高中数学选修2-2知识点总结(最全版)
人教版高中数学选修2-2知识点汇总

人教版高中数学必修2-2知识点第一章导数及其应用一.导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==-3.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即0()()()lim x f x x f x f x x∆→+∆-'=∆二.导数的计算1.基本初等函数的导数公式:若()f x c =(c 为常数),则()0f x '=;若()f x x α=,则1()f x x αα-'=;若()sin f x x =,则()cos f x x'=若()cos f x x =,则()sin f x x '=-;若()x f x a =,则()ln x f x a a'=若()x f x e =,则()xf x e '=若()log x a f x =,则1()ln f x x a '=若()ln f x x =,则1()f x x '=2.导数的运算法则[()()]()()f xg x f x g x '''±=±[()()]()()()()f xg x f x g x f x g x '''∙=∙+∙2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=3.复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =2.函数的极值与导数极值反映的是函数在某一点附近的大小情况;求函数()y f x =的极值的方法是:如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;3.函数的最大(小)值与导数函数极大值与最大值之间的关系;求函数()y f x =在[,]a b 上的最大值与最小值的步骤求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,求函数的最大(小)值,从而解决实际问题第二章推理与证明1.归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳)。
(完整版)高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。
第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理

2.3 数学归纳法1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:第一步,归纳奠基:证明当n 取______________时命题成立.第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,等式左边为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【做一做2】 设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1【做一做3】 在应用数学归纳法证明凸n 边形的对角线有12n (n -3)条时,第一步验证n等于__________.2.数学归纳法的框图表示答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3.【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2.【做一做2】 C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1),故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点:(1)两个步骤缺一不可.(2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0+1等),证明应视具体情况而定.(3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效.(4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性.数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数.2.运用数学归纳法要注意哪些?剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次.(3)正确寻求递推关系.我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.②探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置.③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.题型一 用数学归纳法证明等式 【例题1】 用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 分析:第一步先验证等式成立的第一个值n 0;第二步在n =k 时等式成立的基础上,等式左边加上n =k +1时新增的项,整理出等式右边的项.反思:在应用数学归纳法证题时应注意以下几点:①验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.②递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.③利用假设是核心:在第(2)步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明方法就不是数学归纳法.题型二 用数学归纳法证明不等式【例题2】 已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 分析:(1)求f ′(x )→得到式子a n +1≥(a n +1)2-1→利用数学归纳法证明a n ≥2n -1(n ∈N *)(2)由a n ≥2n -1得1+a n ≥2n →11+a n ≤12n →利用放缩法证明不等式成立 反思:利用数学归纳法证明与n 有关的不等式是数学归纳法的主要应用之一,应用过程中注意:①证明不等式时,从n =k 到n =k +1的推导过程中要应用归纳假设,有时需要对目标式进行适当的放缩来实现.②与n 有关的不等式的证明有时并不一定非用数学归纳法不可,还经常用到不等式证明中的比较法、分析法、配方法、放缩法等.题型三 用数学归纳法证明几何问题【例题3】 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.分析:解答本题的关键是在第二步中如何正确地应用假设.反思:用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成(k +1)个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.题型四 易错辨析【例题4】 用数学归纳法证明:1+4+7+…+(3n -2)=12n (3n -1).错解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,需证1+4+7+…+(3k -2)+[3(k +1)-2]=12(k +1)(3k +2)(*).由于等式左边是一个以1为首项,公差为3,项数为k +1的等差数列的前n 项和,其和为12(k +1)(1+3k +1)=12(k +1)(3k +2),所以(*)式成立,即n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.错因分析:判断用数学归纳法证明数学问题是否正确,关键要看两个步骤是否齐全,特别是第二步假设是否被应用,如果没有用到假设,那就是不正确的.错解在证明当n =k +1等式成立时,没有用到假设“当n =k (k ≥1,k ∈N *)时等式成立”,故不符合数学归纳法证题的要求.答案:【例题1】 证明:(1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.(2)假设n =k (k ≥2,k ∈N *)时结论成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k . 那么n =k +1时,利用归纳假设有:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1).∴即n =k +1时等式也成立.综合(1)(2)知,对任意n ≥2,n ∈N *等式恒成立. 【例题2】 (1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立;②假设当n =k (k ≥1,k ∈N *)时命题成立,即a k ≥2k -1; 那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立. (2)解:11+a 1+11+a 2+…+11+a n<1. ∵a n ≥2n -1,∴1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a n≤12+122+…+12n =1-12n <1. 【例题3】 证明:(1)当n =1时,分为两部分,f (1)=2,命题成立; (2)假设n =k (k ≥1,k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,∴平面上增加了2k 个区域.∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立, 由(1)(2)知命题成立.【例题4】 正解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,1+4+7+…+(3k -2)+[3(k +1)-2]=12k (3k -1)+(3k +1)=12(3k 2+5k +2)=12(k +1)(3k +2)=12(k +1)[3(k +1)-1], 即当n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.1用数学归纳法证明3n≥n 3(n ≥3,n ∈N ),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =42已知f (n )=11112n n n +++++ (21),则( ) A .f (n )共有n 项,当n =2时,f (2)=1123+B .f (n )共有n +1项,当n =2时,f (2)=111234++C .f (n )共有n 2-n 项,当n =2时,f (2)=1123+D .f (n )共有n 2-n +1项,当n =2时,f (2)=111234++3已知n 为正偶数,用数学归纳法证明1111234-+-+…+11n -=1112242n n n ⎛⎫++⋅⋅⋅+ ⎪++⎝⎭时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立4设平面内有n 条直线,其中任何两条直线不平行,任何三条直线不共点.若k 条直线将平面分成f (k )个部分,k +1条直线将平面分成f (k +1)个部分,则f (k +1)=f (k )+__________.5用数学归纳法证明2222111111234n n+++⋅⋅⋅+<-(n ≥2,n ∈N *).答案:1.C 由题知,n 的最小值为3,所以第一步验证n =3是否成立,选C. 2.D 由题意知f (n )最后一项的分母为n 2, 故f (2)=2111232++,排除选项A ,选项C. 又f (n )=211101()n n n n n ++++++-…, 所以f (n )的项数为n 2-n +1项.故选D.3.B 因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B.4.k +1 第k +1条直线与原来的k 条直线相交,有k 个交点,这k 个交点把第k +1条直线分成k +1部分(线段或射线),这k +1部分把它们所在的平面区域一分为二,故平面增加了k +1部分.5.分析:证明:(1)当n =2时,左边=21124=,右边=11122-=. 因为1142<,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立, 即2222111111234k k++++<-…, 则当n =k +1时,22222211111111234(1)(1)k k k k +++++<-+++… =22222(1)1(1)111(1)(1)(1)k k k k k k k k k k k k +-+++-=-<-+++ =111k -+. 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.。
(完整)高中数学选修2-2微积分基本定理

[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分.知识点一 导数与定积分的关系f (x )d x 等于函数f (x )的任意一个原函数F (x )(F ′(x )=f (x ))在积分区间[a ,b ]上的改变量F (b )-F (a ).以路程和速度之间的关系为例解释如下:如果物体运动的速度函数为v =v (t ),那么在时间区间[a ,b ]内物体的位移s 可以用定积分表示为s =v (t )d t .另一方面,如果已知该变速直线运动的路程函数为s =s (t ),那么在时间区间[a ,b ]内物体的位移为s (b )-s (a ),所以有v (t )d t =s (b )-s (a ).由于s ′(t )=v (t ),即s (t )为v (t )的原函数,这就是说,定积分v (t )d t 等于被积函数v (t )的原函数s (t )在区间[a ,b ]上的增量s (b )-s (a ).思考 函数f (x )与其一个原函数的关系: (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos x ; (7)若f (x )=cos x ,则F (x )=sin x . 知识点二 微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么f (x )d x =F (b )-F (a ). 思考 (1)函数f (x )的原函数F (x )是否唯一?(2)用微积分基本定理计算简单定积分的步骤是什么? 答案 (1)不唯一.(2)①把被积函数f (x )变为幂函数、正弦函数、余弦函数、指数函数等初等函数与常数的和或差;②用求导公式找到F (x ),使得F ′(x )=f (x ); ③利用微积分基本定理求出定积分的值.题型一 求简单函数的定积分 例1 计算下列定积分. (1)3d x ;(2)(2x +3)d x ; (3) (4x -x 2)d x ;(4)(x -1)5d x . 解 (1)因为(3x )′=3,所以3d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10. (3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203.(4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以 (x -1)5d x =16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6=16. 反思与感悟 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②若F (x )是f (x )的原函数,则F (x )+C (C 为常数)也是f (x )的原函数.随着常数C 的变化,f (x )有无穷多个原函数,这是因为F ′(x )=f (x ),则[F (x )+C ]′=F ′(x )=f (x )的缘故.因为⎠⎛ab f (x )d x=[F (x )+C ]|b a =[F (b )+C ]-[F (a )+C ]=F (b )-F (a )=F (x )|b a ,所以利用f (x )的原函数计算定积分时,一般只写一个最简单的原函数,不用再加任意常数C 了. 跟踪训练1 求下列函数的定积分: (1)⎝⎛⎭⎫x +1x 2d x ;(2)x (1+x )d x . 解 (1)⎝⎛⎭⎫x +1x 2d x =⎠⎛12⎝⎛⎭⎫x 2+2+1x 2d x =⎠⎛12x 2d x +⎠⎛122d x +⎠⎛121x2d x =13x 3⎪⎪⎪ 21+2 x ⎪⎪⎪ 21 +⎝⎛⎭⎫-12⎪⎪⎪21=13×(23-13)+2×(2-1)-⎝⎛⎭⎫12-1 =296. (2)⎠⎛49x (1+x )d x=⎠⎛49(x +x )d x=⎝⎛⎭⎫23x x +12x 2⎪⎪⎪94=⎝⎛⎭⎫23×9×3+12×92-⎝⎛⎭⎫23×4×2+12×42 =2716. 题型二 求分段函数的定积分 例2 求函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1),x 2,x ∈[1,2),2x ,x ∈[2,3]在区间[0,3]上的定积分.解 由定积分的性质知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x 2d x +⎠⎛232x d x=x 44⎪⎪⎪10+x 33⎪⎪⎪21+2x ln 2⎪⎪⎪32=14+83-13+8ln 2-4ln 2 =3112+4ln 2. 反思与感悟 (1)分段函数在区间[a ,b ]上的定积分可分成几个定积分的和的形式.(2)分段的标准是确定每一段上的函数表达式,即按照原函数分段的情况分就可以. 跟踪训练2 求下列定积分: (1)⎠⎛02|x 2-1|d x ;(2) ⎠⎜⎛0π21-sin 2x d x .解 (1)∵y =|x 2-1|=⎩⎪⎨⎪⎧1-x 2,0≤x <1,x 2-1,1≤x ≤2,∴⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝⎛⎭⎫x -x 33⎪⎪⎪10+⎝⎛⎭⎫x 33-x ⎪⎪⎪21=⎝⎛⎭⎫1-13+⎝⎛⎭⎫83-2-⎝⎛⎭⎫13-1 =2.(2) ⎠⎜⎛0π21-sin 2x d x=⎠⎜⎛0π2|sin x -cos x |d x=⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2 (sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=⎝⎛⎭⎫22+22-1+(-1)-⎝⎛⎭⎫-22-22 =22-2.题型三 定积分的简单应用例3 已知f (a )=⎠⎛01 (2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛01 (2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10 =23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.反思与感悟 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪训练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2.① 又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01 (ax 2+bx +c )d x=⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪10 =13a +12b +c , ∴13a +12b +c =-2,③ 由①②③式得a =6,b =0,c =-4.1.⎠⎜⎛0π4cos 2xcos x +sin x d x 等于( )A.2(2-1)B.2+1C.2-1D.2-2答案 C解析 结合微积分基本定理,得⎠⎜⎛0π4cos 2x -sin 2xcos x +sin x d x =⎠⎜⎛0π4 (cos x -sin x )d x =(sin x +cos x )⎪⎪⎪π40=2-1. 2.下列定积分的值等于1的是( )A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛01x d x =12x 2⎪⎪⎪ 10=12,⎠⎛01(x +1)d x =⎝⎛⎭⎫12x 2+x ⎪⎪⎪ 10=12+1=32,⎠⎛011d x =x ⎪⎪⎪10=1,⎠⎛0112d x=12x ⎪⎪⎪10=12.故选C.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x = . 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪20-x 23⎪⎪⎪20=83-43=43. 4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x <1,3-x ,1≤x ≤2,则⎠⎛02f (x )d x = .答案176解析 ⎠⎛02f (x )d x =⎠⎛01(x 2+1)d x +⎠⎛12(3-x )d x=⎝⎛⎭⎫x 33+x ⎪⎪⎪10+⎝⎛⎭⎫3x -x 22⎪⎪⎪21=176.5.已知函数f (x )为偶函数,且⎠⎛06f (x )d x =8,则⎠⎛-66 f (x )d x = .答案 16解析 因为函数f (x )为偶函数, 且⎠⎛06f (x )d x =8,所以⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.函数y =⎠⎛0x cos x d x 的导数是( )A.cos xB.-sin xC.cos x -1D.sin x 答案 A解析 (sin x )′=cos x ,⎠⎛0x cos x d x =sin x ⎪⎪⎪x0=sin x ,故选A. 2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A.F (x )=13x 3B.F (x )=x 3C.F (x )=13x 3+1D.F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3. ⎠⎛-40|x +2|d x 等于( )A. ⎠⎛-40 (x +2)d xB. ⎠⎛-40 (-x -2)d xC.⎠⎛-4-2(x +2)d x +⎠⎛-202(-x -2)d xD.⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴⎠⎛-40|x +2|d x =⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x .故选D.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32B.43C.23D.-23 答案 B解析 ⎠⎛-11f (x )d x =⎠⎛-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+x |10=13+1=43,故选B. 5.⎠⎜⎛0π2sin 2x2d x 等于( )A.π4 B.π2-1 C.2 D.π-24答案 D解析 ⎠⎜⎛0π2sin 2x 2d x =⎠⎜⎛0π21-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 6.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D. S 3<S 2<S 1答案 B 解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.二、填空题7.⎠⎛-11 (1-x 2+x )d x = .答案 π2解析 ⎠⎛-11 (1-x 2+x )d x =⎠⎛-111-x 2d x +⎠⎛-11x d x ,根据定积分的几何意义可知⎠⎛-111-x 2d x 等于半径为1的半圆的面积, 即⎠⎛-111-x 2d x =π2,⎠⎛-11x d x =12x 2|1-1=0,∴⎠⎛-11 (1-x 2+x )d x =π2.8.若⎠⎛0T x 2d x =9,则常数T 的值为 .答案 3解析 ⎠⎛0T x 2d x = 13x 3⎪⎪⎪t 0=13T 3=9,即T 3=27,解得T =3. 9.设函数f (x )=ax 2+c (a ≠0),⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0= .答案33解析 由⎠⎛01f (x )d x =f (x 0),得⎠⎛1(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =ax 20+c ,∴a 3=ax 20,∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33.故填33. 10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a = .答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3⎪⎪⎪a=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1. 三、解答题11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛01bx d x =13a +12b =176. 由⎩⎨⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.即f (x )=4x +3. 12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x=⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x=x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2 =-512+432+4ln 2.13.求定积分⎠⎛-43|x +a |d x .解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛-43(x +a )d x =⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛-a3 (x +a )d x=⎝⎛⎭⎫-x 22-ax ⎪⎪-a-4+⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛-43[-(x +a )]d x =⎝⎛⎭⎫-x 22-ax ⎪⎪⎪3-4=-7a +72. 综上,得⎠⎛-43|x +a |d x =⎩⎪⎨⎪⎧7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).。
高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
高中数学选修2-2《导数与切线方程》

●教材分析:导数这块知识点在高考中地位较为重要,从近几年的高考试题来看,利用导数来研究函数的单调性和极值已成为炙手可热的考点,既有小题也有解答题,小题主要考察利用导数研究函数的单调性、极值、求切线方程、最值,解答题主要考察导数与函数单调性,及相关内容的综合渗透。
●学情分析:前面几节课已经复习了函数的定义域、值域、单调性最值等关于函数的一些基本内容。
在接下来学习的导数与切线方程,导数与单调性,导数与极值,导数与最值中,导数作为一种工具,只要将导数的几何意义说明清楚,学习其它关系就轻松多了。
●教学目标:1、明确导数的几何意义2、能利用导数求函数在某点与过某点的切线方程●教学重难点:1、导数的几何意义2、求函数在某点与过某点的切线方程●教学过程:二、平均变化率与瞬时变化率平均变化率=xy ∆∆=0101)()(x x x f x f --=x x f x x f ∆-∆+)()(00(函数y=)(x f 从0x 到1x 的平均变化率)ox 1xx∆)(1x fxy0x瞬时变化率=xx f x x f x ∆-∆+→∆)()(lim000(函数y=)(x f 在0x x =处的瞬时变化率)就称瞬时变化率为函数y )(x f 在0x x =处的导数,记为')(0x f 或0'x x y =思考b :')(x f 与')(0x f 有什么区别:')(x f 是一个关于x 的函数')(0x f 是函数')(x f 当自变量x 取0x 是的函数值 三、导数的几何意函数y=)(x f 从0x 到1x 的平均变化率1212)()(x x x f x f --=1212x x y y --几何意义c :过点)()(,11x f x 与)()(,22x f x 的直线的斜率函数y=)(x f 在0x x =处的导数(瞬时变化率):')1(x f几何意义b :过点)()(,11x f x 的切线的斜率(1x 是切点的横坐标)四、求切线方程(1)求过曲线上点的切线方程例1、已知曲线方程为y =x 2,求曲线在点A (2,4)处的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
[注]:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤:分割→近似代替→求和→取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b adx x f①推广:1212[()()()]()()()bb bbm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。
(2)力的积分为功。
第二章、推理与证明知识点13.归纳推理的定义: 从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体..,由个别到一般..的推理。
14.归纳推理的思维过程大致如图:15.归纳推理的特点:实验、观察概括、推广猜测一般性结论①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。
②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。
③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。
类比推理是由特殊..的推理。
..到特殊17.类比推理的思维过程18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
演绎推理是由一般..的推理。
..到特殊19.演绎推理的主要形式:三段论20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。
直接证明包括综合法和分析法。
22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。
24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确...,即所求证命题正确。
2627.反证法的思维方法:正难则反....28.归缪矛盾(1)与已知条件....矛盾: (2)与已有公理、定理、定义..........矛盾; (3)自相..矛盾.29.数学归纳法(只能证明与正整数...有关的数学命题)的步骤 (1)证明:当n 取第一个值....()00n n N *∈时命题成立; (2)假设当n=k (k ∈N *,且k ≥n 0)时命题成立,证明当n=k+1.....时命题也成立. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
第三章、数系的扩充和复数的概念知识点30.复数的概念:形如a+bi ....的数叫做复数,其中i 叫虚数单位,a 叫实部, b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
规定:a bi c di +=+⇔a=c ...且.b=d ..., 强调:两复数不能比较大小,只有相等或不相等。
31.数集的关系:0000b Z a b a =⎧⎪≠⎧⎨⎪≠⎨⎪=⎪⎩⎩实数 ()复数一般虚数()虚数 ()纯虚数()32.复数的几何意义:复数与平面内的点或有序实数对一一对应。
33.复平面:根据复数相等的定义,任何一个复数bi a z +=,都可以由一个有序实数对),(b a 唯一确定。
由于有序实数对),(b a 与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。
这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。
34.求复数的模(绝对值)与复数z 对应的向量OZ 的模r 叫做复数bi a z +=的模(也叫绝对值)记作bi a z +或。
由模的定义可知:22b a bi a z +=+=35.复数的加、减法运算及几何意义①复数的加、减法法则:12z a bi c di =+=+与z ,则12()z z a c b d i ±=±+±。
注:复数的加、减法运算也可以按向量..的加、减法来进行。
②复数的乘法法则:()()()()a bi c di ac bd ad bc i ++=-++。
③复数的除法法则:2222()()()()a bi a bi c di ac bd bc adi c di c di c di c d c d ++-+-==+++-++其中c di -叫做实数化因子 36.共轭复数:两复数a bi a bi +-与互为共轭复数,当0b ≠时,它们叫做共轭虚数。
常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω。