专题六 功能关系 能量守恒定律

合集下载

功能关系 能量守恒定律

功能关系 能量守恒定律
减少量为_m_g_h_。 ③滑动摩擦力对物体做的功Wf=___m_g_c_o_s__s_ihn__,物体与 斜面的内能增加,增加量为___m_g_co_s___si_hn____。
④压缩弹簧过程,弹力对物体做_负__功__,弹簧的弹性势能 增加,增加量_等__于__克服弹力做功的多少。 ⑤全过程中,物体与弹簧组成的系统,除重力和弹簧弹 力做功以外,只有_滑__动__摩__擦__力__做负功,系统的机械能 减少,减少量为__m_g_c_o_s__s_ihn__。
专题六 功能关系 能量守恒定律
【知识梳理】 知识点1 功能关系 1.功是_能__量__转__化__的量度,即做了多少功就有多少_能__量__ _发__生__了__转__化__。 2.做功的过程一定伴随着_能__量__的__转__化__,而且_能__量__的__转__ _化__必须通过做功来实现。
【解析】选B。夯杆被提上来的过程中,先受到滑动摩 擦力,然后受静摩擦力,故A错误;增加滚轮匀速转动的 角速度时夯杆获得的最大速度增大,可减小提杆的时间, 增加滚轮对杆的正压力,夯杆受到的滑动摩擦力增大, 匀加速运动的加速度增大,可减小提杆的时间,故B正确; 根据功能关系可知,滚轮对夯杆做的功等于夯杆动能、
A.夯杆被提上来的过程中滚轮先对它施加向上的滑动 摩擦力,后不对它施力 B.增加滚轮匀速转动的角速度或增加滚轮对杆的正压 力可减小提杆的时间 C.滚轮对夯杆做的功等于夯杆动能的增量 D.一次提杆过程系统共产生热量 1 mv2
2
【思考探究】 (1)夯杆被提升经历匀加速和匀速运动过程,分析这两 个过程的受力情况如何? 提示:匀加速运动过程受重力和向上的滑动摩擦力作用, 匀速运动过程受重力和向上的静摩擦力作用。
2a 2
2
故D错误。

功能关系 能量守恒定律

功能关系 能量守恒定律

功能关系 能量守恒定律 知识点一 功能关系 1.功是 的量度,即做了多少功就有多少 发生了转化.2.做功的过程一定伴随着 ,而且 必须通过做功来实现.答案:1.能量转化 能量 2.能量的转化 能量的转化知识点二 能量守恒定律1.内容:能量既不会凭空 ,也不会凭空消失,它只能从一种形式 为另一种形式,或者从一个物体 到另一个物体,在 的过程中,能量的总量 .2.适用范围:能量守恒定律是贯穿物理学的基本规律,是各种自然现象中 的一条规律.3.表达式(1)E 初=E 末,初状态各种能量的 等于末状态各种能量的 .(2)ΔE 增=ΔE 减,增加的那些能量的增加量等于减少的那些能量的减少量.答案:1.产生 转化 转移 转化或转移 保持不变 2.普遍适应 3.(1)总和 总和考点 功能关系的应用功是能量转化的量度,力学中几种常见的功能关系如下:[典例1] 如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点正上方的P 点由静止开始自由下落,小球沿轨道到达最高点B 时对轨道压力为mg2.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )A.重力做功2mgRB.合力做功34mgR C.克服摩擦力做功12mgR D.机械能减少2mgR[解析] 小球能通过B 点,在B 点速度v 满足mg +12mg =m v 2R ,解得v =32gR ,从P 到B 过程,重力做功等于重力势能减小量为mgR ,动能增加量为12mv 2=34mgR ,合力做功等于动能增加量34mgR ,机械能减少量为mgR -34mgR =14mgR ,克服摩擦力做功等于机械能的减少量14mgR ,故只有B 选项正确.[答案] B[变式1] (多选)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A.两滑块组成的系统机械能守恒B.重力对M 做的功等于M 动能的增加C.轻绳对m 做的功等于m 机械能的增加D.两滑块组成的系统机械能损失等于M 克服摩擦力做的功答案:CD 解析:两滑块释放后,M 下滑、m 上滑,摩擦力对M 做负功,系统的机械能减小,减小的机械能等于M 克服摩擦力做的功,选项A 错误,D 正确.除重力对滑块M 做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B 错误.绳的拉力对滑块m 做正功,滑块m 机械能增加,且增加的机械能等于拉力做的功,选项C 正确.考点 摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q =F f x 相对,其中x 相对为相互摩擦的两个物体间的相对路程.考向1 摩擦力做功的理解与计算[典例2] 将三个木板1、2、3固定在墙角,木板与墙壁和地面构成了三个不同的三角形,如图所示,其中1与2底边相同,2和3高度相同.现将一个可以视为质点的物块分别从三个木板的顶端由静止释放,并沿斜面下滑到底端,物块与木板之间的动摩擦因数μ均相同.在这三个过程中,下列说法不正确的是 ( )A.沿着1和2下滑到底端时,物块的速度不同,沿着2和3下滑到底端时,物块的速度相同B.沿着1下滑到底端时,物块的速度最大C.物块沿着3下滑到底端的过程中,产生的热量是最多的D.物块沿着1和2下滑到底端的过程中,产生的热量是一样多的[解析] 设1、2、3木板与地面的夹角分别为θ1、θ2、θ3,木板长分别为l 1、l 2、l 3,当物块沿木板1下滑时,由动能定理有mgh 1-μmgl 1cos θ1=12mv 21-0;当物块沿木板2下滑时,由动能定理有mgh 2-μmgl 2cos θ2=12mv 22-0,又h 1>h 2,l 1cos θ1=l 2cos θ2,可得v 1>v 2;当物块沿木板3下滑时,由动能定理有mgh 3-μmgl 3cos θ3=12mv 23-0,又h 2=h 3,l 2cos θ2<l 3cos θ3,可得v 2>v 3,故A 错,B 对.三个过程中产生的热量分别为Q 1=μmgl 1cos θ1,Q 2=μmgl 2cos θ2,Q 3=μmgl 3cos θ3,则Q 1=Q 2<Q 3,故C 、D 对.应选A.[答案] A考向2 传送带模型中摩擦力做功与能量转化[典例3] 如图所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是( )A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间摩擦产生的热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功[解析] 对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,外力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段运动时间为t ,传送带速度为v ,对物体:x 1=v 2t ,对传送带:x 1′=vt ,摩擦产生的热Q =F f x 相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确. [答案] C 考向3 板块模型中摩擦力做功与能量转化[典例4] (多选)如图所示,质量为M 、长为L 的木板置于光滑的水平面上,一质量为m 的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为F f ,用水平的恒定拉力F 作用于滑块,当滑块运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木板速度为v 2,下列结论中正确的是 ( )A.上述过程中,F 做功大小为12mv 21+12Mv 22 B.其他条件不变的情况下,M 越大,s 越小C.其他条件不变的情况下,F 越大,滑块到达右端所用时间越长D.其他条件不变的情况下,F f 越大,滑块与木板间产生的热量越多[解析] 由牛顿第二定律得:F f =Ma 1,F -F f =ma 2,又L =12a 2t 2-12a 1t 2,s =12a 1t 2,其他条件不变的情况下,M 越大,a 1越小,t 越小,s 越小;F 越大,a 2越大,t 越小;由Q =F f L 可知,F f 越大,滑块与木板间产生的热量越多,故B 、D 正确,C 错误;力F 做的功还有一部分转化为系统热量Q ,故A 错误.[答案] BD考点能量守恒定律及应用1.对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等.2.运用能量守恒定律解题的基本思路考向1 对能量守恒定律的理解[典例5]如图所示,固定的倾斜光滑杆上套有一个质量为m的小球,小球与一轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,已知杆与水平面之间的夹角θ<45°,当小球位于B点时,弹簧与杆垂直,此时弹簧处于原长.现让小球自C点由静止释放,小球在B、D 间某点静止,在小球滑到最低点的整个过程中,关于小球的动能、重力势能和弹簧的弹性势能,下列说法正确的是 ( )A.小球的动能与重力势能之和保持不变B.小球的动能与重力势能之和先增大后减小C.小球的动能与弹簧的弹性势能之和保持不变D.小球的重力势能与弹簧的弹性势能之和保持不变[解析] 小球与弹簧组成的系统在整个过程中,机械能守恒.弹簧处于原长时弹性势能为零,小球从C点到最低点的过程中,弹簧的弹性势能先减小后增大,所以小球的动能与重力势能之和先增大后减小,A项错误,B项正确;小球的重力势能不断减小,所以小球的动能与弹簧的弹性势能之和不断增大,C项错误;小球的初、末动能均为零,所以上述过程中小球的动能先增大后减小,所以小球的重力势能与弹簧的弹性势能之和先减小后增大,D项错误.[答案] B考向2 对能量守恒定律的应用[典例6] 如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m =4 kg ,B 的质量为m =2 kg ,初始时物体A 到C 点的距离为L =1 m.现给A 、B 一初速度v 0=3 m/s ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度取g =10 m/s 2,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 向下运动刚到C 点时的速度大小;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.[解题指导] (1)系统从开始到C 点的过程中,由于摩擦力做负功,机械能减少.(2)物体A 压缩弹簧到最低点又恰好弹回C 点,系统势能不变,动能全部克服摩擦力做功.(3)物体A 在压缩弹簧过程中,系统重力势能不变,动能一部分克服摩擦力做功,一部分转化为弹性势能.[解析] (1)物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得:μ·2mg ·cos θ·L =12·3mv 20-12·3mv 2+2mgL sin θ-mgL 可解得v =2 m/s.(2)以A 、B 组成的系统,在物体A 将弹簧压缩到最大压缩量,又返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量即:12·3mv 2-0=μ·2mg cos θ·2x 其中x 为弹簧的最大压缩量解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm由能量守恒定律可得:12·3mv 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm 解得E pm =6 J.[答案] (1)2 m/s (2)0.4 m (3)6 J专项精练1.[功能关系的应用]滑块静止于光滑水平面上,与之相连的轻质弹簧处于自然伸直状态,现用恒定的水平外力F 作用于弹簧右端,在向右移动一段距离的过程中拉力F 做了10 J 的功.在上述过程中 ( )A.弹簧的弹性势能增加了10 JB.滑块的动能增加了10 JC.滑块和弹簧组成的系统机械能增加了10 JD.滑块和弹簧组成的系统机械能守恒答案:C 解析:拉力F 做功的同时,弹簧伸长,弹性势能增大,滑块向右加速,滑块动能增加,由功能关系可知,拉力做的功等于滑块的动能与弹簧弹性势能的增加量之和,C 正确,A 、B 、D 均错误.2.[功能关系的应用]韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J.韩晓鹏在此过程中( )A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J答案:C 解析:根据动能定理,物体动能的增量等于物体所受所有力做功的代数和,即增加的动能为ΔE k =W G +W f =1 900 J -100 J =1 800 J ,A 、B 项错误;重力做功与重力势能改变量的关系为W G =-ΔE p ,即重力势能减少了1 900 J ,C 项正确,D 项错误.3.[摩擦力做功与能量转化]如图所示,一个质量为m 的物体(可视为质点)以某一速度由A 点冲上倾角为30°的固定斜面,做匀减速直线运动,其加速度的大小为g ,在斜面上上升的最大高度为h ,则在这个过程中,物体 ( )A.机械能损失了mghB.动能损失了2mghC.动能损失了12mgh D.机械能损失了12mgh答案:AB 解析:由物体做匀减速直线运动的加速度和牛顿第二定律可知mg sin 30°+F f =ma ,解得F f =12mg ,上升过程中的位移为2h ,因此克服摩擦力做的功为mgh ,选项A 正确;合外力为mg ,由动能定理可知动能损失了2mgh ,选项B 正确,选项C 、D 错误.4.[摩擦力做功与能量转化]如图所示,木块A 放在木板B 的左端上方,用水平恒力F 将A 拉到B 的右端,第一次将B 固定在地面上,F 做功W 1,生热Q 1;第二次让B 在光滑水平面可自由滑动,F 做功W 2,生热Q 2.则下列关系中正确的是( )A.W 1<W 2,Q 1=Q 2B.W 1=W 2,Q 1=Q 2C.W 1<W 2,Q 1<Q 2D.W 1=W 2,Q 1<Q 2答案:A 解析:木块A 从木板B 左端滑到右端克服摩擦力所做的功W =F f s ,因为木板B 不固定时木块A 的位移要比木板B 固定时长,所以W 1<W 2;摩擦产生的热量Q =F f l 相对,两次都从木块B 左端滑到右端,相对位移相等,所以Q 1=Q 2,故选A.5.[传送带模型]如图所示,水平传送带两端点A 、B 间的距离为l ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度匀速运动,此人仍然用相同恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是 ( )A.W 1=W 2,P 1<P 2,Q 1=Q 2B.W 1=W 2,P 1<P 2,Q 1>Q 2C.W 1>W 2,P 1=P 2,Q 1>Q 2D.W 1>W 2,P 1=P 2,Q 1=Q 2答案:B 解析:因为两次的拉力和拉力方向的位移不变,由功的概念可知,两次拉力做功相等,所以W 1=W 2,当传送带不动时,物体运动的时间为t 1=l v 1;当传送带以v 2的速度匀速运动时,物体运动的时间为t 2=lv 1+v 2,所以第二次用的时间短,功率大,即P 1<P 2;滑动摩擦力做功的绝对值等于滑动摩擦力与相对路程的乘积,也等于转化的内能,第二次的相对路程小,所以Q 1>Q 2,选项B 正确.。

功能关系 能量守恒定律

功能关系  能量守恒定律

[解析]
(1)从 A 到 B 的过程中,人与雪橇损失的机械能为
1 1 2 ΔE=mgh+ mvA - mvB2 2 2 1 1 2 =(70×10×20+ ×70×2.0 - ×70×12.02)J 2 2 =9100 J
(2)人与雪橇在 BC 段做匀减速运动的加速度为 vC-vB 0-12 a= t = m/s2=-2 m/s2 10-4 根据牛顿第二定律得: F 阻=ma=70×(-2) N=-140 N 负号表示阻力方向与运动方向相反.
解析:腿从静止到接近身体的速度,腿部肌肉做的功等于腿的动能的变化, 1 即 W1= mv2. 2 腿又回到静止的过程中,肌肉又做了同样的功,所以,每迈一步的过程中, 肌肉对每条腿共做功为 W=2W1=mv2=10×32 J=90 J. 因为人的速度 v=3 m/s,其步子的长度为 2 m,所以此人每秒钟迈出 1.5 步.从而,人体肌肉对两条腿输出的功率为 2W×1.5 2×90×1.5 P= = W=270 W. t 1 由于肌肉的能量利用效率约为 0.25,故此人在奔跑过程中的能量消耗率为 P 270 P′= = W=1080 W. η 0.25
一、功能关系 1.功和能的关系 做功的过程就是 能量转化 的过程,功是能量转化的 量度 .
2.功与能量变化的关系
功 合外力做正功 重力做正功 弹簧弹力做正功 能量的变化
动能 增加 重力势能 减少 弹性势能 减少
电势能减少
分子势能减少 机械能增加
电场力做正功
分子力做正守恒定律解决有关问题,要分析所有参与变 化的能量. (2)高考考查该类问题,常综合平抛运动、圆周运动以及 电磁学知识考查判断、推理及综合分析能力.
如图5-4-5所示,某人乘雪橇沿雪坡经A点滑

功能关系能量守恒定律

功能关系能量守恒定律

功能关系能量守恒定律能量守恒定律是物理学中的一个重要定律,也被称为能量守恒原理。

它指出,在一个封闭系统中,能量的总量是不变的。

换句话说,能量既不能被创造,也不能被毁灭,只能从一种形式转化为另一种形式。

能量是指物体或系统进行工作所需要的能力。

它可以包括多种形式,如机械能、热能、电能、光能等。

这些形式的能量可以相互转化,但总的能量量不变。

根据能量守恒定律,系统的能量变化等于能量输入减去能量输出。

这可以用以下公式表示:ΔE = Qin - Qout其中,ΔE表示系统能量变化,Qin表示输入到系统中的能量,Qout表示从系统中输出的能量。

当ΔE为正时,系统的能量增加;当ΔE为负时,系统的能量减少。

能量守恒定律可以通过一些实例来解释。

例如,考虑一个物体从一个高处下落到地面的过程。

在开始时,物体具有重力势能,当下落到地面时,重力势能转化为动能。

根据能量守恒定律,重力势能的减少等于动能的增加,因此能量的总量保持不变。

另一个例子是燃烧过程。

在燃烧中,化学能转化为热能和光能。

这是因为化学反应产生的能量会以热能和光能的形式释放出来。

然而,根据能量守恒定律,化学能的减少必须等于热能和光能的增加,以保持能量的总量不变。

能量守恒定律在许多领域有着广泛的应用。

在机械工程中,工程师需要确保系统中的能量输入与输出保持平衡,以保证系统的正常运行。

在热力学中,能量守恒定律被用来分析热传导、传热、发电等过程。

在化学和生物学研究中,能量守恒定律用于解释化学反应和生物代谢过程中的能量转化。

能量守恒定律的重要性在于它可以解释自然界中许多观察到的现象。

它提供了我们理解和分析物体和系统能量转化的基础。

同时,能量守恒定律也有助于节约能源,促进可持续发展。

通过控制能量的流动和转化过程,我们可以最大限度地利用能源并减少浪费,达到能源的可持续利用。

总之,能量守恒定律是自然界中一个普遍存在的定律。

它指出在一个封闭系统中,能量的总量是不变的。

能量可以从一种形式转化为另一种形式,但总的能量量保持不变。

功能关系能量守恒定律

功能关系能量守恒定律

功能关系能量守恒定律什么是功能关系能量守恒定律?它是指在一个封闭系统内,能量从一个形式转化为另一个形式,但总能量保持不变。

这个定律是基于对自然界各个系统的观察和实验总结得出的。

无论是机械系统中的动能和势能转化,还是热系统中的热能转化,能量守恒定律都适用。

例如,当一个物体从高处滑下时,其势能转化为动能,但整个系统的总能量保持不变。

能量守恒定律是自然界中各种现象和过程的基础。

在物理学中,它被广泛应用于解释和描述各种物理现象。

例如,在机械学中,能量守恒定律可以用来解释物体的运动和力学性质。

在热学中,能量守恒定律可以用来解释热传导、热辐射等热现象。

在电磁学中,能量守恒定律可以用来解释电磁场的产生和传播。

在化学中,能量守恒定律可以用来解释化学反应过程中的能量变化。

无论是哪个学科领域,能量守恒定律都是解释和理解自然界中各种现象的重要工具。

功能关系是指事物之间的相互作用和相互影响的关系。

能量守恒定律与功能关系的关联在于它们都涉及到事物之间的转化和守恒。

功能关系可以看作是能量守恒定律在不同领域的具体应用。

无论是机械系统、热系统、电磁系统还是化学系统,它们都是由不同的功能关系构成的。

这些功能关系之间的能量转化和守恒遵循着能量守恒定律。

以机械系统为例,当物体在重力作用下从高处滑下时,其势能转化为动能。

这个过程可以用功能关系进行描述,即重力势能和动能之间的转化关系。

根据能量守恒定律,这个过程中总能量保持不变。

类似地,在热系统中,热能可以转化为机械能或其他形式的能量。

这些能量之间的转化关系可以通过功能关系进行描述,而守恒的总能量则遵循能量守恒定律。

能量守恒定律是自然界中能量转化和守恒的基本规律。

它适用于各个学科领域,包括机械学、热学、电磁学和化学等。

功能关系则是能量守恒定律在不同领域的具体应用,描述了不同形式能量之间的转化关系。

通过研究和理解能量守恒定律和功能关系,我们可以更好地理解自然界中的各种现象和过程。

同时,这也为人类创造和利用能源提供了重要的理论基础。

功能关系-能量守恒定律

功能关系-能量守恒定律

功能关系能量守恒定律一、几种常见的功能关系(功是能量转化的量度)1.合力做功与物体动能改变之间的关系:合力做功等于物体动能的增量,即W合=E k2-E k1(动能定理).2.重力做功与物体重力势能改变之间的关系:重力做功等于物体重力势能增量的负值,即W G=-ΔE p.3.弹力做功与物体弹性势能改变之间的关系:弹力做功等于物体弹性势能增量的负值,即W=-ΔE p.4.除了重力和系统内弹力之外的其他力做功与机械能改变之间的关系:其他力做的总功【例1】在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了Fh B.他的重力势能增加了mghC.他的机械能减少了(F-mg)h D.他的机械能减少了Fh【练习1】如图所示,在动摩擦因数为0.2的水平面上有一质量为3 kg的物体被一个劲度系数为120 N/m的压缩轻质弹簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m 才停下来,下列说法正确的是(g取10 m/s2)( )A.物体开始运动时弹簧的弹性势能E p=7.8 JB.物体的最大动能为7.8 JC.当弹簧恢复原长时物体的速度最大D.当物体速度最大时弹簧的压缩量为x=0.05 m[训练2] 如图所示,卷扬机的绳索通过定滑轮用力F拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动,在移动过程中,下列说法正确的是( )A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C.木箱克服重力做的功等于木箱增加的重力势能D.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和二、能量转化与守恒定律的应用1.摩擦力做功的特点:(1)一对静摩擦力对两物体做功时,能量的转化情况:静摩擦力对相互作用的一个物体做正功,则另一摩擦力必对相互作用的另一物体做负功,且做功的大小相等,在做功的过程中,机械能从一个物体转移到另一物体,没有机械能转化为其他形式的能.(2)一对滑动摩擦力对两物体做功时,能量的转化情况:由于两物体发生了相对滑动,位移不相等,因而相互作用的一对滑动摩擦力对两物体做功不相等,代数和不为零,其数值为-Fx,即滑动摩擦力对系统做负功,系统克服摩擦力做功,将机械能转化为内能,即Q=Fx.(x为相对位移)2.能量守恒定律:当物体系内有多种形式的能量参与转化时,可考虑用能量守恒定律解题,能量守恒定律的两种常见表达形式:(1)转化式:ΔE减=ΔE增,即系统内减少的能量等于增加的能量;(2)转移式:ΔE A=-ΔE B,即一个物体能量的减少等于另一个物体能量的增加.【例2】 (2011·衡水模拟)质量为m的木块(可视为质点)左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态,在下列情况中弹簧均处于弹性限度内,(不计空气阻力及线的形变,重力加速度为g).(1)在图甲中,在线的另一端施加一竖直向下的大小为F的恒力,木块离开初始位置O由静止开始向右运动,弹簧开始发生伸长形变,已知木块通过P点时,速度大小为v,O、P 两点间的距离为l.求木块拉至P点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M的钩码,如图乙所示,木块也从初始位置O由静止开始向右运动,求当木块通过P点时的速度大小.[针对训练3] 如图所示,A、B、C质量分别为m A=0.7 kg,m B=0.2 kg,m C=0.1 kg,B为套在细绳上的圆环,A与水平桌面的动摩擦因数μ=0.2,另一圆环D 固定在桌边,离地面高h2=0.3 m,当B、C从静止下降h1=0.3 m,C穿环而过,B被D挡住,不计绳子质量和滑轮的摩擦,取g=10 m/s2,若开始时A离桌边足够远.试求:(1)物体C穿环瞬间的速度.(2)物体C能否到达地面?如果能到达地面,其速度多大?三、用功能关系分析传送带问题传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度,如求物体在传送带上运动的时间、物体在传送带上能达到的速度、物体相对传送带滑过的位移等,方法是牛顿第二定律结合运动学规律.(2)能量的角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等.【例3】飞机场上运送行李的装置为一水平放置的环形传送带,传送带的总质量为M,其俯视图如图所示.现开启电动机,传送带达到稳定运行的速度v后,将行李依次轻轻放到传送带上.若有n件质量均为m的行李需通过传送带运送给旅客.假设在转弯处行李与传送带无相对滑动,忽略皮带轮、电动机损失的能量.求从电动机开启,到运送完行李需要消耗的电能为多少?[针对训练4] 一质量为M=2.0 kg的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过,子弹和小物块的作用时间极短,如图甲所示.地面观察者记录了小物块被击中后的速度随时间变化关系如图乙所示(图中取向右运动的方向为正方向).已知传送带的速度保持不变,g取10 m/s2.(1)指出传送带速度v的方向及大小,说明理由.(2)计算物块与传送带间的动摩擦因数μ.(3)子弹射穿物块后系统有多少能量转化为内能?练习:.如图所示,水平长传送带始终以速度v=3 m/s匀速运动.现将一质量为m=1 kg的物体放于左端(无初速度).最终物体与传送带一起以3 m/s的速度运动,在物体由速度为零增加至v=3 m/s的过程中,求:(1)物块从速度为零增至3 m/s的过程中,由于摩擦而产生的热量;(2)由于放了物块,带动传送带的电动机多消耗多少电能?练习提高:1.质量均为m的甲、乙、丙三个小球,在离地面高为h处以相同的动能在竖直平面内分别做平抛、竖直下抛、沿光滑斜面下滑的运动,则下列说法正确的是( )A.三者到达地面时的速率相同B.三者到达地面时的动能相同C.三者到达地面时的机械能相同D.三者同时落地2.如图所示,一个小孩从粗糙的滑梯上加速滑下,对于其机械能的变化情况,下列判断正确的是( )A.重力势能减小,动能不变,机械能减小B.重力势能减小,动能增加,机械能减小C.重力势能减小,动能增加,机械能增加D.重力势能减小,动能增加,机械能不变3.质量为m的物体,从静止开始以2g的加速度竖直向下运动h,不计空气阻力,则下列说法中正确的是( )A.物体的机械能保持不变B.物体的重力势能减小mghC.物体的动能增加2mghD.物体的机械能增加mgh4.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是( )A.重力势能和动能之和总保持不变B.重力势能和弹性势能之和总保持不变C.动能和弹性势能之和总保持不变D.重力势能、弹性势能和动能之和总保持不变5.小球以初速度v 0从光滑斜面底部向上滑,恰能到达最大高度为h 的斜面顶部.图中A 是内轨半径大于h 的光滑轨道、B 是内轨半径小于h 的光滑轨道、C 是内轨直径等于h 的光滑轨道、D 是长为0.5h 的轻棒,其下端固定一个可随棒绕O 点向上转动的小球.小球在底端时的初速度都为v 0,则小球在以上四种情况中能到达高度h 的有( )6.从地面竖直向上抛出一个物体,当它的速度减为初速度v 0的一半时,上升的高度为(空气阻力不计)( )A .v 202gB .v 204gC .v 208gD .3v 208g7.(辽宁)一物体由静止从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体 做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物体克服摩擦力做的功之和C.物体重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D .物块动能的增加量与物块克服摩擦力做的功之和8.水平传送带匀速运动,速度大小为v ,现将一小工件轻轻放上传送带,它将在传送带上 滑动一段距离后,速度才达到v ,而与传送带相对静止,设小工件质量为m ,它与传送带 间的动摩擦因数为μ,在 m 与传送带相对运动的过程中( ) A .工件做变加速运动B .滑动摩擦力对工件做功212mv C .工件相对传送带的位移大小为22v gμD .工件与传送带因摩擦产生的内能为212mv【基础演练】1.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是( ) A .匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B .匀速上升和加速上升机械能增加,减速上升机械能减小C .由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况D .三种情况中,物体的机械能均增加2.从地面竖直上抛一个质量为m 的小球,小球上升的最大高度为H.设上升过程中空气阻力F 阻恒定.则对于小球的整个上升过程,下列说法中错误的是( ) A .小球动能减少了mgH B .小球机械能减少了F 阻H C .小球重力势能增加了mgHD .小球的加速度大于重力加速度g3.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对 小球施加一个方向水平向右的恒力F ,使小球从静止开始运动,则小球在向右运动的整个 过程中( )A .小球和弹簧组成的系统机械能守恒B .小球和弹簧组成的系统机械能逐渐增加C .小球的动能逐渐增大D .小球的动能先增大后减小4.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,并从中穿出.对于这一过程,下列说法正确的是( )A .子弹减少的机械能等于木块增加的机械能B .子弹减少的动能等于木块增加的动能C .子弹减少的机械能等于木块增加的动能与木块增加的内能之和D .子弹减少的动能等于木块增加的动能与子弹和木块增加的内能之和5.如图,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端 固定于O 点处,将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点间的竖直高度差为h ,速度为v ,则( ) A .由A 到B 重力做的功等于mghB .由A 到B 重力势能减少12mv 2C .由A 到B 小球克服弹力做功为mghD .小球到达位置B 时弹簧的弹性势能为mgh -mv226.(2011·盐城模拟)如图所示,长为L 的小车置于光滑的水平面上,小车前端放一小物块,用大小为F 的水平力将小车向右拉动一段距离l ,物块刚好滑到小车的左端.物块与小车间的摩擦力为F f ,在此过程中( )A .系统产生的内能为F f LB .系统增加的机械能为F lC .物块增加的动能为F f LD .小车增加的动能为Fl -F f L 7.如图所示,质量为m 的物块从A 点由静止开始下落,加速度为0.5g ,下落H 到B 点后与一轻弹簧接触,又下落h 后到达最低点C ,在由A 运动到C 的过程中,空气阻力恒定,则( ) A .物块机械能守恒B .物块和弹簧组成的系统机械能守恒C .物块机械能减少0.5mg(H +h)D .物块和弹簧组成的系统机械能减少0.5mg(H +h)9.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m /s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h =3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB 的中点处,重力加速度g =10 m /s 2,求: (1)物体由静止沿斜面下滑到斜面末端需要多长时间; (2)传送带左右两端AB 间的距离l 至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少.10.(2011·辽宁大连双基测试)如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数为μ,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求此过程中:(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧中的最大弹性势能.11.如图所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m.现有一质量m=1 kg 的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求:(1)滑块到达B端时,轨道对它支持力的大小;(2)车被锁定时,车右端距轨道B端的距离;(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;(4)滑块落地点离车左端的水平距离.12.如图所示,静止放在水平桌面上的纸带,其上有一质量为m=0.1 kg的铁块,它与纸带右端的距离为L=0.5 m,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1.现用力F 水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为s=0.8 m.已知g=10 m/s2,桌面高度为H=0.8 m,不计纸带质量,不计铁块大小,铁块不滚动.求:(1)铁块抛出时速度大小;(2)纸带从铁块下抽出所用时间t1;(3)纸带抽出过程产生的内能E.。

高考物理总复习 专题六 机械能守恒定律(讲解部分)


(4)重力势能的变化与重力做功的关系 重力对物体做多少正功,物体的重力势能就减少多少;重力对物体做多少负 功,物体的重力势能就增加多少,即WG=-ΔEp。 2.弹性势能:物体因发生弹性形变而具有的能叫做弹性势能。弹簧的弹性 势能的大小与形变量及劲度系数有关,弹簧的形变量越大、劲度系数越大, 弹簧的弹性势能越大。 五、机械能守恒定律 1.内容 在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机 械能保持不变。
二、求变力做功的方法 1.根据W=Pt计算一段时间内做的功,此公式适用于功率恒定的情况。 2.根据力(F)-位移(l)图像的物理意义计算力对物体所做的功,如图中阴影 部分的面积在数值上等于力所做功的大小。
3.利用动能定理求功
W合=W1+W2+W3+…+Wn=ΔEk=Ekt-Ek0=
1 2
m
vt2
3.发动机铭牌上所标注的功率为这部机械的额定功率。它是人们对机械 进行选择、配置的一个重要参数,它反映了机械的做功能力或机械所能承 担的“任务”。机械运行过程中的功率是实际功率。机械的实际功率可 以小于其额定功率,可以等于其额定功率,但是机械不能长时间超负荷运 行,否则会损坏机械设备,缩短其使用寿命。由P=Fv可知,在功率一定的条 件下,发动机产生的牵引力F跟运转速度v成反比。
(1)拉力F做的功。 (2)重力mg做的功。 (3)圆弧面对物体的支持力FN做的功。 (4)圆弧面对物体的摩擦力Ff做的功。 解题导引 (1)拉力F大小不变,但方向不断改变→变力功→用微元法。 (2)重力做功与路径无关,与始末位置高度差有关。 (3)支持力与速度方向垂直不做功。 (4)摩擦力为变力,可用动能定理求其做功。
解题导引
解析 设斜面的倾角为θ,旅游者和滑沙橇总质量为m,则旅游者和滑沙橇

功能关系能量守恒定律(含答案)

功能关系能量守恒定律(含答案)专题功能关系能量守恒定律【考情分析】1.知道功是能量转化的量度,掌握重⼒的功、弹⼒的功、合⼒的功与对应的能量转化关系。

2.知道⾃然界中的能量转化,理解能量守恒定律,并能⽤来分析有关问题。

【重点知识梳理】知识点⼀对功能关系的理解及其应⽤1.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发⽣了转化。

(2)做功的过程⼀定伴随着能量的转化,⽽且能量的转化必须通过做功来实现。

2.做功对应变化的能量形式(1)合外⼒对物体做的功等于物体的动能的变化。

(2)重⼒做功引起物体重⼒势能的变化。

(3)弹簧弹⼒做功引起弹性势能的变化。

(4)除重⼒和系统内弹⼒以外的⼒做的功等于物体机械能的变化。

知识点⼆能量守恒定律的理解及应⽤1.内容能量既不会凭空产⽣,也不会凭空消失,它只能从⼀种形式转化为另⼀种形式,或者从⼀个物体转移到另⼀个物体,在转化或转移的过程中,能量的总量保持不变。

2.适⽤范围能量守恒定律是贯穿物理学的基本规律,是各种⾃然现象中普遍适⽤的⼀条规律。

3.表达式ΔE减=ΔE增,E初=E末。

【典型题分析】⾼频考点⼀对功能关系的理解及其应⽤12【例1】(2019·全国Ⅱ卷)从地⾯竖直向上抛出⼀物体,其机械能E 总等于动能E k 与重⼒势能E p 之和。

取地⾯为重⼒势能零点,该物体的E 总和E p 随它离开地⾯的⾼度h 的变化如图所⽰。

重⼒加速度取10 m/s 2。

由图中数据可得A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地⾯⾄h =4 m ,物体的动能减少100 J 【答案】AD【解析】A .E p –h 图像知其斜率为G ,故G =80J4m=20 N ,解得m =2 kg ,故A 正确B .h =0时,E p =0,E k =E 机–E p =100 J–0=100 J ,故212mv =100 J ,解得:v =10 m/s ,故B 错误;C .h =2 m 时,E p =40 J ,E k =E 机–E p =85 J–40 J=45 J ,故C 错误;D .h =0时,E k =E 机–E p =100 J–0=100 J ,h =4 m 时,E k ′=E 机–E p =80 J–80J=0 J ,故E k –E k ′=100 J ,故D 正确。

功能关系能量守恒重点

BC..有小两球个下时滑刻至A小最球低.的点加的力速过度程F等中做于,重弹的力簧加的功速弹度性和势能阻增加力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 例:一物体从斜面底端以初动能E滑向一足够长斜面,返回到底端的速度大小为v,克服摩擦力做功为E/2,若物块以初动能2E滑向该斜
功能关系能量守恒 重点来自导一、功能关系 (1)功是能量转化的量度,即做了多少功,就有多少能量 发生了转化.做功的过程一定伴随有能量的转化,而且能量 的转化必须通过做功来实现. 2.做功对应变化的能量形式 (1)合外力的功影响物体的动能的变化. (2)重力的功影响物体重力势能的变化. (3)弹簧弹力的功影响弹性势能变化. (4)除重力或系统内弹力以外的力做功影响物体机械能的 变化. (5)滑动摩擦力的功影响焦耳热的变化. (6)电场力的功影响电势能的变化. (7)分子力的功影响分子势能的变化.
能的增量 动到N点的过程中( )
D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 B.0~x1过程中物体的动能一定先增加后减小,最后为零 滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动 。
D.x1~x2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动 D.x1~x2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动 滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动 。
面则: B.0~x1过程中物体的动能一定先增加后减小,最后为零
C.力F做的功和阻力做的功之和等于物体机械能的增量 如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落

专题六 机械能守恒定律(讲解部分)


W合4
=
1 2
mv42
-0
又v4= 1 ×(2+4)×2 m/s=6 m/s
2
得W合4=36 J
0~6 s内合力对物体做的功由动能定理可知:
W合6=
1 2
mv62
-0
又v6=6 m/s
得W合6=36 J
则W合4=W合6,D正确。
答案 D
栏目索引
栏目索引
拓展三 动能定理处理多运动过程问题
1.分析思路 (1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同 运动过程中力的变化情况。 (2)做功分析:根据各种力做功的不同特点,分析各种力在不同的运动过程 中的做功情况。 (3)功能关系分析:运用动能定理、功能关系或能量守恒定律进行分析,选 择合适的规律求解。
A.0~6 s内物体先向正方向运动,后向负方向运动 B.0~6 s内物体在4 s时的速度最大 C.物体在2~4 s内速度不变 D.0~4 s内合力对物体做的功等于0~6 s内合力做的功
栏目索引
解析 由a-t图像可知:图线与时间轴围成的“面积”代表物体在相应时间
内速度的变化情况,在时间轴上方为正,在时间轴下方为负。物体6 s末的
栏目索引
2.弹性势能:物体因发生弹性形变而具有的能叫做⑩ 弹性势能 。弹簧 的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大、劲度系 数越大,弹簧的弹性势能越大。
五、机械能守恒定律 1.内容 在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机 械能保持不变。
栏目索引
2.表达式
栏目索引
高考物理
专题六 机械能守恒定律
栏目索引
一、功
考点清单
考点一 功和功率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解得:v=1 m/s, t1=1 s, 因 t1<t0 故滑块与小车同速后,小车继续向左匀速 行驶了 0.5 s, 则小车右端距 B 端的距离为 v l=2t1+v(t0-t1), 解得 l=1 m。 (3)Q=μmgl
vB+v v 相对=μmg t1-2t1 2
解得 Q=6 J。
返回
命题点二 能量守恒定律的应用
解析: (1)由机械能守恒定律和牛顿第二定律 1 得 mgR=2mv2 B v2 B FNB-mg=m R 则:FNB=30 N (2)设 m 滑上小车后经过时间 t1 与小车同 速,共同速度大小为 v 对滑块有:μmg=ma1, v=vB-a1t1 对于小车:μmg=Ma2, v=a2t1
返回
命题点二 能量守恒定律的应用
vD 满足④式要求,故 P 能运动到 D 点,并从 D 点以速度 vD 水平射出。设 P 落回到轨道 1 AB 所需的时间为 t,由运动学公式得 2l=2gt2⑦ P 落回到 AB 上的位置与 B 点之间的距离为 x=vDt⑧ 联立⑥⑦⑧式得 x=2 2l⑨ (2)为使 P 能滑上圆轨道,它到达 B 点时的速度不能小于零。由①②式可知 5mgl>μMg· 4l⑩ 要使 P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点 C。由机械能 1 守恒定律有2Mv2 B≤Mgl⑪ 5 5 联立①②⑩⑪式得3m≤M<2m⑫ 5 5 答案: (1) 6gl 2 2l (2)3m≤M<2m
(多选)(2018· 青岛模拟)如图所示, 一根原长为 L 的轻 弹簧,下端固定在水平地面上,一个质量为 m 的小球, 在弹簧的正上方从距地面高度为 H 处由静止 下落压缩弹簧。 若弹簧的最大压缩量为 x, 小 球下落过程受到的空气阻力恒为 Ff,则小球 从开始下落至最低点的过程( A.小球动能的增量为零 B.小球重力势能的增量为 mg(H+x-L) C.弹簧弹性势能的增量为(mg-Ff)(H+x-L) D.系统机械能减小 FfH )
返回
解析:由动能定理可知, ΔEk=1 900 J-100 J=1 800 J, 故 A、B 均错。 重力势能的减少量等于重力做 的功,故 C 正确,D 错误。 答案: C
)
命题点一 功能关系的理解和应用
角度②
功能关系的应用
(2018· 吉林长春模拟)如图所示,重 10 N 的滑块在倾角为 30° 的斜面上,从 a 点由静止开始下滑, 到 b 点开始压缩轻弹簧, 到 c 点时达到最大速度, 到 d 点(图 中未画出)开始弹回,返回 b 点离开弹簧,恰能再回到 a 点。若 bc=0.1 m,弹簧 弹性势能的最大值为 8 J,则下列说法正确的是( A.轻弹簧的劲度系数是 50 N/m B.从 d 到 b 滑块克服重力做功 8 J C.滑块的动能最大值为 8 J D.从 d 点到 c 点弹簧的弹力对滑块做功 8 J )
返回
命题点二 能量守恒定律的应用
角度③
能量转化守恒定律的综合应用
(2016· 全国甲卷· 25)轻质弹簧原长为 2l,将弹簧竖直放置在地面上,在其顶端将一质 量为 5m 的物体由静止释放, 当弹簧被压缩到最短时, 弹簧长度为 l。 现将该弹簧水平放置, 一端固定在 A 点,另一端与物块 P 接触但不连接。AB 是长度为 5l 的水平轨道,B 端与半 径为 l 的光滑半圆轨道 BCD 相切,半圆的直径 BD 竖直,如图所示。物块 P 与 AB 间的动 摩擦因数 μ=0.5。用外力推动物块 P,将弹簧压缩至长度 l,然后 放开,P 开始沿轨道运动。重力加速度大小为 g。 (1)若 P 的质量为 m,求 P 到达 B 点时速度的大小,以及它离开圆 轨道后落回到 AB 上的位置与 B 点间的距离; (2)若 P 能滑上圆轨道,且仍能沿圆轨道滑下,求 P 的质量的取值范围。
2019版一轮复习物理课件
第五章 机械能
专题六 功能关系 能量守恒定律
命题点一
功能关系的理解和应用
命题点二
能量守恒定律的应用
即时演练 考能提升
命题点一 功能关系的理解和应用
1.功能关系 (1)功是能量的量度,即做了多少功就有多少 能量 发生了转化。 (2)做功的过程一定伴随着 能量 的转化,而且能量的转化必须通过 做功 来实现。 2.力学中几种常见的功能关系 功 合外力做正功 重力做正功 弹簧弹力做正功 电场力做正功 其他力(除重力、弹力外)做正功 能量的变化
返回
命题点二 能量守恒定律的应用
解析:(1)依题意,当弹簧竖直放置,长度被压缩至 l 时,质量为 5m 的物体的动能为零, 其重力势能转化为弹簧的弹性势能。由机械能守恒定律,弹簧长度为 l 时的弹性势能为 Ep=5mgl① 设 P 的质量为 M,到达 B 点时的速度大小为 vB,由能量守恒定律得 1 2 Ep=2MvB+μMg· 4l② 联立①②式,取 M=m 并代入题给数据得 vB= 6gl③ 若 P 能沿圆轨道运动到 D 点,其到达 D 点时的向心力不能小于重力,即 P 此时的速度 mv2 大小 v 应满足 l -mg≥0④ 1 2 1 2 设 P 滑到 D 点时的速度为 vD,由机械能守恒定律得2mvB=2mvD+mg· 2l⑤ 联立③⑤式得 vD= 2gl⑥
命题点一 功能关系的理解和应用
[变式训练] (2016· 四川理综· 1)韩晓鹏是我国首位在冬奥会 雪上项目夺冠的运动员。他在一次自由式滑雪 空中技巧比赛中沿“助滑区”保持同一姿态 下滑了一段距离,重力对他做功 1 900 J,他克 服阻力做功 100 J。韩晓鹏在此过程中( A.动能增加了 1 900 J B.动能增加了 2 000 J C.重力势能减小了 1 900 J D.重力势能减小了 2 000 J
动能 增加 重力势能 减少 弹性势能 减少 电势能 减少 机械能 增加
返回
命题点一 功能关系的理解和应用
角度①
功能关系的理解
小球下落的整个过程中, 开 始时速度为零, 结束时速度 也为零, 所以小球动能的增 量为 0,故 A 正确 WG+Wf 根据动能定理得:
系统机械能的减少等于重 +W 弹=0-0=0, 所以 W 小球下落的整个过程中, 重 弹 力、弹力以外的力做的功, =- (mg Fmgh +mg x- L) , 力做功 W- (H + f)(H= G= 所以小球从开始下落至最 根据弹簧弹力做功量度弹 x -L),根据重力做功量度 低点的过程, 克服阻力做的 性势能的变化 W弹 =- ΔEp 重力势能的变化 W G =- 功为: F 得: 弹簧弹性势能的增量为 Δ Ep 得: 小球重力势能的增 f(H + x - L) ,所以 系统机械能的减小量为: (mg-F H+ +x x- -L L)),故 ,故 B C 量为- mg ((H f)· F 正确 错误 f(H+x-L),故 D 错误。 返回
相同点
正功、负功、 不做功方面
两种摩擦力对物体可以做正功、负功,还可以不做功
返回
命题点二 能量守恒定律的应用
角度① 传送带模型中能量的转化问题 (2018· 江苏泰州市联考)如图所示,传送带 AB 总长为 l=10 m,与一个半 径为 R=0.4 m 的光滑四分之一圆轨道 BC 相 切于 B 点, 传送带速度恒为 v=6 m/s, 方向向 右,现有一个滑块以一定初速度从 A 点水平 滑上传送带,滑块质量为 m=10 kg,滑块与传送带间的动摩擦因数为 μ=0.1, 已知滑块运动到 B 端时,刚好与传送带同速,求: (1)滑块的初速度; (2)滑块能上升的最大高度; (3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能。
返回
命题点一 功能关系的理解和应用
解析:当滑块的合力为 0 时,滑块速度最大,即在 c 点时滑块的速度最大,此瞬 间滑块受力平衡,有 mgsin 30° =k· bc ,可得 k=mgsin 30° bc =50 N/m,故 A 正确。滑块从 d 到 a,运用动能定理得 WG+W 弹=0—0;又 W 弹=Ep=8 J,可 得 WG=-8 J,即克服重力做功 8 J,所以从 d 到 b 滑块克服重力做功小于 8 J, 故 B 错误。滑块从 d 到 c,由系统的机械能守恒知滑块的动能增加量与重力势 能增加量之和等于弹簧弹性势能的减小量 8 J, 所以滑块的动能最大值小于 8 J, 故 C 错误。弹簧弹性势能的最大值为 8 J,根据功能关系知,从 d 点到 b 点弹 簧的弹力对滑块做功为 8 J,而从 d 点到 c 点弹簧的弹力对滑块做功小于 8 J, 故 D 错误。 答案: A
返回
命题点一 功能关系的理解和应用
解析: 第一次击打后球最多到达与球心 O 等高的位置, 根据功能关系有 W1≤mgR, 1 2 两次击打后小球可以到达轨道最高点, 根据功能关系有 W1+W2-2mgR=2mv , v2 3ห้องสมุดไป่ตู้根据圆周运动知识,在最高点有 mg+FN=m R ≥mg,联立解得 W2≥2mgR,故 W1 2 W2≤3,A、B 正确。 答案: AB
返回
命题点二 能量守恒定律的应用
1.能量转化问题的解题思路
(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律。 2.两种摩擦力的做功情况比较 (2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少, 类别 3.求解相对滑动物体的能量问题的方法 哪种形式的能量增加,求出减少的能量总和 ΔE 减和增加的能量总和 ΔE 增,最后 静摩擦力 滑动摩擦力 比较 (1) 由正确分析物体的运动过程,做好受力情况分析。 ΔE 减=ΔE 增列式求解。 能量的转化 只有能量的转移,而没 既有能量的转移,又有能量的 (2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系。 方面 有能量的转化 转化 (3)公式 Q=Ff· l 相对中 l 相对为两接触物体间的相对位移,若物体在传送带上做往 不同点 一对滑动摩擦力所做功的代数 复运动时,则 l 相对为总的相对路程。 一对摩擦力 一对静摩擦力所做功的 和不为零,总功 W=-Ff· l 相对, 的总功方面 代数和等于零 即摩擦时产生的热量
相关文档
最新文档