高二数学选修2-12-22-3知识点

合集下载

高二数学(选修2-3人教B版)-计数原理全章总结

高二数学(选修2-3人教B版)-计数原理全章总结
解:(1)第三项的二项式系数 C52 10 .
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式

Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).

高二选修2-2数学知识点

高二选修2-2数学知识点

高二选修2-2数学知识点高二数学选修2-2是一门重要的课程,它涵盖了许多关键的数学知识点。

本文将重点介绍高二选修2-2数学课程的五个重要知识点。

这些知识点包括函数、导数、不等式、排列组合和概率。

通过深入学习这些知识点,学生将能够更好地理解和运用数学。

一、函数函数是高二选修2-2课程的核心概念之一。

函数是一种特殊的关系,它将一个自变量映射到一个因变量。

函数可以用图表、方程或文字形式表示。

在学习函数时,学生需要了解函数的定义域、值域、增减性、最值等概念。

学生还需要学会绘制函数图像和解决与函数有关的各种实际问题。

二、导数导数是高二选修2-2课程中的另一个重要概念。

导数描述了函数在某一点的变化率。

学生需要学习导数的定义、性质和运算法则,掌握导数的计算方法,并能够应用导数解决各种相关问题,如求函数的极值、判断函数的增减性等。

导数在微积分和物理等领域有广泛的应用。

三、不等式不等式是高二选修2-2课程中的一个重要主题。

不等式表示不同数值之间的关系,包括大于、小于、大于等于、小于等于等。

学生需要学习不等式的基本性质,如加减乘除不等式、绝对值不等式等。

通过解不等式,学生可以找到满足一定条件的数值范围,解决实际问题。

四、排列组合排列组合是高二选修2-2课程中的一个重要内容。

它研究的是个体之间的选择和排列方式。

学生需要学习排列和组合的定义、计算方法和应用,包括阶乘、排列数、组合数等概念。

排列组合在概率论、统计学等领域有广泛的应用。

五、概率概率是高二选修2-2课程中的最后一个重要知识点。

概率是研究随机事件发生可能性的数学分支。

学生需要学习概率的基本概念、概率计算、事件之间的关系等内容。

通过学习概率,学生可以理解和计算随机事件的可能性,并能够应用概率解决实际问题,如赌博、抽奖等。

高二选修2-2数学知识点的学习对于学生的数学能力和解决实际问题的能力有着重要的影响。

通过深入理解和掌握这些知识点,学生将能够在数学领域更上一层楼。

高二数学知识点总结(8篇)

高二数学知识点总结(8篇)

高二数学知识点总结一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。

下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。

高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

高中数学选修2-3知识点汇编

高中数学选修2-3知识点汇编

高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即tan k α=。

斜率反映直线与轴的倾斜程度。

当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

高三数学选修2-3知识点

高三数学选修2-3知识点高三数学选修2-3是高中数学课程中的一部分,主要讲解了数学中的一些应用问题和数学建模的技巧。

这一部分的内容比较具体,其中包括了概率统计、三角函数、向量和解析几何等知识点。

下面我将分别介绍这些知识点的重点内容和应用。

一、概率统计概率统计是实际生活中常常用到的一门数学知识。

它主要研究随机事件的发生概率及其统计规律。

在概率统计中,最常见的一种问题是求解事件发生的概率。

为了求解概率,我们需要掌握一些基本概念和方法。

首先,我们需要了解事件的概念以及事件之间的关系。

事件通常用一个大写字母表示,而事件之间的关系通过并、或等运算来描述。

例如,如果事件A和事件B是互不相容的,那么它们的并就是两事件之和;如果它们是相容的,那么它们的并就是两事件的交集。

其次,我们需要学会如何计算概率。

概率有两种计算方法,一种是几何概率,一种是统计概率。

几何概率常用来解决几何问题,并通过实验次数的频率来估计概率。

统计概率则是通过一系列试验结果的频率来估计概率,常用于描述随机事件在长期实验中出现的可能性。

在实际生活中,概率统计可以应用于很多领域,例如金融、保险、科学实验等。

它可以帮助我们评估风险、预测趋势,对决策和规划起到重要的指导作用。

二、三角函数三角函数是数学中的一类特殊函数,它们描述的是角度和长度之间的关系。

在高三数学选修2-3中,我们主要学习了正弦函数、余弦函数和正切函数。

正弦函数描述的是一个角对应的直角三角形中,斜边与对边的比值。

余弦函数描述的是一个角对应的直角三角形中,斜边与邻边的比值。

正切函数则描述的是一个角对应的直角三角形中,对边与邻边的比值。

三角函数的应用广泛,包括工程、物理、天文等多个领域。

例如在三角测量中,可以利用三角函数计算出不可达区域的高度和距离;在物理中,三角函数可以用于描述波动、振动等现象。

三、向量和解析几何向量和解析几何是高三数学选修2-3中比较抽象和复杂的一部分。

它们主要研究的是空间中的点和直线的性质以及它们之间的关系。

高中数学选修2-3知识点

高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。

那么完成这件事情共有M1+M2+。

+MN种不同的方法。

2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。

那么完成这件事情共有XXX种不同的方法。

3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。

从n个不同元素中取出m个元素的一个排列数,用符号An表示。

An=m!/(n-m)!(m≤n,n,m∈N)。

5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。

*(n-m+1)=n!/(n-m)。

6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。

8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。

+C(n,n)*a^0*b^n。

9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。

10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。

11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。

新课标人教版数学Ⅱ课本练习选修2-12-22-34-44-5答案 (3)

高三理科党整合,仅供高三复习全部书参考,以及高一二订正,不建议直接抄袭。

只要努力一切来得及在高考吧里零基础学生逆袭高考仅一年时间考上一本重点的例子不少。

课本是一切知识的基础,万变不离其宗! 望广大学子加油考上自己理想的大学!感谢各位提供资料的老师与同学。

答案包括选修2-1 2-2 2-3 4-4极坐标与参数方程4-5 不等式- 7 左整合人教版数学选修2—1第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B 5.① 6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。

以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个 5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0, =>-3/2<a<-l└4a2+8a<0 所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠> 5.充分不必要6.必要不充分 7.“c≤d”是“e≤f”的充分条件 8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<010.m≥9 11.是1.2.2 充要条件1.C 2.B 3.D 4.假;真 5.C和D 6.λ+μ=1 7.略 8.a=-39.a≤l 10.略 11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真 5.①③ 6.必要不充分7.(1)p:2<3或q:2=3;真 (2)p:1是质数或q:1是合数;假 (3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真 (2)真 4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0 (2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假 (2)特称;假 (3)全称;真 (4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可 (2)(4,+∞) 11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形 5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假 (2)全称;┑p假 (3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假 (3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假 (2)真 (3)假 (4)真 10.a≥3 11.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假 12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角 14.充要;充要;必要 15.b≥016.既不充分也不必要 17.①③④ 18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入。

高中数学选修2-2最全知识点汇总

三.导数在研究函数中的应用
1.函数的单调性与导数:
一般的,函数的单调性与其导数的正负有如下关系:在某个区间 内
(1)如果 ,那么函数 在这个区间单调递增;(2)如果 ,那么函数 在这个区间单调递减.
2.函数的极值与导数
极值反映的是函数在某一点附近的大小情况.
求函数 的极值的方法是:(1)如果在 附近的左侧 ,右侧 ,那么 是极大值(2)如果在 附近的左侧 ,右侧 ,那么 是极小值;
3.导函数:当x变化时, 便是x的一个函数,我们称它为 的导函数. 的导函数有时也记作 ,即
二.导数的计算
基本初等函数的导数公式:
1若 (c为常数),则 ;2若 ,则 ;
3若 ,则 4若 ,则 ;
5若 ,则 6若 ,则
7若 ,则 8若 ,则
导数的运算法则
1. 2.
3.
复合函数求导 和 ,称则 可以表示成为 的函数,即 为一个复合函数
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.
类比推理的一般步骤:
(1)找出两类事物的相似性或一致性;
(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.
2,几个重要的结论
(1) (2) (3)若 为虚数,则
3.单位i的一些固定结论:
(1) (2) (3) (2)
(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.
考点二演绎推理(俗称三段论)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 常用逻辑用语 1. 命题及其关系① 四种命题相互间关系: ② 逆否命题同真同假 2. 充分条件与必要条件p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:,p q q p ⇒¿ p 是q 的必要不充分条件:,q p p q ⇒¿ p 是q 的既充分不必要条件:,p q q p 靠3. 逻辑联结词 “或”“且”“非”4. 全称量词与存在量词 注意命题的否定形式(联系反证法的反设),主要是量词的变化. 例:“a=1”是“0,21ax x x∀>+≥”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 第二章 圆锥曲线与方程 1.三种圆锥曲线的性质(以焦点在x 轴为例)椭圆双曲线抛物线定义与两个定点的距离和等于常数122 (2||)a a F F >与两个定点的距离差的绝对值等于常数122 (2||)a a F F >与一个定点和一条定直线的距离相等标准方程22221(0)x y a b a b +=>> 22221(,0)x y a b a b -=> 22(0)y px p =>图形顶点坐标 (±a,0),(0,±b) (±a,0) (0,0) 对称轴x 轴,长轴长2a y 轴,短轴长2b x 轴,实轴长2a y 轴,虚轴长2b x 轴焦点坐标 (±22a b -,0)(±22a b +,0)(2p,0) 离心率c a()22101c b e e a a ==-<<()2211c b e e a a==+>e =1准线2a x c=-2a x c=-2p x =-渐近线b y x a=±互 否为 逆 为 逆 互 否互否互否互 逆原命题 若p 则q互 逆 逆命题 若q 则p逆否命题 若q ⌝则p ⌝逆否命题 若q ⌝则p ⌝2. “回归定义” 是一种重要的解题策略。

如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。

3. 直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是0∆>、0∆=、0∆<.应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:①联立直线与圆锥曲线方程,利用韦达定理等;②点差法 (主要适用中点问题,设而不求,注意需检验,化简依据:12122100212,2,22x x y y y yx y k x x ++-===-) (2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)① 直线具有斜率k ,两个交点坐标分别为1122(,),(,)A x y B x y1212AB x y =-==- ② 直线斜率不存在,则12AB y y =-.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。

考查三个方面:A 存在性(相交);B 中点;C 垂直(121k k =-)注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。

2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法.3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。

4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等)(4)求曲线轨迹常见做法:定义法、直接法(步骤:建—设—现(限)—代—化)、代入法(利用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法、交轨法等。

例1.已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是(答:C ); A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF例2已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且ο6021=∠PF F ,31221=∆F PF S .求该双曲线的标准方程(答:221412x y -=) 例3 已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若由焦点到直线的距离为3. (1)求椭圆分方程;(2)设椭圆与直线相交于不同的两点M,N ,当|AM|=|AN|时,求m 的取值范围。

(答:2211; (,2)32x y m +=∈) 例4过点A (2,1)的直线与双曲线x y 2221-=相交于两点P 1、P 2,求线段P 1P 2中点的轨迹方程。

第三章 空间向量与立体几何 1. 空间向量及其运算①a ==r d AB =AB =u u u r ② 共线向量定理://a b a b λ⇔=r r r r (0)b ≠r r③ 共面向量定理:,,(,)p a b p xa yb x y R ⇔=+∈u r r r u r r r共面;四点共面(,)MP xMA yMB x y R =+∈u u u r u u u r u u u r④ 空间向量基本定理 (,,)p xa yb zc x y z R =++∈u r r r r (不共面的三个向量,,a b c r r r构成一组基底,任意两个向量都共面)2. 平行:(直线的方向向量,平面的法向量)(,a b r r是a,b 的方向向量,n r 是平面α的法向量)线线平行://a b ⇔//a b r r线面平行://a a n α⇔⊥r r 或 //a b r r ,b α⊂ 或 (a xb yc b c =+r r r r r,是α内不共线向量) 面面平行:12////n n αβ⇔u r u u r3. 垂直线线垂直:a b ⊥⇔0a b a b ⊥⇔⋅=r r r r线面垂直://a a n α⊥⇔r r 或 , (a b a c b c ⊥⊥r r r r r r,是α内不共线向量) 面面垂直:12n n αβ⊥⇔⊥u r u u r4. 夹角问题线线角线面角二面角③回答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无需说明理由))5. 距离问题(一般是求点面距离,线面距离,面面距离转化为点到面的距离)P 到平面α的距离(其中A 是平面α内任一点,n r 为平面α的法向量) 6. 立体几何解题一般步骤坐标法:①建系(选择两两垂直的直线,借助于已有的垂直关系构造);②写点坐标;③写向量的坐标;④向量运算;⑤将向量形式的结果转化为最终结果。

基底法:①选择一组基底(一般是共起点的三个向量);②将向量用基底表示;③向量运算;④将向量形式的结果转化为最终结果。

异面直线夹角——平移直线(借助中位线平行四边形等平行线); 线面角——找准面的垂线,借助直角三角形的知识解决;二面角——定义法作二面角,三垂线定理作二面角;作交线的垂面.选修2-2第一章 导数及其应用1. 平均变化率 xf x f x y x x ∆-∆+=∆∆)()(00 2. 导数(或瞬时变化率) xx f x x f x f x ∆-∆+='→∆)()(lim)(0000导函数(导数): xx f x x f x f x ∆-∆+='→∆)()(lim )(03. 导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0).4. 导数的运算:(1)几种常见函数的导数:①(C )′=0(C 为常数); ②(x α)′=1xαα-(x >0,Q α∈); ③(sin x )′=cos x ;④(cos x )′=-sin x ; ⑤(e x)′=e x; ⑥(a x)′=a xln a (a >0,且a ≠1); ⑦xx 1)(ln =; ⑧1(log )ln a x x a =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . 5. 设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'。

复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。

6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理()()|()()bab f x dx F x F b F a a==-⎰.物理上的应用:汽车行驶路程、位移;变力做功问题。

7. 函数的单调性(1)设函数)(x f y =在某个区间(a ,b )可导,如果'f )(x 0>,则)(x f 在此区间上为增函数;如果'f 0)(<x ,则)(x f 在此区间上为减函数; (2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常数。

★★★反之,若已知可导函数)(x f y =在某个区间上单调递增,且不恒为零;可导函数)(x f y =.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错); ② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“U ”连结。

相关文档
最新文档