作用: 此类资料包括析因设计资料(例 11-2 ),正交 设计资料(例 11-4 ),嵌套设计资料(例 11-6 ), 裂区设计资料(例11-7)等。 (5) 重复测量资料: 单因素重复测量只有1个重复测量因素,如表123的数据。多因素重复测量除有1个重复测量因素外, 至少还有1个其它处理因素,可分析交互作用,如例 12-3。

统计学中的数据预处理方法

统计学中的数据预处理方法数据预处理是统计学中的重要环节,它涉及到对原始数据进行整理、筛选、清洗和转换,以便进行进一步的分析和建模。

本文将介绍几种常见的数据预处理方法,包括缺失值处理、异常值检测与处理、数据变换和标准化。

1. 缺失值处理缺失值是指在数据采集过程中因为种种原因而缺失的观测值。

处理缺失值的方法可以分为删除、插补和不处理三种。

删除是指直接将含有缺失值的样本删除,但这可能会导致样本量减小,从而影响后续的分析结果。

插补是指通过一些方法估计缺失值,如均值、中位数、回归模型等。

而不处理则是指将缺失值作为一个独立的分类进行分析。

2. 异常值检测与处理异常值是指与其他观测值明显不同的数值,可能是由于测量误差、数据录入错误或者实际存在的特殊情况引起的。

检测异常值的方法可以通过统计学方法、专家经验或者模型判断。

常见的处理方法包括删除异常值或者进行替换,替换可以使用均值、中位数或者插值等。

3. 数据变换数据变换是指通过数学函数将原始数据转换为符合分析假设的形式。

常见的数据变换方法包括对数变换、幂次变换和差分变换。

对数变换可以将右偏分布转化为近似正态分布,幂次变换则可对数值进行幂次转化以调整数据的分布形态。

差分变换则是对时间序列数据进行一阶或高阶差分,以消除趋势和周期性。

4. 标准化标准化是指通过对数据进行线性变换,使其具有零均值和单位方差。

标准化可以使得不同变量之间具有可比性,避免因为变量的量纲差异而对分析结果产生影响。

常见的标准化方法包括Z-score标准化和区间缩放法。

综上所述,数据预处理在统计学中占据着重要的地位。

缺失值处理、异常值检测与处理、数据变换和标准化方法可以帮助统计学家处理不完整、不准确或者不适用的数据,从而提高数据的质量和分析的准确性。

在实际应用中,根据数据的特点和研究目的,选择适当的数据预处理方法至关重要,以确保后续分析的可靠性和有效性。

(字数:492)。

实验数据处理方法统计学方法

实验数据处理方法统计学方法实验数据处理方法是指对实验中所获得的数据进行统计和分析的方法。

统计学方法是处理实验数据的基本方法之一,它可以帮助我们从数据中获取有意义的信息,并进行科学的推断和决策。

下面将具体介绍一些常用的实验数据处理方法统计学方法。

1.描述统计分析:描述统计分析是对收集到的实验数据进行总结和描述的方法。

它可以通过计算数据的中心趋势(如平均值、中位数和众数)、离散程度(如标准差、方差和极差)以及数据的分布情况(如频数分布、百分位数等)等来揭示数据的一般特征。

描述统计分析能够为后续的数据处理和推断提供基础。

2.参数统计推断:参数统计推断是根据样本数据对总体特征进行推断的方法。

它基于样本数据对总体参数(如总体均值、总体方差等)进行估计,并使用概率分布等方法进行推断。

参数统计推断涉及到估计(如点估计和区间估计)和假设检验(如t检验、方差分析、卡方分析等)等技术。

通过参数统计推断,可以从样本数据中得出对总体的推断结论,并进行科学的决策。

3.非参数统计推断:非参数统计推断是一种不依赖于总体参数分布形式的方法。

与参数统计推断不同,非参数统计推断通常使用样本自身的顺序、秩次或其他非参数概念进行统计推断。

常见的非参数统计推断方法包括秩次检验(如Wilcoxon秩和检验、Mann-Whitney U检验等)、Kruskal-Wallis检验、Friedman检验和符号检验等。

这些方法在样本数据的分布特征未知或不符合正态分布时具有很高的鲁棒性。

4.方差分析:方差分析是比较多个总体均值差异的统计方法。

在实验数据处理中,方差分析常用于分析影响因素对实验结果的影响程度。

方差分析可以分为单因素方差分析和多因素方差分析两种。

在实验中,通过方差分析可以判断不同因素对实验结果是否存在显著影响,以及不同处理组之间的差异是否具有统计学意义。

5.相关分析:相关分析是研究两个或多个变量之间相互关系的统计方法。

在实验数据处理中,常用的相关分析方法有Pearson相关分析和Spearman秩相关分析。

统计学方法的选择和应用

统计学方法的选择和应用一、引言统计学是处理数据、解释数据和研究数据内在规律性的方法论科学,它广泛应用于各个领域,如社会科学、医学、经济学和生物学等。

在数据分析中,选择合适的统计学方法至关重要,它直接影响到结果的准确性和可靠性。

本文将探讨统计学方法的选择和应用,以帮助读者更好地理解和应用这一学科。

二、统计学方法的选择选择合适的统计学方法需要考虑数据类型、研究目的和研究问题等因素。

以下是选择统计学方法的几个关键因素:1. 数据类型:数据类型是选择统计学方法的基础。

例如,对于定距数据和定比数据,可以使用参数检验;对于定类数据和定序数据,可以使用非参数检验。

2. 研究目的:研究目的是选择统计学方法的导向。

例如,如果目的是描述数据特征,可以使用描述性统计方法;如果目的是比较不同组之间的差异,可以使用推断性统计方法。

3. 研究问题:研究问题是选择统计学方法的依据。

例如,如果问题是“两个总体均值是否存在显著差异”,可以使用t检验;如果问题是“多个总体均值是否存在显著差异”,可以使用方差分析。

三、统计学方法的应用统计学方法的应用广泛,以下是一些常见的应用场景:1. 描述性统计:描述性统计用于描述数据的基本特征,如均值、中位数、众数、标准差等。

这些统计量可以帮助我们了解数据的分布情况,从而为进一步的数据分析提供基础。

2. 推断性统计:推断性统计用于从样本数据推断出总体特征。

例如,我们可以通过样本均值和标准差来估计总体均值和标准差。

此外,推断性统计还可以用于检验假设、估计参数和预测未来趋势等。

3. 方差分析:方差分析用于比较不同组之间的差异。

例如,我们可以使用方差分析来比较不同地区的销售额是否存在显著差异。

通过方差分析,我们可以了解各组之间的差异是否显著,从而为进一步的数据解释提供依据。

4. 回归分析:回归分析用于探索变量之间的关系。

例如,我们可以使用线性回归分析来预测房价,通过分析房价与各个因素之间的关系,为房地产市场的决策提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/4/23
冯启明
二、输入数据的质量控制
1、数据核查
数据录入后,首先须对录入的数据进行核查,以确 保录入数据的准确性和真实性。核查准确性可分两步进 行。第一步逻辑检查,通过运行统计软件中的基本统计 量过程,列出每个变量的最大值与最小值,如果某变量 的最大值或最小值不符合逻辑,则数据有误;第二步将 原始数据与输入数据进行核对,更正错误。
二、输入数据的质量控制
3、离群数据的处理
当个别数据与群体数据严重偏离时,被称为离群数据(outlier)。 判断离群数据的方法可通过观察数据的频数表或直方图进行初步 判断;统计软件一般都有判断离群数据的方法,例如,SPSS软 件对其的定义为:观察值距箱式图(boxplot)的箱体底线(第25百 分位数)或顶线(第75百分位数)的距离为箱体高度(四分位数间距) 的1.5倍至3倍时被视为离群点,观察值距箱体底线或顶线的距离 超过3倍的箱体高度时被视为极端值。
(2)若数据并无明显的逻辑错误,可将该数据剔除前 后各做一次分析,若结果不矛盾,则不剔除;若结果矛 盾,并需要剔除,必须给以充分合理的解释,例如用何 种方法确定偏离数据,该数据在实验中何种干扰下产生 等。
第二部分 数据统计描述方法的选择
总体
抽样
样本
抽样误差
统计推断
一、计量资料的描述
某市抽查187名宾馆女性服务人员年龄资料如下
23 25 40 33 18 22 25 33 30 35 18 24 20 22 22 25 26 24 28 18 40 21 ……………………………………………………………………………. 22 19 22 20 22 33 29 38 40 22 18 19 20 25 24 29 31 32 28 26 25 19
187名宾馆女性服务人员年龄分布
年龄分组(岁)
频数
<20
21
20~
49
25~
89
30~
19
>=35
9
计量资料统计描述
集中趋势Байду номын сангаас
均数 几何均数 中位数
离散趋势
全距 四分位数 间距 方差 标准差 变异系数
计量资料描述的常用统计指标选择
集中趋势
指标
适用范围
均数 正态分布或对称分布资料
x
几何均数 对数正态分布或成倍数关
G
系的数据
中位数 偏态数据或“开口数据”
M
离散趋势 指标
四分位数 间距 Q75-Q25
标准差 S
适用范围 偏态数据或“开口数据”
正态分布或对称分布资料
某市抽查187名宾馆女性服务人员年龄资料如下
23 25 40 33 18 22 25 33 30 35 18 24 20 22 22 25 26 24 28 18 40 21 ……………………………………………………………………………. 22 19 22 20 22 33 29 38 40 22 18 19 20 25 24 29 31 32 28 26 25 19
录人数据时,应遵循便于录入,便于核查,便于转换,便于 分析的原则。便于录入是指尽可能地减少录入工作量,录入时, 用数值变量取代了字符变量,可以大大节约录入的时间和费用。 便于核查是指一定要设有标识变量,以方便数据核查。便于转换 是指录入数据时要考虑不同软件对字节和字符的要求,便于分析 是指每项研究最好录成一个数据文件,录入的格式满足各种统计 分析的需要,这样才能保证分析数据时的高效和全面 。
在一些大型数据的录入过程中,为保证数据的质量, 往往采用对同一资料进行双人重复录入的方法,然后应 用程序对两个数据库进行比对,如有录入结果不符,则 进行核查,找出其错误所在。
二、输入数据的质量控制
2、缺失值的处理
在资料收集过程中,特别是大型数据的收集,不可避免的会 有一些缺失值产生,这主要来自于资料收集中的漏填和漏报。通 常认为,缺失值应控制在数据记录总量的10%以内。在计算机的 数据录入过程中,要注意把缺失值和“0”区分开来,“0”通常用 来表示“无”,即该事件未发生,具有确切的含义,表明该数据 已收集到;而缺失值表示该数据未填或未收集,两者要注意区分, 以免混淆。在一般的数据库软件中,缺失值通常都用“.”表示。
肾衰病人预后分析临床资料
病人 病案 性 年龄 生理 肾毒 黄疸 昏迷 肌酐 胆固 肾功能
编号 号 别
评分 性
醇 预后
1 004757 男 26 14 无 有 无 520 4.1 治愈
2 007950 女 31 13 无 无 无 523 4.5 治愈
3 011093 男 55 17 无 无 无 209 3.3 治愈
二、输入数据的质量控制
2、缺失值的处理
在资料分析中,如一例记录的某个变量有缺失值, 统计分析软件都会自动把该例作删除处理。因此,当资 料可避免地产生了缺失值,而该例记录由于其他的变量 仍有统计分析的价值,或者当删除该例记录后样本例数 太少,不能保证数据分析结果的可靠性时,则可用一些 统计学方法对缺失值进行填补。对缺失值进行估计填补 具体方法,可参阅有关文献。
4 017555 男 25
9
有 无 无 1033 4.1 未愈
.
.
.
.
.
.
.
.
.
.
.
274 279183 女 78 15 有 无 无 331 6.1 未愈
2、原始数据的录入
在进行统计分析前,原始数据需录入计算机。录入的文件 类型大致有:数据库文件,如dBASE、FoxBASE、Lotus、 EPIinfo等;Excel文件;统计应用软件的相应文件,如SPSS数 据文件、SAS数据文件、STATA数据文件等。目前,上述文件类 型绝大多数都可以相互转换。
300 250 200 150 100
50 0
93
95 39 94
体重
二、输入数据的质量控制
3、离群数据的处理
若有离群数据出现,可分为两种情况处理:
(1)如果确认数据有逻辑错误,又无法纠正,可直接 删除该数据。例如,若某一数据中某病例的身高变量为 “1755”cm,且原始记录亦如;又无法再找到该病例时, 显然这是一个错误的记录,只能删除。
数据统计学处理方法与选择
2020/4/23
第一部分 数据输入与整理
一、原始数据的录入
1、原始数据的记录形式
医学研究的原始数据常列成类似下表的二维结构,即行与列结构的数据集形式。 每 一 行 称 为 一 个 记 录 (record) , 或 一 个 观 察 单 位 (case) ; 每 一 列 称 为 一 个 变 量 Variable),用以表示变量、项目或观察指标等。
相关文档
最新文档