高中三年级数学期中考试试卷(理科).doc

合集下载

高三数学期中考试试卷理科共6页文档

高三数学期中考试试卷理科共6页文档

高三数学期中考试试卷(理科)1.满足条件{}{}3,2,12,1=Y M 的集合M 的个数是( ) )(A 1 )(B 2 )(C 3 )(D 42.已知函数⎩⎨⎧<+≥-=10)]5([103)(n n f f n n n f ,其中*∈N n ,则)8(f 的值为( ))(A 2 )(B 4 )(C 6 )(D 73.函数b x x f a +=log )(是偶函数,且在区间()∞+,0上单调递减,则)2(-b f 与)1(+a f 的大小关系为( ))(C )1()2(+<-a f b f )(D 不能确定4.已知数列{}n a 是等差数列,数列{}n b 是等比数列,其公比1≠q ,且0>i b (Λ,3,2,1=i ),若11b a =,1111b a =,则( ))(A 66b a = )(B 66b a > )(C 66b a < )(D 66b a >或66b a <5.数列{}n a 、{}n b 满足1=⋅n n b a ,232++=n n a n ,则{}n b 的前10项之和等于( )16.对于函数⎩⎨⎧<≥=时当时当x x xx x xx f cos sin cos cos sin sin )(,下列结论正确的是( ))(A 函数)(x f 的值域是[-1,1])(B 当且仅当22ππ+=k x 时,)(x f 取最大值1)(C 函数)(x f 是以π2为最小正周期的周期函数)(D 当且仅当ππππ4522+<<+k x k (Z k ∈)时,0)(<x f7.若向量()ααsin ,cos =,()ββsin ,cos =则与满足( ))(A 与b 的夹角等于βα- )(B ()()-⊥+8.已知函数)(x f 的导函数为x x f cos 5)('+=,()1,1-∈x ,且0)0(=f ,如果0)1()1(2<-+-x f x f ,则实数x 的取值范围为( )二.填空题(每题5分,共30分,请将答案填在第二页表中) 9.已知命题:“非空集合M 的元素都是集合P 的元素”是假命题,则下列命题:①M 的元素都不是P 的元素 ②M 的元素不都是P 的元素 ③M 中有P 的元素 ④存在M x ∈,使得P x ∉其中真命题的序号是 (将你认为正确的命题的序号都填上)10.已知函数)(x f 是R 上的减函数,其图象经过点)1,4(-A 和)1,0(-B ,函数)(x f 的反函数是)(1x f-,则)1(1-f的值为 ,不等式1)2(<-x f 的解集为11.在如图的表格中,每格填上一个数字,使每一横行成等差数 列,每一纵列成等比数列,则=++c b a 12.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若1=a ,︒=45B ,ABC ∆的面积为2,则ABC ∆的外接圆直径等于13.已知0>a ,函数ax x x f -=3)(在[)∞+,1上是单调增函数,则a 的最大值是 14.函数)(x f 是定义在]1,0[上的函数,满足)2(2)(x f x f =,且1)1(=f ,在每一个区间⎥⎦⎤ ⎝⎛-121,21i i (Λ,3,2,1=i )上,)(x f y =的图象都是斜率为同一常数k 的直线的一部分,记直线n x 21=,121-=n x ,x 轴及函数)(x f y =的图象围成的梯形面积为n a (Λ,3,2,1=n ),则数列{}n a 的通项公式为 三.解答题(共80分)15.(12分)已知函数θθθsin 2)sin()sin()(--++=x x x f ,⎪⎭⎫⎝⎛∈πθ23,0,且 432tan -=θ,若对任意R x ∈,都有0)(≥x f 成立,求θcos 的值16.(12分)解关于x 的不等式023≥++x ax ax17.(14分)如图,四棱锥ABCD S -的底面是正方形,⊥SA 底面ABCD ,E 是SC 上一点(1)求证:平面⊥EBD 平面SAC ; (2)设4=SA ,2=AB ,求点A到平面SBD 的距离;(3)当ABSA的值为多少时,二面角 D SC B --的大小为︒120318.(14分)已知一次函数)(x f y =的图象关于直线x y =对称的图象为C ,且0)1(=f ,若点⎪⎪⎭⎫ ⎝⎛+n n a a n A 1,(*∈N n )在C 上,11=a ,当2≥n 时,111=--+n nn n a a a a (1)求数列{}n a 的通项公式; (2)设)!2(!5!4!3321+++++=n a a a a S n n Λ,求n n S ∞→lim19.(14分)设关于x 的方程0222=--ax x 的两根分别为α、β()βα<,函数14)(2+-=x ax x f(1)证明)(x f 在区间()βα,上是增函数;(2)当a 为何值时,)(x f 在区间[]βα,上的最大值与最小值之差最小420.(14分)如果一个数列的各项的倒数成等差数列,我们把这个数列叫做调和数列 (1) 若2a ,2b ,2c 成等差数列,证明c b +,a c +,b a +成调和数列;(2) 设n S 是调和数列⎭⎬⎫⎩⎨⎧n 1的前n 项和,证明对于任意给定的实数N ,总可以找到一个正整数m ,使得当m n >时,N S n >高三数学答案(理科)一.选择题二.填空题E D CBAS9. ②④ ; 10. -4 , (-2,2) ;11. 1 ; 12.25; 13.3; 14.1224+-=n n ka 三.解答题15.解:依题意)1(cos sin 2sin 2cos sin 2)(-=-=x x x f θθθ由432tan -=θ得3tan =θ 1010cos -=∴θ16.解:原不等式等价于0)1(2≥++ax ax x当4>a 时,解集为[)∞+-+----,0]24,24[22Y aaa a a a a a 当4=a 时,解集为⎭⎬⎫⎩⎨⎧-=≥210x x x 或当40<<x 时,解集为[)∞+,0当0=a 时,解集为[)∞+,0当0<a 时,解集为⎥⎥⎦⎤⎢⎢⎣⎡---⎥⎥⎦⎤ ⎝⎛-+-∞-a a a a a a a a 24,024,22Y 17.(1)证明:Θ⊥SA 底面ABCD BD SA ⊥∴且AC BD ⊥ ∴SAC 平面⊥BD∴平面⊥EBD 平面SAC(2)解:因为ABD -S SBD -A V V =,且232221S SBD ⨯⨯=∆, 可求得点A 到平面SBD 的距离为34 (3)解:作F SC BF 于⊥,连DF ,则B FD ∠为二面角D SC B --的平面角 设1AB =,x SA =,在SB C Rt ∆中,求得2122++=x x BF ,同理,2122++=x x DF ,由余弦定理DF BF BD DF BF ⋅-+=︒2120cos 222 解得1=x , 即ABSA=1时,二面角D SC B --的大小为︒120 18.解:(1)依题意C 过点(0,1),所以设C 方程为1+=kx y ,因为点⎪⎪⎭⎫ ⎝⎛+n n a a n A 1,(*∈N n )在C 上,所以11+=+kn a a n n 代入111=--+n n n n a a a a ,得1=k ,所以11+=+n a ann , n a a n n =∴-1,121-=--n a a n n ,…,212=a a,且11=a , 各式相乘得!n a n =(2)2111)2)(1(1)!2(!)!2(+-+=++=+=+n n n n n n n a n Θ,19.(1)证明:222')1()22(2)(+---=x ax x x f , 由方程0222=--ax x 的两根分别为α、β()βα<知()βα,∈x 时,0222<--ax x ,所以此时0)('>x f ,所以)(x f 在区间()βα,上是增函数(2)解:由(1)知在()βα,上,)(x f 最小值为)(αf ,最大值为)(βf ,2a=+βαΘ,1-=αβ,可求得442+=-a αβ, 所以当0=a 时,)(x f 在区间[]βα,上的最大值与最小值之差最小,最小值为4 20.证明:(1)欲证c b +,a c +,b a +成调和数列,只须证ba cb ac +++=+112 只须证))(())(())((2c b a c b a a c b a c b +++++=++ 化简后,只须证2222c a b +=因为2a ,2b ,2c 成等差数列,所以2222c a b +=成立 所以c b +,a c +,b a +成调和数列(2)nS n 131211++++=Λ对于任一给定的N ,欲使N S n >,只须N k>+21,即)1(2->N k , 取1]2[)1(2+=-N m (其中]2[)1(2-N 表示)1(22-N 的整数部分),则当m n > 时,N S n >(本题解法和答案不唯一)。

山东省临沂市2022届高三上学期期中考试数学理试题 Word版含答案

山东省临沂市2022届高三上学期期中考试数学理试题 Word版含答案

高三教学质量检测考试理科数学2021.11本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟.留意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必需用0.5毫米黑色签字笔作答,答案必需写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}2log ,3,,,0A a B a b A B A B ==⋂=⋃=若,则A. {}03,B. {}013,,C. {}023,,D. {}0123,,,2.已知D 是ABC ∆的边AB 的中点,则向量CD 等于 A. 12BC BA -+ B. 12BC BA --C. 12BC BA - D. 12BC BA +3.某商场2022年一月份到十二月份销售额呈现先下降后上升的趋势,下列函数模型中能较精确 反映该商场月销售额()f x 与月份x 关系的是A. ()()0,1x f x a b b b =⋅>≠且B. ()()log 0,1a f x x b a a =+>≠且C. ()2f x x ax b =++D. ()af x b x =+4.下列说法正确的是A.命题“,20x x R ∀∈>”的否定是“00,20x x R ∃∈<”B.命题“若sin sin x y x y ==,则”的逆否命题为真命题C.若命题,p q ⌝都是真命题,则命题“p q ∧”为真命题D.命题“若ABC ∆为锐角三角形,则有sin cos A B >”是真命题 5.函数21x y e =+在点()0,1处切线的斜率为 A. 2- B.2 C. 12- D. 12 6.已知实数,a b 满足()23,32a b x f x a x b ===+-,则的零点所在的区间是 A. ()2,1-- B. ()1,0- C. ()0,1 D. ()1,2 7.在ABC ∆中,若()41cos ,tan ,tan 52A A B B =-=-=则 A. 12 B. 13 C.2 D.3 8.函数2sin 6241x x x π⎛⎫+ ⎪⎝⎭-的图象大致为 9.若22log ,a x b x ==,则“a b >”是“1x >”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 10.定义在R 上的奇函数()0f x x ≥,当时,()()[)[)132log 1,0,2147,2,2x x f x x x x ⎧+∈⎪=⎨⎪-+-∈+∞⎩,则关于x 的方程()()01f x a a =<<的全部根之和为 A. 31a -- B. 13a -- C. 31a - D. 13a -第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.函数cos 23y x π⎛⎫=- ⎪⎝⎭的最小正周期为_________. 12.函数()93lg 1xy x -=+的定义域为_________.13.已知等差数列{}n a 满足24354,10a a a a +=+=,则它的前10项和10S =_________.14.已知向量()2,1a =,向量()3,b k =,且a b 在方向上的投影为2,则实数k 的值为_______.15.定义在R 上的函数()f x 满足()11f =,且对任意x R ∈都有()12f x '<,则不等式()3312x f x +>的解集为_________.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程.16. (本小题满分12分)已知向量()()sin 2,cos ,sin ,cos m n R ααααα=--=-∈,其中.(I )若m n ⊥,求角α;(II )若2cos2m n α-=,求的值.17. (本小题满分12分)在用“五点法”画函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(I )请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数()f x 的解析式; (II )将()y f x =图象上全部点的横坐标缩短为原来的13,再将所得图象向左平移4π个单位,得到()y g x =的图象,求()g x 的单调递增区间. 18. (本小题满分12分) 数列{}n a 的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列. (I )求数列{}n a 的通项公式; (II )设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分) 在ABC ∆中,内角A,B,C 的对边分别为,,,2a b c C A =,且,,a b c 成公差为1的等差数列. (I )求a 的值; (II )求sin 26A π⎛⎫+ ⎪⎝⎭的值. 20. (本小题满分13分) 某市政府欲在如图所示的直角梯形ABCD 的非农业用地中规划出一个休闲消遣公园(如图中阴影部分),外形为直角梯形DEFG (线段ED 和FG 为两条底边),已知224BC AB AD km ===,其中曲线AC 是以A 为顶点,AD 为对称轴的抛物线的一部分. (I )求曲线AC 与CD ,AD 所围成区域的面积; (II )求该公园的最大面积. 21. (本小题满分14分) 已知函数()()()32ln 13x f x ax x ax a R =++--∈. (I )若()2x f x =为的极值点,求实数a 的值; (II )若()[)4y f x =+∞在,上为增函数,求实数a 的取值范围; (III )当1a =-时,方程()()3113x b f x x --=+有实根,求实数b 的最大值.。

【三年级】河南省洛阳市学年高三期中考试理数试题Word版含答案

【三年级】河南省洛阳市学年高三期中考试理数试题Word版含答案

【关键字】三年级洛阳市2017-2018学年高中三年级期中考试数学试卷(理)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A.B.C.D.2. 设复数满足(是虚数单位),则的共轭复数()A.B.C.D.3.下列说法中正确的个数是()①“为真命题”是“为真命题”的必要不充分条件;②命题“”的否定是“”;③若一个命题的逆命题为真,则它的否命题一定为真.A.0 B.. 2 D.34. 函数的大致图象是()A.B.C. D.5. 某几何体的三视图如图所示,则该几何体的表面积为()A.B. C. D.6. 等比数列中,,函数,则()A.B. C. D.7. 将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的取值不可能是()A.B. C. D.8. 向量均为非零向量,,则的夹角为()A.B. C. D.9. 已知数列的首项,则()A.99 B.. 399 D.40110.在三棱锥中,底面是直角三角形,其斜边平面,且,则此三棱锥的外接球的表面积为()A.B. C. D.11.已知函数,若关于的方程有8个不等的实数根,则实数的取值范围是 ( ) A . B . C. D .12. 用表示不超过的最大整数(如).数列满足,若,则的所有可能值的个数为( ) A . 4 B . . 2 D .1第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上 13.设变量满足约束条件:,则的最大值是 . 14.若定义在上的函数,则 . 15.设均为正数,且,则的最小值为 .16.已知函数是定义在上的偶函数,其导函数为,且当时,,则不等式的解集为 . 三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知向量. (1)若,求的值;(2)令,把函数的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),再把所有图象沿轴向左平移个单位,得到函数的图象,求函数的单调增区间及图象的对称中心. 18.已知数列满足,设.(1)求证:数列为等比数列,并求的通项公式; (2)设,数列的前项和为,求证:. 19.在中,分别是角的对边,且. (1)求的大小;(2)若为的中点,且,求面积的最大值. 20. 已知函数,其导函数的两个零点为-3和0. (1)求曲线在点处的切线方程; (2)求函数的单调区间; (3)求函数在区间上的最值.21. 如图,四棱锥P ABCD -中,底面ABCD 为梯形,PD ⊥底面ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足23CH HD =,若直线PC 与平面PBD 所成的角的正切值为H PB C --的余弦值. 22. 已知函数()()22ln f x x x mx m R =+-∈.(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且()f x 有两个极值点()1212,x x x x <,求()()12f x f x -取值范围. 试卷答案一、选择题1-5:CABBD 6-10: DBACA 11、12:CB 二、填空题 13. 8 14. 423π-15. 9216. {}|20162018x x x <>或 三、解答题17.(1)∵()()sin ,31,cos 0a b x x =-=,即sin 0x x =,∴tan x =∴22tan tan 21tan xx x==-. (2)由(1)得()2sin 3f x x π⎛⎫=- ⎪⎝⎭,从而()2sin 23g x x π⎛⎫=+⎪⎝⎭. 解222232k x k πππππ-≤+≤+得()51212k x k k Z ππππ-≤≤+∈, ∴()g x 的单调增区间是()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 由23x k ππ+=得()126x k k Z ππ=-∈,即函数()y g x =图象的对称中心为()1,026k k Z ππ⎛⎫-∈⎪⎝⎭. 18.(1)由已知易得0n a ≠,由()1121n n n n a a na n a +++=+,得()1211n n n n a a +++=,即121n n b b +=+; ∴()11112n n b b +-=-,又111112n b a -=-=-, ∴{}1n b -是以12-为首项,以12为公比的等比数列. 从而11111222n nn b -⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即112nn n a ⎛⎫=- ⎪⎝⎭,整理得221n n n n a =-,即数列{}n a 的通项公式为221nn n n a =-.(2)∵112nn b ⎛⎫=- ⎪⎝⎭,∴12112121112n n n n n c ===+--⎛⎫- ⎪⎝⎭, ∴23012111111111212121212222n n n S n n -=+++++≤+++++----, 11222n n n -=+-<+.19.(1)由()2cos cos tan tan 11A C A C -=,得sin sin 2cos cos 11cos cos A C A C A C ⎛⎫-= ⎪⎝⎭,∴()2sin sin cos cos 1A C A C -=,∴()1cos 2A C +=-, ∴1cos 2B =, 又0B π<<,∴3B π=.(2)在ABD ∆中由余弦定理得22121cos 22b b c ADB ⎛⎫=+-∠ ⎪⎝⎭,在CBD ∆中由余弦定理得22121cos 22b b a CDB ⎛⎫=+-∠ ⎪⎝⎭,二式相加得222222cos 2222b ac ac Ba c +-+=+=+, 整理得224a c ac +=-,∵222a c ac +≥,∴43ac ≤, 所以ABC ∆的面积11433sin 22323S ac B =≤=.当且仅当a c ==时“=”成立,∴ABC ∆面积的最大值为3. 20.(1)∵()()2x f x x mx n e =++,∴()()()()()2222x x xf x x m e x mx n e x m x m n e '⎡⎤=++++=++++⎣⎦,由()()3000f f '-=⎧⎪⎨'=⎪⎩知()()93200m m n m n ⎧-+++=⎨+=⎩,解得11m n =⎧⎨=-⎩,从而()()21x f x x x e =+-,∴()()23x f x x x e '=+, 所以()1f e =,∴()14f e '=,曲线()y f x =在点()()1,1f 处的切线方程为()41y e e x -=-, 即43y ex e =-.(2)由于0x e >,当x 变化时,()(),f x f x '的变化情况如下表:故()f x 的单调增区间是(),3-∞-,()0,+∞,单调减区间是()3,0-, (3)由于()225f e =,()()201,2f f e -=--=,所以函数()f x 在区间[]2,2-上的最大值为25e ,最小值为-1.21.(1)由,//,1AD CD AB CD AD AB ⊥==,可得BD =又4BC BDC π=∠=,∴BC BD ⊥,从而2CD =,∵PD ⊥底面ABCD ,∴BC PD ⊥.∵PDBD D =,∴BC ⊥平面PBD ,所以平面PBD ⊥平面PBC .(2)由(1)可知BPC ∠为PC 与底面PBD 所成的角.所以tan 3BPC ∠=,所以1PB PD ==, 又23CH HD =,及2CD =,可得64,55CH DH ==, 以D 点为坐标原点,,,DA DC DP 分别,,x y z 轴建立空间直角坐标系, 则()()()41,1,0,0,0,1,0,2,0,0,,05B PC H ⎛⎫ ⎪⎝⎭. 设平面HPB 的法向量为(),,n x y z =,则由00n HP n PB ⎧=⎪⎨=⎪⎩得4050y z x y z ⎧-+=⎪⎨⎪+-=⎩,取()1,5,4n =--,同理平面PBC 的法向量为()1,1,2m =. 所以27cos ,7m n m n m n==-, 又二面角H PB C --为锐角, 所以二面角H PB C --. 22.(1)()f x 的定义域为()0+∞,,()f x 在定义域内单调递增,()220f x x m x '=+-≥,即22m x x≤+在()0+∞,上恒成立, 由于224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞. (2)由(1)知()22222x mx f x x m x x -+'=+-=,当1752m <<时()f x 有两个极值点,此时1202mx x +=>,121x x =, ∴1201x x <<<, 因为1111725,2m x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211x x =,于是()()()()22121112222ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+, 令()2214ln h x x x x =-+,则()()223210x h x x--'=<,∴()h x 在1142⎛⎫ ⎪⎝⎭,上单调递减,()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 即()()()()121141ln 2161ln 2416f x f x --<-<--, 故()()12f x f x -的取值范围为15255ln 216ln 2416⎛⎫-⎪⎝⎭-4,.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

2022-2023学年四川省成都市高三年级上册学期期中考试 数学(理 )

2022-2023学年四川省成都市高三年级上册学期期中考试  数学(理 )

2022-2023学年四川省成都市高三上学期期中考试 理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足,则在复平面内复数z 对应的点在( )()11i i z +=A. 第四象限B. 第三象限C. 第二象限D. 第一象限2. 已知数列的前n 项和是,则(){}n a 2n 45a a +=A. 20 B. 18C. 16D. 143. 设全集,集合,,则()(){}*N 60U x x x =∈-≤{}13,5A =,{}0,2,4B =()UB A ⋂= A.B.C.D.{}2,4{}0,2,4{}1,3,5{}0,2,4,64. 函数在区间的图象大致为( )()33cos x x y x-=-ππ,22⎡⎤-⎢⎥⎣⎦A. B.C. D.5. 某几何体的三视图如图所示,则该几何体的体积为()A.B. C.D. 283π-23π483π-43π6. 已知命题p :在中,若,则;命题q :向量与向量相等的充要条件是ABC cos cos A B >A B <ab 且.在下列四个命题中,是真命题的是( )a b = a b∥A. B.C.D.p q∧()()p q ⌝∧⌝()p q⌝∧()p q ∧⌝7. 已知函数的部分图象如图所示,则下列说法正确的是( ()()sin 0,0,2f x A x Aπωϕωϕ⎛⎫=+>>< ⎪⎝⎭)A. 直线是函数的图象的一条对称轴x π=()f x B. 函数的图象的对称中心为,()f x ,0122k ππ⎛⎫-+ ⎪⎝⎭k ∈Z C. 函数在上单调递增()f x 311,26ππ⎡⎤⎢⎥⎣⎦D. 将函数的图象向左平移个单位长度后,可得到一个偶函数的图象()f x 12π8. 数列中,,对任意 ,若,则{}n a 12a =,,m n m n m n N a a a ++∈=155121022k k k a a a ++++++=-( )k =A. 2 B. 3 C. 4 D. 59. 2020年,由新型冠状病毒(SARS -CoV -2)感染引起的新型冠状病毒肺炎(COVID -19)在国内和其他国家暴发流行,而实时荧光定量PCR (RT -PCR )法以其高灵敏度与强特异性,被认为是COVID -19的确诊方法,实时荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量与扩增次数n 满足n X ,其中p 为扩增效率,为DNA 的初始数量.已知某样本的扩增效率()0lg lg 1lg n X n p X -+=0X ,则被测标本的DNA 大约扩增( )次后,数量会变为原来的125倍.(参考数据:0.495p ≈)1.495log 54≈A. 10 B. 11C. 12D. 1310. 设,,(其中e 是自然对数的底数),则( )152e a -=b =65c =A. B. C. D. a b c <<c a b<<b a c<<c b a<<11. 已知正三棱柱的所有顶点都在球O 的表面上,若球O 的表面积为48π,则正三棱柱111ABC A B C -的体积的最大值为()111ABC A B C -A. B. C.D.12. 已知的三个顶点都在抛物线上,点为的重心,直线经过该抛物线ABC 24y x =()2,0M ABC AB 的焦点,则线段的长为( )AB A. 8B. 6C. 5D. 4.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量满足,则_______.,a b ||||||1a b a b ==+= a b ⋅= 14. 在二项式的展开式中,各项的系数之和为512,则展开式中常数项的值为___________.5nx ⎛⎫ ⎪⎝⎭15. 已知双曲线C :的左、右焦点分别为,,点P 是双曲线C 的右支上一点,若()222103x y a a -=>1F 2F ,且的面积为3,则双曲线C 的焦距为___________.121tan 3PF F ∠=12PF F △16. 已知函数,若关于x 的方程有8个不同的实数解,()11e ,0e ,0x x x x f x x x ---⎧⋅>=⎨-⋅<⎩()()222f x m f x =-⎡⎤⎣⎦则整数m 的值为___________.(其中e 是自然对数的底数)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答,17. 已知a ,b ,c 为的内角A ,B ,C 所对的边,向量,ABC (,),(sin ,sin sin )m a b c a n B A C =--=+且.m n ⊥ (1)求角C(2)若,D 为的中点,的面积.sin sin ,4B C b <=BC AD =ABC 18. 全国中学生生物学竞赛隆重举行.为做好考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计这50名学生成绩的中位数;m (2)在这50名学生中用分层抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在[80,90)的人数,求的分布列和数学期望;ξξ19. 如图,四棱柱中,底面是矩形,且,,1111ABCD A B C D -ABCD 22AD CD ==12AA =,若为的中点,且.13A AD π∠=O AD 1CD A O ⊥(1)求证:平面;1A O ⊥ABCD (2)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存BC P 1D A A P --3πBP 在,说明理由.20. 已知曲线C 上的任意一点到点的距离和它到直线l :的距离的比是常数,过点F 作()1,0F -4x =-12不与x 轴重合的直线与曲线C 相交于A ,B 两点,过点A 作AP 垂直于直线l ,交直线l 于点P ,直线PB 与x 轴相交于点M .(1)求曲线C 的方程;(2)求面积的最大值.ABM 21. 已知函数在处的切线方程为.()ln m x nf x x +=()()1,1f 1y =(1)求实数m 和n 的值;(2)已知,是函数的图象上两点,且,求证:()(),A a f a ()(),B b f b ()f x ()()f a f b =.()()ln ln 1a b ab +<+22. 在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点O 为12x t y ⎧=⎪⎪⎨⎪=+⎪⎩极点,x 轴的非负半轴为极轴(取相同的长度单位),建立极坐标系,曲线C 的极坐标方程为.π4cos 3ρθ⎛⎫=- ⎪⎝⎭(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若点P 的极坐标为,直线l 与曲线C 相交于A ,B 两点,求的值.3π2⎫⎪⎭11PA PB +23. 已知函数,M 为不等式的解集.()2111f x x x =+-+-()0f x <(1)求集合M ;(2)设a ,,求证:b M ∈211222a b ab +--<+2022-2023学年度上期高2023届11月半期考试理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足,则在复平面内复数z 对应的点在( )()11i i z +=A. 第四象限B. 第三象限C. 第二象限D. 第一象限【答案】B 2. 已知数列的前n 项和是,则(){}n a 2n 45a a +=A. 20 B. 18C. 16D. 14【答案】C 3. 设全集,集合,,则()(){}*N 60U x x x =∈-≤{}13,5A =,{}0,2,4B =()UB A ⋂= A.B.C.D.{}2,4{}0,2,4{}1,3,5{}0,2,4,6【答案】A4. 函数在区间的图象大致为( )()33cos xxy x-=-ππ,22⎡⎤-⎢⎥⎣⎦A. B.C. D.【答案】A5. 某几何体的三视图如图所示,则该几何体的体积为( )A.B. C.D. 283π-23π483π-43π【答案】A6. 已知命题p :在中,若,则;命题q :向量与向量相等的充要条件是ABC cos cos A B >A B <ab 且.在下列四个命题中,是真命题的是( )a b = ab ∥A. B.C.D.p q ∧()()p q ⌝∧⌝()p q⌝∧()p q ∧⌝【答案】D7. 已知函数的部分图象如图所示,则下列说法正确的是( ()()sin 0,0,2f x A x Aπωϕωϕ⎛⎫=+>>< ⎪⎝⎭)A. 直线是函数的图象的一条对称轴x π=()f x B. 函数的图象的对称中心为,()f x ,0122k ππ⎛⎫-+ ⎪⎝⎭k ∈Z C. 函数在上单调递增()f x 311,26ππ⎡⎤⎢⎥⎣⎦D. 将函数的图象向左平移个单位长度后,可得到一个偶函数的图象()f x 12π【答案】B8. 数列中,,对任意 ,若,则{}n a 12a =,,m n m n m n N a a a ++∈=155121022k k k a a a ++++++=- ( )k =A. 2 B. 3 C. 4 D. 5【答案】C9. 2020年,由新型冠状病毒(SARS -CoV -2)感染引起的新型冠状病毒肺炎(COVID -19)在国内和其他国家暴发流行,而实时荧光定量PCR (RT -PCR )法以其高灵敏度与强特异性,被认为是COVID -19的确诊方法,实时荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量与扩增次数n 满足n X ,其中p 为扩增效率,为DNA 的初始数量.已知某样本的扩增效率()0lg lg 1lg n X n p X -+=0X ,则被测标本的DNA 大约扩增( )次后,数量会变为原来的125倍.(参考数据:0.495p ≈)1.495log 54≈A. 10 B. 11 C. 12 D. 13【答案】C10. 设,,(其中e 是自然对数的底数),则( )152e a -=b =65c =A. B. C. D. a b c <<c a b<<b a c<<c b a<<【答案】D 11. 已知正三棱柱的所有顶点都在球O 的表面上,若球O 的表面积为48π,则正三棱柱111ABC A B C -的体积的最大值为()111ABC A B C -A. B. C. D. 【答案】C12. 已知的三个顶点都在抛物线上,点为的重心,直线经过该抛物线ABC 24y x =()2,0M ABC AB 的焦点,则线段的长为( )AB A. 8 B. 6C. 5D. 4.【答案】B二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量满足,则_______.,a b ||||||1a b a b ==+= a b ⋅= 【答案】12-14. 在二项式的展开式中,各项的系数之和为512,则展开式中常数项的值为___________.5nx ⎛⎫ ⎪⎝⎭【答案】13515. 已知双曲线C :的左、右焦点分别为,,点P 是双曲线C 的右支上一点,若()222103x y a a -=>1F 2F ,且的面积为3,则双曲线C 的焦距为___________.121tan 3PF F ∠=12PF F △【答案】16. 已知函数,若关于x 的方程有8个不同的实数解,()11e ,0e ,0x x x x f x x x ---⎧⋅>=⎨-⋅<⎩()()222f x m f x =-⎡⎤⎣⎦则整数m 的值为___________.(其中e 是自然对数的底数)【答案】5三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答,17. 已知a ,b ,c 为的内角A ,B ,C 所对的边,向量,ABC (,),(sin ,sin sin )m a b c a n B A C =--=+且.m n ⊥ (1)求角C(2)若,D 为的中点,的面积.sin sin ,4B C b <=BC AD =ABC 【答案】(1)π3C =(2)【解析】【分析】(1)根据向量垂直可得数量积为0,结合正余弦定理边角互化即可求解,(2)根据余弦定理可求值,进而可求,根据三角形面积公式即可求解.CD a 【小问1详解】因为,所以,m n ⊥()sin (sin sin )()0a b B A C c a -⨯++-=由正弦定理得.()()()a b b a c a c -⨯=+-即,由余弦定理得,222a b c ab +-=2221cos 22a b c C ab +-==因为,所以.0πC <<π3C =【小问2详解】在三角形中,,ADC 2222cos AD AC CD AC CD ACD =+-⋅∠即,解得或,即或,213164CD CD =+-1CD =3CD =2a =6a =因为,故,sin sin B C <B C <因为,所以,故,所以,π3C =A CB >>a c b >>6a =所以11sin 6422ABC S ab C ==⨯⨯=△18. 全国中学生生物学竞赛隆重举行.为做好考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计这50名学生成绩的中位数;m (2)在这50名学生中用分层抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在[80,90)的人数,求的分布列和数学期望;ξξ【答案】(1),中位数;0.012m =68(2)分布列见解析,.911【解析】【分析】(1)根据频率分布直方图中所有小矩形的面积为1,结合中位数的定义进行求解即可;(2)根据分层抽样的性质,结合古典概型公式、数学期望公式进行求解即可.【小问1详解】由频率分布直方图的性质可得,,(0.0040.0220.030.0280.004)101m +++++⨯=解得,0.012m =设中位数为,解得;a ()0.004100.02210600.30.5a ∴⨯+⨯+-⨯=68a =【小问2详解】的三组频率之比为0.28:0.12:0.04=7:3:1[)[)[]70,80,80,90,90,100 从中分别抽取7人,3人,1人,∴[)[)[]70,80,80,90,90,100所有可能取值为0,1,2,3,ξ,,,38311C 56(0)C 165P ξ===2183311C C 28(1)C 55P ξ===1283311C C 8(2)C 55P ξ===33311C 1(3)C 165P ξ===故的分布列为:ξξ0123P5616528558551165故()56288190123.165555516511E ξ=⨯+⨯+⨯+⨯=19. 如图,四棱柱中,底面是矩形,且,,1111ABCD A B C D -ABCD 22AD CD ==12AA =,若为的中点,且.13A AD π∠=O AD 1CD A O ⊥(1)求证:平面;1A O ⊥ABCD (2)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存BC P 1D A A P --3πBP 在,说明理由.【答案】(1)证明见解析;(2)存在,理由见解析.【解析】【分析】(1)由已知得为等边三角形,,再由,能证明⊥平1A AD1A O AD ⊥1A O CD ⊥1AO 面.ABCD (2)过作,以为原点,建立空间直角坐标系,利用向量法能求出当的长为时,O //Ox AB O O xyz -BP 23二面角的值为1D A A P --3π【详解】(1)证明:∵,且,13A AD π∠=12AA AD ==∴为等边三角形1A AD∵为的中点O AD ∴,1A O AD ⊥又,且,1CD A O ⊥CD AD D = ∴平面.1A O ⊥ABCD (2)过作,以为原点,建立空间直角坐标系(如图)O //Ox AB O O xyz -则,,(0,1,0)A-1A 设,(1,,0)P m ([1,1])m ∈-平面的法向量为,1A AP 1(,,)n x y z =∵,,1AA =(1,1,0)AP m =+且,1110(1)0n AA y n AP x m y ⎧⋅=+=⎪⎨⋅=++=⎪⎩ 取,得1z=11),n m =+平面的一个法向量为11A ADD 2(1,0,0)n =由题意得12cos ,n n = 解得或(舍去),此时13m =-53m =-12133BP =-=∴当的长为时,二面角的值为.BP 231D A A P --3π20. 已知曲线C 上的任意一点到点的距离和它到直线l :的距离的比是常数,过点F 作()1,0F -4x =-12不与x 轴重合的直线与曲线C 相交于A ,B 两点,过点A 作AP 垂直于直线l ,交直线l 于点P ,直线PB 与x 轴相交于点M .(1)求曲线C 的方程;(2)求面积的最大值.ABM 【答案】(1)22143x y +=(2)94【解析】【分析】(1)由题意列出曲线方程化简即可求解;(2)设直线AB 的方程为,,,表示出,联立直线与椭圆方程消去,1,x my =-()11,A x y ()22,B x y P x 表示出关于的韦达定理,结合求出直接PB 的方程,令,求出坐标,进而得到,由y ,B P 0y =M FM求出面积,结合换元法和对勾函数性质可求面积的最大值.1212ABM S FM y y =-△ABM 【小问1详解】设曲线C 上的任意一点的坐标为,(),x y,即,所以曲线C 的方程为;12=22143x y +=22143x y +=【小问2详解】由题意,设直线AB 的方程为,,,则.1,x my =-()11,A x y ()22,B x y ()14,P y -联立方程得,则,221,1,43x my x y =-⎧⎪⎨+=⎪⎩()2234690m y my +--=()214410m ∆=+>所以,,所以122634m y y m +=+122934y y m -=+()121223my y y y -=+又因为,所以直接PB 的方程为.2124PB y y k x -=+()211244y y y y x x --=++令,则,0y =()()1212121212121343352444422y y y x my y y x y y y y y y -++=--=--=--=-+=----所以,.5,02M ⎛⎫- ⎪⎝⎭32FM =因为12y y -====所以121324ABMS FM y y =-==△令,,则.t =1t ≥2991313ABM t S t t t ==++△又因为在上单调递减,所以当时,,()913f t t t =+[)1,+∞1t =()max94ARM S =△故面积的最大值为.ABM 94【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.21. 已知函数在处的切线方程为.()ln m x nf x x +=()()1,1f 1y =(1)求实数m 和n 的值;(2)已知,是函数的图象上两点,且,求证:()(),A a f a ()(),B b f b ()f x ()()f a f b =.()()ln ln 1a b ab +<+【答案】(1) 1m n ==(2)证明见解析【解析】【分析】(1)先求导,由可求对应的m 和n 的值;()()10,11f f '==(2)设,由可判断,由得,设0a b <<10e f ⎛⎫= ⎪⎝⎭11e a b <<<0a b <<11111ln 1ln a a b b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,,,得,代换整理得,原不等式要11x b =21x a =21x tx =()()11221ln 1ln x x x x -=-11ln ln 1t t t x t --=-证,只需证,全部代换为关于的不等式得,()()ln ln 1a b ab +<+11e a b +<t ()()1ln 1ln 0t t t t -+-<设,,由导数得,再证,放缩得()()()1ln 1ln S t t t t t =-+-1t >()12ln 11S t t t ⎛⎫'=+-⎪+⎝⎭()ln 1x x ≤+,进而得证.112ln 11t t t ⎛⎫+≤<⎪+⎝⎭【小问1详解】由,得.()ln m x n f x x +=()2ln m m x nf x x --'=因为函数在处的切线方程为,()f x ()()1,1f 1y =所以,,则;()10f m n '=-=()11f n ==1m n ==【小问2详解】证明:由(1)可得,,,()ln 1x f x x +=()2ln xf x x -'=所以当时,,单调递增;()0,1x ∈()0f x ¢>()f x 当时,,单调递减.()1,x ∈+∞()0f x '<()f x 因为,是函数的图象上两点,且,()(),A a f a ()(),B b f b ()f x ()()f a f b =不妨设,且,所以.0a b <<10e f ⎛⎫= ⎪⎝⎭11e a b<<<由,得,即.()()f a f b =ln 1ln 1a b a b ++=11111ln 1ln a a b b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭设,.11x b =21x a =设,则,所以,21x tx =1t >()()11221ln 1ln x x x x -=-即,故.()111ln 1ln ln x t t x -=--11ln ln 1t t tx t --=-要证,只需证,()()ln ln 1a b ab +<+11e a b +<即证,即证,即证,12e x x +<()11e t x +<()1ln 1ln 1t x ++<即证,即证.()1ln ln 111t t tt t --++<-()()1ln 1ln 0t t t t -+-<令,,()()()1ln 1ln S t t t t t=-+-1t >则,()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭证明不等式;()ln 1xx ≤+设,则,()()ln 1u x x x=+-()1111xu x x x -'=-=++所以当时,;当时,,10x -<<()0u x '>0x >()0u x '<所以在上为增函数,在上为减函数,()u x ()1,0-()0,∞+故,所以成立.()()max 00u x u ==()ln 1xx ≤+由上还不等式可得,当时,,故恒成立,1t >112ln 11t t t ⎛⎫+≤<⎪+⎝⎭()0S t '<故在上为减函数,则,()S t ()1,+∞()()10S t S <=所以成立,即成立.()()1ln 1ln 0t t t t -+-<12e x x +<综上所述,.()()ln ln 1a b ab +<+22. 在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点O为12x t y ⎧=⎪⎪⎨⎪=+⎪⎩极点,x 轴的非负半轴为极轴(取相同的长度单位),建立极坐标系,曲线C 的极坐标方程为.π4cos 3ρθ⎛⎫=- ⎪⎝⎭(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若点P 的极坐标为,直线l 与曲线C 相交于A ,B 两点,求的值.3π2⎫⎪⎭11PA PB +【答案】(1) y =2220x y x +--=(2)79【解析】【分析】(1)利用消元法将参数方程化为普通方程即可得到直线l 的普通方程;利用极坐标方程与直角坐标方程的转化公式即可得到曲线C 的直角坐标方程;(2)将点P 的极坐标化为直角坐标判断得P 在直线l 上,再利用直线参数方程中参数的几何意义,将直线l 代入曲线C 的直角坐标方程,结合韦达定理即可求解.【小问1详解】因为直线l 的参数方程为(t 为参数),12x t y ⎧=⎪⎪⎨⎪=⎪⎩所以直线l 的普通方程为y =因为,即,π4cos 3ρθ⎛⎫=- ⎪⎝⎭2cos ρθθ=+所以,得,22cos sin ρρθθ=+222x y x +=+所以曲线C 的直角坐标方程为.2220x y x +--=【小问2详解】因为点P 的极坐标为,所以点P 的直角坐标为,所以点P 在直线l上,3π2⎫⎪⎭(0,将直线l 的参数方程(t 为参数),代入,化简得,12x t y ⎧=⎪⎪⎨⎪=⎪⎩2220x y x +--=2790t t -+=设A ,B 两点所对应的参数分别为,,则,,故,,1t2t 127t t +=129t t =10t >20t >所以,,11PA t t ==22PB t t ==所以.121212111179t t PA PB t t t t ++=+==23. 已知函数,M 为不等式的解集.()2111f x x x =+-+-()0f x <(1)求集合M ;(2)设a ,,求证:.b M ∈211222a b ab +--<+【答案】(1){}11M x x =-<<(2)证明见解析【解析】【分析】(1)采用零点讨论法去绝对值可直接求解;(2)结合绝对值三角不等式得,要证()2112|2112|22a b a b a b+--≤+--=+,即证,即证,去平方结合因式分解即可求211222a b ab +--<+1a b ab +<+221a b ab +<+证.【小问1详解】.()21110f x x x =+-+-<①当时,不等式可化为,解得,则;1x <-()21110x x -+++-<1x >-x ∈∅②当,不等式可化为,解得,则;112x -≤≤-()()21110x x -+-+-<1x >-112x -<≤-③当时,不等式可化为,解得,则.12x >-()()21110x x +-+-<1x <112x -<<综上所述,;{}11M x x =-<<【小问2详解】证明:因为(当且仅当时取等号),()2112|2112|22a b a b a b+--≤+--=+()()21120a b +-≥所以要证,只需证,211222a b ab +--<+2222a b ab +<+即证,即证,即证,1a b ab +<+221a b ab +<+222210a b a b --+>即证.()()22110a b -->由(1)可知,.{}11M x x =-<<因为a ,,所以,所以成立.b M ∈221,1a b <<()()22110ab -->综上所述,.211222a b ab +--<+。

河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)

河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)

南阳市2022年秋期高中三年级期中质量评估数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合40,{54}1x A x B x x x -⎧⎫=≤=-<<⎨⎬+⎩⎭∣∣, 则()R A B ⋂=ðA. (,1](4,)-∞-⋃+∞B. (,1)(4,)-∞-⋃+∞C. (-5,-1)D. (-5,-1]2. 若||||2z i z i +=-=, 则||z = A. 1D. 23. 若,x y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩ 则2y -的最小值是A. -1B. -3C. -5D. -74. 已知数列{}n a 的前n 项和211n S n n =-. 若710k a <<, 则k = A. 9B. 10C. 11D. 125.已知sin 12x π⎛⎫-= ⎪⎝⎭, 则cos 26x π⎛⎫-= ⎪⎝⎭A. 58-B. 58C. 4-D.46. 在ABC 中,30,C b c x ︒===. 若满足条件的ABC 有且只有一个, 则x 的可能取值是 A.12B.2C. 17. 若函数()(sin )x f x e x a =+在点(0,(0))A f 处的切线方程为3y x a =+, 则实数a 的值为 A. 1B. 2C. 3D. 48. 在ABC 中, 角,,A B C所对的边分别为,,cos ),a b c c b A a b -==则ABC 的外接圆面积为A. 4πB. 6πC. 8πD. 9π9. 函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像如图所示, 将该函数图像上各点的横坐标缩短到原来的一半 (纵坐标不变), 再向右平移(0)θθ>个单位长度后, 所得到的图像关于点7,024π⎛⎫⎪⎝⎭对称, 则θ的最小值为A.76π B. 6πC. 8πD. 724π10. 已知定义在R 上的函数()f x 满足:(3)(3),(6)(6)f x f x f x f x +=-+=--, 且当[0,3]x ∈时,()21()x f x a a =⋅-∈R , 则(1)(2)(3)(2023)f f f f ++++=A. 14B. 16C. 18D. 2011. 已知:2221tan log 38,21tan 8a b c ππ-===+, 则 A. a b c << B. a c b << C. c a b << D. c b a <<12. 已知正数,a b 满足221ln(2)ln 1a a b b +≤-+, 则22a b +=A.52C.32第Ⅱ卷 非选择题(共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知2()lg5lg(10)(lg )f x x x =⋅+, 则(2)f =_____.14. 在ABC 中,3,4,8AB BC CA CB ==⋅=, 则AB 边上中线CD 的长为_____.15. 已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≤⎧=⎨>⎩则1()2f x <的解集是_____.16. 若方程2ln 1x x e ax x -=--存在唯一实根,则实数a 的取值范围是_____.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤)17. (本题满分 10 分)已知函数22()2cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2) 若函数()()02g x f x πϕϕ⎛⎫=+<< ⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.18. (本题满分 12 分)已知数列{}n a 和{}n b 满足:)*121,2,0,n n a a a b n ==>=∈N ,且{}n b 是以 2 为公比的等比数列. (1) 证明: 24n n a a +=;(2) 若2122n n n c a a -=+, 求数列{}n c 的通项公式及其前n 项和n S . 19. (本题满分 12 分)已知函数()ln ,()(1)f x x x g x k x ==-. (1) 求()f x 的极值;(2) 若()()f x g x ≥在[2,)+∞上恒成立, 求实数k 的取值范围. 20. (本题满分 12 分)数列{}n a 中,n S 为{}n a 的前n 项和,()()*24,21n n a S n a n ==+∈N . (1)求证: 数列{}n a 是等差数列,并求出其通项公式;(2) 求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .21. (本题满分 12 分)已知,,a b c 分别是ABC 的内角,,A B C 所对的边, 向量(sin ,sin ),(cos ,cos )A B B A ==m n(1)若234,cos 3a b C ==, 证明: ABC 为锐角三角形; (2)若ABC 为锐角三角形, 且sin 2C ⋅=m n , 求ba的取值范围.22. (本题满分 12 分)已知函数21()12x f x e x ax =---, 若()()()2g x h x f x +=, 其中()g x 为偶函数,()h x 为奇函数.(1)当1a =时,求出函数()g x 的表达式并讨论函数()g x 的单调性;(2) 设()f x '是()f x 的导数. 当[1,1],[1,1]a x ∈-∈-时,记函数|()|f x 的最大值为M , 函数()f x '的最大值为N . 求证:M N <.高三(理)数学参考答案第1页(共6页)2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y f x=的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,高三(理)数学参考答案第2页(共6页)∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分高三(理)数学参考答案第3页(共6页)19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分高三(理)数学参考答案第4页(共6页)当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】高三(理)数学参考答案第5页(共6页)(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,高三(理)数学参考答案第6页(共6页)所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。

高三理科数学期中考试卷

高三理科数学期中考试卷

高三理科数学期中考试卷一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知向量a = (1, 2),向量b = (2, 3),则向量a与向量b的点积为()A. 4B. 5C. 6D. 73. 函数f(x) = x^2 - 4x + 3的零点个数为()A. 0B. 1C. 2D. 34. 已知等差数列{a_n}的首项为1,公差为2,则第5项a_5的值为()A. 9B. 10C. 11D. 125. 圆x^2 + y^2 = 9的圆心坐标为()A. (0, 0)B. (3, 0)C. (0, 3)D. (-3, 0)6. 函数y = sin(x)的周期为()A. πB. 2πC. π/2D. 4π7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B = ()A. {1, 2, 3}B. {2, 3}C. {1, 3, 4}D. {1, 2}8. 已知函数f(x) = x^2 + 2x + 1,g(x) = x^2 - 2x + 1,则f(x) - g(x) = ()A. 4xB. 2xC. 2D. 49. 已知直线y = 2x + 3与x轴的交点坐标为()A. (-3/2, 0)B. (3/2, 0)C. (0, -3)D. (0, 3)10. 函数y = ln(x)的定义域为()A. (-∞, 0)B. [0, +∞)C. (0, +∞)D. (-∞, +∞)二、填空题(每题4分,共20分)11. 已知函数f(x) = 3x - 2,若f(a) = 7,则a = _______。

12. 已知等比数列{b_n}的首项为2,公比为3,则第4项b_4 =_______。

13. 已知函数y = 2x^3 + 3x^2 - 5x + 1,求导数y' = _______。

北京四中2019届上学期高中三年级期中考试数学试卷(理科)

北京四中2019届上学期高中三年级期中考试数学试卷(理科)

北京四中2019届上学期高中三年级期中考试数学试卷(理科)试卷满分共计150分 考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每个小题列出的四个选项中,选出符合题目要求的一项. 1. 设函数2018y x =-的定义域为M ,函数x y e =的值域为P ,则M P =A. (0,+∞)B. [2018, +∞)C. [0,+∞)D. (2018, +∞)2. 下列函数中,其中既是偶函数又在区间(0,1)上单调递减的函数为 A. cos y x = B. lg y x = C. 1y x=D. 2y x = 3. 函数cos tan ()22y x x x ππ=-<<的大致图象是4. 执行如图所示的程序框图。

若输出的结果是16,则判断框内的条件是A. n>6?B. n ≥7?C. n>8?D. n>9?5. 函数sin()(0,||)2y A x x R πωϕωϕ=+><∈的部分图像如图所示,则函数表达式为A. 4sin(84y x ππ=-- B. 4sin()84y x ππ=-+C. 4sin(84y x ππ=-D. 4sin()84y x ππ=+6. 原命题:“a ,b 为两个实数,若a+b ≥2,则a ,b 中至少有一个不小于1”,下列说法错...误.的是 A. 逆命题为:“若a ,b 中至少有一个不小于1,则a+b ≥2”,为假命题B. 否命题为:“若a+b<2,则a ,b 都小于1”,为假命题C. 逆否命题为:“若a ,b 都小于1,则a+b<2”,为真命题D.“a+b ≥2”是“a ,b 中至少有一个不小于1”的必要不充分条件7. 设x R ∈,定义符合函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则下列等式正确的是A. sin sgn()sin ||x x x ⋅=B. sin sgn()|sin |x x x ⋅=C. sin sgn()sin x x x ⋅=D. sin sgn()sin x x x ⋅=8. 已知函数2()(3)x f x x e =-,设关于x 的方程2212()()0(0)f x mf x m e --=>有n 个不同的实数解,则n 的所有可能的值为A. 3B. 1或3C. 4或6D. 3或4或6二、填空题共6小题,每小题5分,共30分。

高三期中考试理科数学试卷.docx

高三期中考试理科数学试卷.docx

高三期中考试理科数学试卷一.选择题(共12小题,每题5分共60分。

)1. 设集合={1,2,3}A ,B={45},,={x|x=a+b,a A,b B}M ∈∈,则M 中元素的个数为 A .3 B .4 C .5 D .62.条件p :14<2x<16,条件q :(x +2)(x +a )<0,若p 是q 的充分而不必要条件,则a 的取值范围是( )A .(4,+∞)B .[-4,+∞)C .(-∞,-4]D .(-∞,-4)3.平面上有四个互异点A ,B ,C ,D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0, 则△ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .无法确定4.若已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,9-x+1,x ≤0,则f (f (1))+f ⎝⎛⎭⎪⎫log 312的值是( )A .7B .2C .5D .35.如图所示为函数f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0≤φ≤π2的部分图象,其中A ,B 两点之间的距离为5,那么f (-1)=( )A .-1B .- 3 C. 3D .16.已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a= ( )(A)14(B)12(C)1 (D)27、记等比数列{}n a 的前n 项和为S n ,若S 3=2,S 6=18,则105S S 等于( ) A . 3- B . 5 C . -31 D .338.已知等差数列{}n a 中,24512,10a a a +==,则与圆2220x y y +-=相交所得的弦长为1a ,且斜率为3a 的直线方程是( )A .6x-y-l=0B .6x+y-l=0 C. 6x - y+l=0 D .6x +y +1=09.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=⎝ ⎛⎭⎪⎫1a |x +b |的图象为( )10、如图,一个空间几何体的正视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的内切球表面积为( ) A .4π B .6π C .22π D .3π11、已知()()32,931f x ax g x x x ==+-,当[]1,2x ∈时,()()f x g x ≥恒成立,则a 的取值范围为( )A .11a ≥B .11a ≤C .418a ≥D .418a ≤ 12.如图,在长方形ABCD 中,AB=3,BC=1,E 为线段DC 上一动点,现将∆AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( ) A .23 B .332 C .2π D . 3π二.填空题(共4小题,每小题5分,共20分,请把答案写在答题卷上..........) 13.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________. 14.不等式x 2-2x <0表示的平面区域与抛物线y 2=4x 围成的封闭区域的面积为________. 15、若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.16.定义“正对数”: 0,01,ln ln ,1x x x x +<<⎧=⎨≥⎩现有四个命题:所有正确结论的序号有____①若a >0,b >0,则ln +(a b)=bln +a ②若a >0,b >0,则ln +(ab )=ln +a+ln +b ③若a >0,b >0,则ln +(a b)≥ln +a-ln +b ④若a >0,b >0,则ln +(a+b )≤ln +a+ln +b+ln2 三.解答题(6题,共70分,要求写出解答过程或者推理步骤):17.(本小题满分10分)已知m =(2cos x +23sin x,1),n =(cos x ,-y ),且m ⊥n .(1)将y 表示为x 的函数f (x ),并求f (x )的单调增区间.(2)已知a ,b ,c 分别为△ABC 的三个内角∠A ,∠B ,∠C 对应的边长,若f ⎝ ⎛⎭⎪⎫A 2=3,且a =2,b +c=4,求△ABC 的面积.18.(本小题满分12分)正项数列{a n }的前n 项和S n 满足:222(1)()0n n S n n S n n -+--+=(1) 求数列{a n }的通项公式a n ;(2) 令b n =22nn+1n+a (2) ,数列{b n }的前n 项和为T n . 证明:对于任意n ∈N*,都有T n <564。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中三年级数学期中考试试卷(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至8页。

共150分。

考试时间1。

第Ⅰ卷(选择题,共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考场号、座号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,将第Ⅱ卷和答题卡一并交回。

一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.已知集合A={a,1},集合B={2,3a},A∪B={1,2,9},则A∩B=A.{1} B.{2} C.{4} D.Ø
2.若复数∈R,则实数a的值是
A.1 B.-1 C.2 D.-2
3.=
A.2 B.1 C.-2 D.-1
4.函数f(x)=的反函数是f-1 (x)),若f-1 (x)<0,则x的取值范围是
A.(-∞,-1)B.(-∞,0)C.(-1,1)D.(1,+∞)
5.在△ABC中,已知A(-4,0),B(4,0),且sinA-sinB=sinC,则点C的轨迹方程是A.-=1 (x>2)B.-=1 (x>2)
C.-=1 (x<-2)D.-=1 (x<-2)
6.从1,2,3,4,5这五个数字中,任取三个组成无重复数字的三位数(若三个数字中有2和3,则2排在3的前面),这样的三位数共有
A.9个B.15个C.45个D.51个
7.不等式|||-|||≤|±|≤||+||中两等号同时成立的充要条件是A.||·||=0 B.||+||=0
C.||-||=0 D.·>0
8.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是A.a<-7或a>24 B.a=7或a=24
C.-7<a<24 D.-24<a<7
9.二项式(x+)n的展开式中前三项系数成等差数列,则展开式的常数项为A.T4=B.T4=70 C.T5=7 D.T5=
10.在直三棱柱ABC—A1B1C1中,AC⊥BC,∠AB1C=a,∠ABC=β,∠BAB1=0,则A.sina=sinβcosθB.sinβ=sinacosβC.cosa=cosβcosθD.cosβ=cosacosθ11.函数f(x)=x+4的单调递增区间为(-∞,1],则实数a等于
A.1 B.3 C.5 D.7
12.已知f(x)是定义在R上的奇函数,且满足f (x+2)=-f (x),当0≤x≤1时,f(x)=
x,则使f(x)=-的x的值是
A.2k,k∈Z B.2k-1,k∈Z C.4k-1,k∈Z D.4k+1,k∈Z
第Ⅱ卷(非选择题,共90分)
注意事项:
1.第Ⅱ卷共6页,用钢笔或圆珠笔直接写在试题卷上。

2.答卷前将密封线内的项目填写清楚。

二、填空题:本大题共4个小题,每小题5分,共把答案填在题中横线上.
13.在一次有奖明信片的100000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的号码作为中奖号码,这是运用了____________抽样方法.
14.函数y=log2|x-a|(a≠0)的图象关于直线x=2成轴对称图形,则a=____________.15.内接于半径为R的球的圆柱体体积的最大值是____________________________.
16.给出下列四个命题:
①函数y=f(x)在x=x0处可导,则函数y=f(x)在x0处连续;
②函数y=f(x)在x=x0处的导数f (x0)=0,则f(x0)是函数y=f(x)的一个极值;
③函数y=f(x)在x=x0处的导数不存在,则f(x0)不是函数y=f(x)的一个极值;
④函数y=f(x)在x=x0处的导数不存在,则f(x0)不是函数y=f(x)的最值.
其中正确的命题的序号是________________(请把所有正确命题的序号都填上).
三、解答题:本大题6个小题,共70分.解答题应写出文字说明、证明过程和演算步骤.17.(本小题满分10分)已知点A(4,0),B(0,4),C(3cosα,3sinα).
(1)若α∈(-π,0),且||=||,求角α的值;
(2)若·=0,求的值.
18.(本小题满分12分)
在四棱锥P—ABCD中,PD⊥底面ABCD,AB∥CD,PD=CD=AD=AB,∠ADC
=1
(1)求证:平面APD⊥平面PDB;
(2)若AB的中点为E,求二面角D—PC—E的大小.
19.(本小题满分12分)
已知椭圆的中心在原点,离心率为,一个焦点是F(-1,0).
(1)求随圆的方程;
(2)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M,若||=2||,求直线l的斜率.
本小题满分12分)
甲、乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次数为ξ;乙用这枚硬币掷2次,记正面朝上的次数为η.
(1)求Eξ和Dξ;
(2)规定:若ξ>η,则甲获胜;若ξ<η,则乙获胜,分别求出甲、乙获胜的概率.
21.(本小题满分12分)
已知数列{a n}中a1=, a n=2-(n≥2),设b n=
(1)求数列{a n}的通项公式;
(2)记s n=b1+b2+…+b n,求.
22.(本小题满分12分)
设a∈R,函数f(x)=(ax2-2x)e-x.
(1)当a≥0时,求f (x)的极值点;
(2)设f(x)在[-1,1]上是单调函数,求a的取值范围.。

相关文档
最新文档