导电高分子

合集下载

导电高分子材料

导电高分子材料
11
什么是导电高分子的掺杂呢?
纯净的导电聚合物本身并不导电,必须经过掺 杂才具备导电性
掺杂是将部分电子从聚合物分子链中迁移出来 从而使得电导率由绝缘体级别跃迁至导体级别 的一种处理过程
导电聚合物的掺杂与无机半导体的掺杂完全不 同
导电高分子的掺杂与无机半导体的掺杂的对比
目前掺杂的方式主要有两种 :
氧化还原掺杂 :可通过化学或电化学手段来实现 。化学 掺杂会受到磁场的影响
遗憾的是目前为止还没有发现外加磁场对聚合物的室温电 导率有明显的影响
质子酸掺杂 :一般通过化学反应来完成,近年发现也可 通过光诱导施放质子的方法来完成
还有掺杂—脱掺杂—再掺杂的反复处理方法,这种掺杂方 法可以得到比一般方法更高的电导率和聚合物稳定性
6
导电机理与结构特征
④π价电子 两个成键原子中p电子相互重叠后产生 π键,构成π键的电子称为π价电子。当π电子孤立 存在时这种电子具有有限离域性,电子在两个原 子之间可以在较大范围内移动。当两个π键通过一 个σ键连接时,π电子可以在两个π键之间移动,这 种分子结构称为共轭π键。
7
导电机理与结构特征
利用导电高分子与金属线圈当电极,半导体高分子在中间,当两电 极接上电源时,半导体高分子将会开始发光。比传统的灯泡更节省能源 而且产生较少的热,具体应用包括平面电视机屏幕、交通信息标志等。
导电高分子材料的应用
半导体特性的应用-太阳能电池
导电高分子可制成太阳电池,结 构与发光二极管相近,但机制却相反 ,它是将光能转换成电能。 优势在于 廉价的制备成本,迅速的制备工艺, 具有塑料的拉伸性、弹性和柔韧性 。
导电高分子材料的应用
导体特性的应用
抗静电 理想的电磁屏蔽材料,可以应用在计算机、电视机、起搏器等 电磁波遮蔽涂布 能够吸收微波,因此可以做隐身飞机的涂料 防蚀涂料 能够防腐蚀,可以用在火箭、船舶、石油管道等

导电高分子

导电高分子

. 氧化
I2
A
阳离子自由基(极化子)
还原
Li
Li+
阴离子自由基(极化子)
p-型导电体 n-型导电体
导电聚合物掺杂的特点
b) 从物理角度看,掺杂是反离子嵌入的过程, 即为了保持电中性,掺杂伴随着阳离子/阴 离子进入高聚物体系,同时,反离子也可以 脱离高聚物链 — 脱掺杂。
c) 掺杂和脱掺杂是一个可逆过程,这在二次电 池的应用上极为重要;
CH
CH
AlEt 3/Ti(OBu) 4 Toluene
CH CH n
电化学聚合:聚吡咯 Poly(Pyrrole)
阳极氧化
自由基偶合
-e N
. N
H
H
脱质子 - H+
H N N H
H N N H
Poly(Pyrrole)
5、研究导电聚合物的意义
a) 理论意义 导电聚乙炔的发现从结构上在高分子与 金属之间架起了一座桥梁。
特点:制备简单、成本较低
4. 导电高分子的特点
石英
金刚烷
导电聚合物
未经掺杂
经掺杂
Pt
PE Si
Ge
Bi Cu
石墨
10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 10 102 104 106
(S/cm)
几种材料电导率的比较
属于分子导电物质(金属导电体:金属晶体导电物质) 通过掺杂,电导率变化范围宽广(10-9~105 S/cm) 具有颗粒或纤维结构的微观形貌。颗粒或纤维本身具 有金属特性,而它被绝缘的空气所隔绝,成为“导电 孤岛” 具有良好的物理、化学特性:较高的室温电导率、可 逆的氧化-还原特性、掺杂时伴随颜色变化、大的三阶 非线性光学系数等。

导电高分子材料

导电高分子材料

导电高分子材料引言导电高分子材料是一类具有导电性能的高分子材料,通常通过将一定量的导电剂与高分子基体进行混合来实现。

导电高分子材料具有许多独特的性能和应用,因此在电子学、能源技术、催化剂等领域有着广泛的应用和巨大的发展潜力。

1. 导电机制导电高分子材料的导电性能主要来源于导电剂的存在。

常见的导电剂包括金属粉末、碳纳米管、导电聚合物等。

这些导电剂在高分子基体中形成导电网络,使得材料能够传导电流。

导电高分子材料的导电性能与导电剂的种类、含量、分散性以及高分子基体的性质密切相关。

2. 特殊性能与应用导电高分子材料具有许多特殊的性能,使得其在多个领域具有广泛的应用。

2.1 电子学领域导电高分子材料在电子学领域有着重要的应用,例如导电高分子材料可以用于制备有机导电薄膜晶体管(OFET),用于构建柔性显示器、智能传感器和可穿戴设备等。

导电高分子材料不仅具有良好的导电性能,还具有优秀的可拉伸性和柔韧性,能够适应各种复杂的电子设备形状。

2.2 能源技术领域导电高分子材料在能源技术领域也有广泛的应用。

例如,导电高分子材料可以用于制备柔性太阳能电池,用于光电转换、能源收集和储存等。

导电高分子材料具有较高的导电性能和光吸收性能,可以有效提高太阳能电池的能量转换效率。

2.3 催化剂领域导电高分子材料还可以作为催化剂载体,用于催化剂的载体和固定。

导电高分子材料具有较大的比表面积和多孔结构,能够提供更多的活性位点和催化反应的接触面积,从而提高催化剂的反应效率和稳定性。

3. 导电高分子材料的制备方法导电高分子材料的制备方法多种多样,常见的制备方法包括物理共混法、化学共混法、原位聚合法等。

其中,物理共混法是将导电剂和高分子基体通过物理混合来制备导电高分子材料,适用于一些导电剂与高分子基体相容性较好的体系;化学共混法是通过化学反应将导电剂与高分子基体结合,适用于一些导电剂与高分子基体相容性较差的体系;原位聚合法是在高分子合成过程中引入导电剂,使导电剂与高分子基体同时合成。

导电高分子材料通用课件

导电高分子材料通用课件
性。
加工性能
要点一
总结词
加工性能是导电高分子材料的另一个重要性能参数,它决 定了材料在加工过程中的可加工性和加工效果。
要点二
详细描述
加工性能包括材料的熔融流动性、热稳定性、可塑性和延 展性等。良好的加工性能能够保证导电高分子材料在加工 过程中具有良好的可加工性和加工效果,从而提高材料的 实用性和生产效率。
导电高分子材料通用课件
目 录
• 导电高分子材料的导电机理 • 导电高分子材料的制备方法 • 导电高分子材料的性能参数 • 导电高分子材料的发展趋势与挑战
目 录
• 导电高分子材料在新能源领域的应 • 导电高分子材料在智能材料与器件
01
CATALOGUE
导电高分子材料简介
导电高分子材料的定义
总结词
详细描述
聚合物共混法是通过将导电高分子材料与非 导电高分子材料混合,制备成复合材料的方 法。这种方法可以充分利用各种高分子材料 的优点,制备出性能优异的复合材料,但需 要解决相容性问题,以保证良好的导电性能。
04
CATALOGUE
导电高分子材料的性能参数
电导 率
总结词
电导率是导电高分子材料最重要的性 能参数之一,它决定了材料的导电能 力和效率。
物理掺杂法
总结词
通过物理方式将导电物质掺入高分子材料中, 使其获得导电性能的方法。
详细描述
物理掺杂法是一种简单易行的方法,通过将 导电物质如碳黑、石墨烯、金属纳米颗粒等 掺入高分子材料中,使其获得导电性能。这 种方法工艺简单,成本低,但导电性能受掺 杂物质种类和含量影响较大。
聚合物共混法
总结词
将导电高分子材料与非导电高分子材料混合, 形成具有导电性能的复合材料的方法。

导电高分子

导电高分子

(1)碳黑填充型导电高分 子是一种最常见的材料,是因为 其碳黑价格低廉且导电性稳定持 久。导电碳黑的主要品种有乙炔 碳黑、导电炉黑、超导电炉黑和 特导电炉黑等。 碳黑型导电高分子材料已 广泛应用于很多领域:电视膜 制唱片;导电泡沫、导电薄膜、 导电高分子多孔体、静电显影 粉可用于集成电路、场效应管、 晶体管电子原器件的静电防护; 在高压电缆、通讯电缆领域可 用于半导体层,以缓和导线表 面的电位梯度,防止静电。
中文名称:导电高分子 英文名称:conductive polymer 定义:主链具有共轭主电子体系,可通 过掺杂达到导电态,电导率达103 S/cm 以上的高分子材料。
艾伦· 马 白川 G· 克迪尔米 英树 德
艾伦· 黑 J· 格
2000年10月10日瑞典皇 家科学院将化学最高荣 誉授予美国加利福尼亚 大学物理学家艾伦· 黑 J· 格 ,宾夕法尼亚大学化 学家艾伦· 马克迪尔米 G· 德 和日本筑波大学化学 家Hideki shirakawa(白 川英树)
塑 胶 片 材
固 态 电 容 器
防 腐 涂 料 吸波涂料 防 静 电 涂 料
导电膜
Hale Waihona Puke 导 电 高 分 子 的 分 类
自1977年第一个导电高分子聚 乙炔(PAC)发现以来,在导电聚合物 的合成、结构、导电机理、性能、 应用等方面已取得很大进展。从导 电机理的角度看,导电高分子大致 可分为两大类: (1)复合型导电高分子材料
(2)结构型导电高分子材料
复合型导电高分子材料
复合型导电高分子材料是指在 高分子基体中添加导电型物质(碳 黑、碳纤维、金属粉末、薄片、金 属丝、涂金属的玻璃球和丝)通过 分散复合、层集复合等方式制成, 其制造容易,现已商品化。

导电高分子

导电高分子

什么是导电高分子的掺杂呢?
• 纯净的导电聚合物本身并不导电,必须经过掺
杂才具备导电性
• 掺杂是将部分电子从聚合物分子链中迁移出来
从而使得电导率由绝缘体级别跃迁至导体级别 的一种处理过程
• 导电聚合物的掺杂与无机半导体的掺杂完全不

导电高分子的掺杂与无机半导体的掺杂的对比
无机半导体中的掺杂
本质是原子的替代
• 导电聚合物除了具有高分子聚合物的一般
的结构特点外还含有一价的对阴离子(P型 掺杂)或对阳离子(N型掺杂) • 导电聚合物最引人注目的一个特点是其电 导率可以在绝缘体—半导体—金属态 (10-9到105s/cm)较宽的范围里变化。这 是目前其他材料所无法比拟的
导电高分子的主要类型:
• 除了最早的聚乙炔(PA)外,主要有聚吡
电致伸缩效应 微触动器
• 以聚乙炔、聚苯胺膜为正极,锂为负极,高氯酸
锂的碳酸丙烯脂(PC)溶液为电解质的电池的 研究已经较为成熟 • 正在研究固体电解质的全塑性电池,如全塑聚乙 炔电池 (CH)x |PEO--NaI| (CH)x,它以p型掺杂的聚 乙炔为阳极,以n型掺杂的聚乙炔为阴极构成 • 已经实现商品化的:Li-Al(-)/LiBF4在聚碳酸 酯(PC)+DME(二甲氧基乙烷)(电解液)/ PAn(+)的箔型聚合物二次电池,有3V级池电压、 3mAh容量、千次以上的充放电寿命和可长期保 存等特点,可期用于不需维护的电源
• 目前为止发现的导电高分子仍属于半导体的范畴, • • • •
而未能到到真正的金属态 具有低能带能隙的导电高分子是实现“合成金属” 的重要途径 在1984年Wudl等合成了聚苯并噻吩,其能带能 隙只有1eV 杂环芳香族高分子的电导率往往高于非杂环芳香 族的高分子。聚合物链的取向程度的提高也会大 大的提高其取向方向的电导率 1987年,Basescu等合成了高取向度的聚乙炔, 用碘掺杂后其电导率高达2*105S/cm,是目前 所知道的电导率最高的导电聚合物之一

导电高分子的特征

导电高分子的特征导电高分子材料,即具有导电能力的高分子材料,其特征分别从以下几个方面来描述。

1. 导电性能好导电高分子的最大特征就是其导电性能好,通常具有较高的电导率,可以满足不同领域和应用的需求。

导电高分子的导电性能取决于材料种类、浓度、形态,以及电场强度等因素。

越高的浓度和接触面积,导电性越好。

但由于高分子的本质特性,导电高分子起伏极大,电子迁移重合体固有的难度,使得导电高分子的导电性相对于传统金属材料仍存在一定的限制,需要进一步进行研究和发展。

2. 抗氧化性能强因为导电高分子需在复杂环境下工作,所以要求材料本身具有很强的抗氧化性能,能够承受高温、化学腐蚀和电化学反应等多种恶劣环境条件。

抗氧化能力强的高分子可以有效保障其稳定性和性能的持久性,同时能够延长使用的寿命。

3. 高耐磨性由于导电高分子材料的高导电性,其需要在实际工作中承受较大磨损和强度冲击,因此必须具备高耐磨性。

合适的高分子材料可以增强其抗磨损性能,例如选用高分子中的有机-无机纳米材料,将具有体积小、强硬度、高反应性等优势,能够有效提升耐磨性能。

4. 可塑性好高分子主要由碳、氢、氧等非金属元素组成,相较于钢铁等传统金属更加柔韧和可塑。

导电高分子可以以特定的方式处理和改变其材料结构,可塑性好使得材料具有较高的可造性和设计性,能够更好地满足特定应用的需求。

5. 易加工、成型导电高分子的材料本质决定了其加工性能良好。

相较于传统金属材料更易于成形和加工。

制造导电高分子件可以使用成型、注塑、压差、挤出等多种方式,且成本相对较低,因此找到合适的导电高分子材料的利用成本相对比较实惠。

综上所述,导电高分子材料结构复杂多样,具有导电性能好、抗氧化性能强、高耐磨性、可塑性好和易加工性等特点,适用于各种领域和应用需求中。

虽然导电高分子在一些方面有着局限性,但伴随着科技、设计和工程技术的不断发展,导电高分子材料还有极大的创新和发展空间。

导电高分子在作为电极材料方面的应用

导电高分子在作为电极材料 方面的应用
• 导电高分子简介 • 导电高分子在电极材料中的应用 • 导电高分子电极材料的性能优势
• 导电高分子电极材料的应用前景 • 导电高分子电极材料的挑战与展望
01
导电高分子简介
导电高分子定义
01
导电高分子是指具有高导电性能 的高分子材料,其导电性能通常 通过掺杂或化学结构的设计来实 现。
在其他领域的应用
总结词
详细描述
导电高分子在其他领域的应用包括电磁屏蔽、 电致变色器件、电致动器件等。
导电高分子可以吸收和反射电磁波,具有优 异的电磁屏蔽效果;同时也可以在电场的作 用下发生颜色变化,用于显示器件和传感器 的制作;此外,导电高分子还可以用作驱动 器材料,具有响应速度快、驱动力大等优点。
易于加工和制造
总结词
导电高分子电极材料易于加工和制造,能够实现规模化生产,降低成本。
详细描述
导电高分子电极材料具有良好的加工性能,可以通过溶液涂布、静电纺丝、熔融挤出等方式制备成薄 膜、纤维或三维多孔结构等不同形貌的电极材料。这种易于加工和制造的特点使得导电高分子电极材 料在实际应用中具有较大的优势和潜力。
性。
在电极材料中,这些导电高分子 可以与其他活性物质复合使用, 提高电极材料的性能和稳定性。
这些导电高分子电极材料在微型 电池、柔性电池和植入式医疗设 备等领域具有广泛的应用前景。
03
导电高分子电极材料的性能优势
良好的导电性能
总结词
导电高分子电极材料具有良好的导电性能,能够快速传输电荷,降低电阻,提 高电化学反应效率。
03
总结词
导电高分子电极材料的规 模化制备是实现其广泛应 用的重要前提。
详细描述

导电高分子材料

导电高分子材料
导电高分子材料是具有导电性能的高分子材料,与传统的高分子材料相比具有以下优点:较低的电阻率、较高的导电性能以及可调控的导电性能。

这些优点使得导电高分子材料在众多领域有广泛的应用。

导电高分子材料的电阻率通常在0.1~10 Ωcm范围内,相比传
统的高分子材料的电阻率要低得多。

这是因为导电高分子材料通常含有导电粒子或导电链段,这些导电因素可以提供电子导电通道,从而降低电阻。

而且,导电高分子材料的电阻率还可以通过调控导电粒子的浓度、分散度以及材料的结构等因素进行调节,使其具备可调控的导电性能。

导电高分子材料具有较高的导电性能,能够在较低的电压下产生较大的电流。

这使得导电高分子材料在电子器件制造和柔性电子领域有广泛的应用。

例如,导电高分子材料可以用于制备柔性显示器、柔性太阳能电池和柔性传感器等。

此外,导电高分子材料还可以用于制备导电纤维、导电涂料和导电膜等产品。

导电高分子材料还具有许多其他优点,如良好的机械性能、优异的化学稳定性和较高的耐热性。

这些优点使得导电高分子材料在电气化学传感器、生物传感器和能量储存装置等领域有广泛的应用。

例如,导电高分子材料可以用作电能储存装置(如超级电容器和锂离子电池)的集流体、电解质和隔离膜等关键材料。

总之,导电高分子材料是一类具有良好导电性能的高分子材料,
具有较低的电阻率、较高的导电性能以及可调控的导电性能等优点。

其在电子器件制造、柔性电子、电气化学传感器、生物传感器和电能储存装置等领域有广泛的应用前景。

随着科技的进步和材料制备技术的发展,相信导电高分子材料将会在更多的领域获得应用。

六种导电高分子(或绝缘高分子)材料的分析

六种导电高分子(或 绝缘高分子)材料的
分析
目录
• 引言 • 六种导电高分子材料概述 • 导电高分子材料的导电机理
目录
• 导电高分子材料的性能比较 • 导电高分子材料的应用前景 • 结论
01
引言
背景介绍
高分子材料在日常生活和工业生产中 广泛应用,包括塑料、橡胶、纤维等。
随着科技的发展,导电高分子材料逐 渐受到关注,因为它们具有传统金属 材料无法比拟的优势,如质量轻、可 塑性好、耐腐蚀等。
THANKS
感谢观看
聚二炔
聚二炔是一种具有高度不饱和键的高分子化合物,具有良好的导电性能和化学反应 活性。
它被广泛应用于光电转换器件、传感器和生物医学等领域。
聚二炔的导电性能可以通过改变分子结构和掺杂其他元素或分子来调节。
03
导电高分子材料的导电机 理
电子导电型
总结词
电子导电型高分子材料通过电子的流动传递电流。
详细描述
导电高分子材料可以作为 超级电容器的电极材料, 提高电极的储能密度和充 放电性能。
在传感器领域的应用
气体传感器
导电高分子材料可以作为 气体传感器的敏感材料, 用于检测气体中的有害物 质。
湿度传感器
导电高分子材料可以作为 湿度传感器的敏感材料, 用于检测环境湿度。
压力传感器
导电高分子材料可以作为 压力传感器的敏感材料, 用于检测压力变化。
稳定性比较
聚乙炔
01 稳定性较差,容易氧化和聚合
。Hale Waihona Puke 聚苯胺02 稳定性较好,具有较好的抗氧
化性能和热稳定性。
聚吡咯
03 稳定性较差,容易发生氧化和
降解。
聚噻吩
04 稳定性较好,具有较好的热稳
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② 自由体积导电理论 虽然在玻璃化转变温度以上时聚合物呈现 某种程度的“液体”性质,但是聚合物分子的 巨大体积和分子间力,使聚合物中的离子仍不 能像在液体中一样自由扩散运动,聚合物本身 呈现的仅仅是某种粘弹性,而不是液体的流动 性。 例如:聚醚、聚酯等的大分子链呈螺旋体空间 结构 ,与其配位络合的阳离子在大分子链段运 动作用下 ,就能够在螺旋孔道内通过空位迁移 (“自由体积模型”);或被大分子“溶剂化”了的 阴阳离子同时在大分子链的空隙间跃迁扩散 (“动力学扩散理论”)。
B.金属纤维的填充量对导电性能的影响规律 与炭黑填充的情形相类似。但由于纤维状填料的 接触几率更大 ,因此在填充量很少的情况下便可获 得较高的导电率。
金属纤维的长径比对材料的导电性能影响较大, 长径比越大导电性和屏蔽效果就越好。目前复合型 导电高分子材料中所采用的金属纤维的长径比一般 为50~60 ,相应的填充的体积分数为 10%~15 %, 便可获得良好的导电性、对氧的稳定性和良好的耐 热性。
炭黑填充型导电高分子材料中炭黑通常以粒子形 式均匀分散于基体高分子中 ,随着炭黑填充量的增加 , 粒子间距缩小 ,当接近或呈接触状态时 ,便形成大量导 电网络通道 ,导电性能大大提高 ,继续增加炭黑用量则 对导电性影响不明显。 炭黑的导电性能与其结构、比表面积和表面化学 性质等因素有关。此外 ,成型工艺对炭黑填充高分子的 导电性能也有影响。
NEXT
1. 复合型导电高聚物及其制备方法
复合型导电高分子所采用的复合方法主要 有两种: 一种是将亲水性聚合物或结构型导电高 分子与基体高分子进行共混 ,另一种则是将 各种导电填料填充到基体高分子中。
第一种: 将结构型导电高分子材料与基体高分子在 一定条件下共混成型 ,可获得具有多相结构特征 的复合型导电高分子。它的导电性能由导电高分 子的“渗流途径”决定 ,当导电高分子质量分数 为 2 %~3 %时 ,其体积电阻为107~109Ω·cm ,可 作抗静电材料使用。
BACK
三、导电高分子导电机理
• 知识结构
导电回路如 何形成
导电通道机理
隧道效应机理
复合型导 电高聚物
导 电 机 理
结构型导 电聚合物
回路形成后 如何导电
场致发射机理
非晶区扩散传 导离子导电
离子型导电高分子材料
自由体积导电 理论
电子型导电高分子材料
NEXT
1 . 复合型导电高聚物导电机理
复合型导电高分子材料的导电机理比较 复杂。一般可分为导电回路如何形成以及 回路形成后如何导电两个方面。
大量的实验研究结果表明 ,复合体系中导电填料 的含量增加到某一临界含量时 ,体系的电阻率急剧 降低 ,电阻率——导电填料含量曲线上出现一个狭 窄的突变区域 ,见图 1 所示。在此区域中 ,导电填料 含量的任何细微变化均会导致电阻率的显著改变 ,这 种现象通常称为“渗滤”现象 ,在突变区域之后,体 系电阻率随导电填料含量的变化又恢复平缓。
BACK
2. 结构型导电聚合物及其制备方法
结构型导电聚合物一般用电子高度离域的 共轭聚合物经过适当电子给体或受体进行 掺杂后制得 。

聚对苯撑(Polyparaphenylene ,PPP)具有苯环 的长链结构 ,有较高的电导性 ,良好的空气稳定性和耐 热性。
通常 PPP 的合成工艺主要采用如下两种方法: (1)化学缩 合; (2)电化学聚合 。最成功的PPP的聚合方法是 Kovacic 报道 的利用CuCl2为氧化剂 ,AlCl3为催化剂进行的缩合聚合反应。化学 聚合法得到的 PPP粉状物都不导电 ,如用CuCl2- AlCl3催化得到的 PPP 导电率接近10-12S/cm。若用AsF5,AlCl3,FeCl3等电子受体或 K,Li 等电子给体对其进行掺杂 ,则电导率显著提高。
(1)要能产生足够数量的载流子(电子、空穴或离子 等); (2)大分子链内和链间要能够形成导电通道。
A.
离子ห้องสมุดไป่ตู้导电高分子材料
① 非晶区扩散传导离子导电
无论是线型、分枝型还是网状对于大多数聚 合物来说,完整的晶体结构是不存在的,基本属 于非晶态或者半晶态。离子导电聚合物的导电方 式主要属于非晶区扩散传导离子导电,即非晶区 传输过程。
导电高分子
一 、导电高分子分类 二、 导电高分子制备方法 三 、导电高分子导电机理 四、 导电高分子的应用 五、 导电高分子聚苯胺简介
一、导电高分子分类
• 导电高分子材料可分为复合型和结构 型两类。
• 知识结构
高分子和导电剂的种类
复合型导 电材料
根据不同的电阻率时的分类
分 类
结构型导 电材料
离子型 电子型
研究表明 ,对于聚丙烯腈(PAN)/聚氯乙烯 (PVC)或 PAN/ PA 共混物 ,当 PAN 质量分数 由 5 %增加到15 %时 ,导电性突升 ,此后随 PAN 质量分数的继续增加 ,导电性升幅变小。
第二种: A.炭黑是天然的半导体材料 ,其体积电阻率为 0.1~10.0Ω·cm。它不仅原料易得 ,导电性能持久稳 定 ,而且可以大幅度调整复合材料的电阻率 (1~108Ω·cm)。由炭黑填充制成的复合型导电高分 子是目前用途最广、用量最大的一种导电高分子材 料。
定义:结构型导电高分子又称本征型导电高分子

质(solid polymer electrolytes,简称SPE),它们导电时的载 流子主要是离子,例如:聚环氧乙烷、聚丁二酸乙二醇酯及聚 乙二醇亚胺等。 (2)电子型:电子型导电高分子指的是以共轭高分子为结 构主体的导电高分子材料,导电时的载流子主要是电子(或空 穴)。如 : 共轭聚合物乙炔、金属螯合型聚合物聚酞菁铜及高 分子电荷转移合物、聚苯胺、聚对苯硫醚、聚吡咯、噻吩、聚 哇啉等电子导电体。
A 导电回路的形成
Miyasaka 等认为高分子树脂基体与导电填 料之间的界面效应对复合体系中导电回路的形 成具有很大的影响。 在复合型导电高分子材料的制备过程中 ,导 电填料粒子的自由表面变成湿润的界面 ,形成聚 合物—填料界面层 ,体系产生的界面能过剩 ,随 着导电填料含量的增加 ,聚合物—填料的过剩界 面能不断增大。当体系过剩界面能达到一个与 聚合物种类无关的普适常数之后 ,导电粒子开始 形成导电网络 ,宏观上表现为体系的电阻率突降。
BACK
二、导电高分子制备方法
• 知识结构
复合型导 电高聚物
将亲水性聚合物或结 构型导电高分子与基 体高分子进行共混
炭黑填充
制 备 方 法
结构型导 电聚合物
将各种导电填料填充 到基体高分子中
金属纤维填充
聚对苯撑(Polyparaphenylene ,PPP)
聚苯胺(Polyaniline ,PANI)
导电高分子
Conductive Polymer
Nobel Prize in Chemistry 2000
“For the discovery and development of conductive polymers”
G. MacDiarmid H.Shirakawa
J.Heeger
引言
• 近几年来 , 导电性高分子的研究取得了长足 的发展 , 形成了一个十分活跃的边缘学科领域 ,它 对电子工业、信息工业及新技术的发展具有重大 的意义。 • 现有的研究成果表明 ,发展导电高分子不仅可 以满足人们对导电材料的需要 , 而且由于它兼具 有机高分子材料的性能及半导体和金属的电性能 , 具有重量轻 ,易加工成各种复杂的形状 , 化学稳定 性好及电阻率可在较大范围内调节等特点。此外 在电子工业中的应用日趋广泛 , 促进了现代科学 技术的发展。
因此 ,对于复合型导电高分子材料 ,存在着导 电通道、隧道效应、场致发射 3 种导电机理 ,复 合型导电高分子的导电性能是这 3 种导电机理作 用的竞争结果。在不同情况下出现以其中一种机 理为主导的导电现象 。
BACK
2 . 结构型导电聚合物导电机理
物质的导电过程是载流子在电场作用 下定向移动的过程 。 高分子聚合物导电必须具备两个条件:
NEXT
1. 复合型导电材料
• 定义:由高分子和导电剂(导电填料)通过不同 的复合工艺而构成的材料。 (1) 高分子和导电剂的种类

A 导电基本材料 : (高分子) 聚乙烯 (PE) 、乙丙共聚物 、聚氯乙烯(PVC) 、聚苯乙 烯 (PS) 、聚氨酯、聚酯、环氧树脂、硅橡胶等 B 导电填料: (导电剂) 碳 如 :炭黑、碳纤维、石墨 金属 如 :金属粉、金属薄片、金属丝条、金属纤维、 金属镀玻璃纤维、金属喷镀玻璃片、金属喷镀玻璃珠 金属氧化物 如 :氧化铅、氧化锡
B. 电子型导电高分子材料
作为主体的高分子聚合物大多为共轭体系(至 少是不饱和键体系),长链中的π键电子较为活泼 , 特别是与掺杂剂形成电荷转移络合物后 ,容易从轨 道上逃逸出来形成自由电子。大分子链内与链间 π电子轨道重叠交盖所形成的导电能带为载流子 的转移和跃迁提供了通道。在外加能量和大分子 链振动的推动下 ,便可传导电流。
• • •
(2) 根据不同的电阻率又分为:
A 半导体材料 B 防静电除静电材料 C 导电性材料 D 高导电性材料
BACK
2 . 结构型导电材料

(intrinsically conducting polymer,简称ICP),是指高 分子材料本身或经过少量掺杂处理而具有导电性能的材料, 其电导率可达半导体甚至金属导体的范围(10-9~ 105 S/cm)。 从导电时载流子的种类来看,结构型导电高分子主要分 为: (1)离子型:离子型导电高分子通常又叫高分子固体电解
B 回路形成后的导电
复合型导电高分子形成导电回路后导电主 要取决于分布于高分子树脂基体中的导电填料 的电子的传输。
通常导电填料加入聚合物基体中后 ,不可能真正达到 均匀分布 ,因此总有部分导电粒子能够互相接触而形成链 状导电通道 ,使复合材料导电;而另一部分导电粒子则以孤 立粒子或小聚集体形式分布在绝缘的树脂基体中 ,基本上 不参与导电。 但是 ,由于导电粒子之间存在着内部电场 ,如果这些孤 立粒子或小聚集体之间距离很近 ,中间只被很薄的树脂层 隔开 ,那么由于热振动而被激活的电子就能越过树脂界面 层所形成的势垒而跃迁到相邻的导电粒子上 ,形成较大的 隧道电流 ,这种现象在量子力学中被称为隧道效应;或者是 导电粒子间的内部电场很强时 ,电子将有很大的几率飞越 树脂界面层势垒而跃迁到相邻的导电粒子上产生场致发射 电流。这时树脂界面层起着相当于内部分布电容的作用。
相关文档
最新文档