高考数学总复习课件12.3 几何概型.ppt
高考数学总复习 123 几何概型课件 理 新人教A版

内部的概率等于
()
1
1
A.4
B.3
1
2
C.2
D.3
第十八页,共47页。
(2)(2012 年湖南)函数 f(x)=sin(ωx+φ)的导函数 y=f′(x) 的部分图象如图所示,其中,P 为图象与 y 轴的交点,A,C 为图象与 x 轴的两个交点,B 为图象的最低点.
第十九页,共47页。
①若 φ=π6,点 P 的坐标为0,3 2 3,则 ω=________; ②若在曲线段 与 x 轴所围成的区域内随机取一点,则 该点在△ABC 内的概率为________. 【思路启迪】 在本例(2)中,第①问先根据复合函数求导 法则求得函数 f(x)的导函数 f′(x),再根据导函数图象上的点 和 φ 的取值,求出 ω 的值;第②问先根据三角函数的图象与 性质求得△ABC 的面积,再由定积分求出曲线段 与 x 轴所 围成的区域的面积,根据几何概型的计算公式求得概率.
第一页,共47页。
考纲要求
1.了解随机数的意 义,能运用模拟方 法估计概率. 2.了解几何概型 的意义.
考情分析
以选择题或填空题的形式考查与长度或 面积有关的几何概型的求法是高考对本 内容的热点考法,特别是与平面几何、 函数等结合的几何概型是高考的重点内 容.如2012年福建卷6,辽宁卷10,湖南 卷15等.新课标高考对几何概型的要求 较低,因此高考试卷中此类试题以低、 中档题为主. 预测:2013年仍会保持2012年命题形式 ,单独出一道选择或填空题,考查比较 基础,以长度、面积为主.
第三十五页,共47页。
应用几何概型注意的问题 1.对于一个具体问题能否应用几何概率公式计算事件的 概率,关键在于能否将问题几何化;也可根据实际问题的具 体情况,选取合适的参数,建立适当的坐标系,在此基础 上,将试验的每一个结果一一对应于该坐标系中的一个点, 使得全体结果构成一个可度量区域.
高考数学几何概型PPT教学课件

中后便可以,试 离求 开两个人会面. 的概
y
60 以x轴 和y轴 分 别 表 示 甲、 乙
两 人 到 达 约 定 地 点 的间时,
5
则 两 人 能 会 面 的 充 要件条是
| x y | 20.
20
9
规范解答请参考金榜P252 例42020/12/10
0 20 60 x 12
会面问题是利用数形结合转化成 面积问题的几何概型.难点是把时 间分别用x,y两个坐标表示,构成 平面内的点(x,y),从而把时间是一 段长度的问题转化为平面图形的 二维面积问题,转化成面积型几何 概型.
乙觉得他只是这两天玩,而且每次都不超过10分钟,但 每次都刚好被抓住而已,所以对班主任说他经常玩手机 这句话很反感,觉得这是在针对他,所以很不服气,于是 关系就弄得比较僵.
请同学们从概率这个角度出发,判断一下“甲说乙经常 玩手机”这种说法合不合理?
2020/12/10
16
3.如图所示,在等腰直角三角形ABC中,在 斜边BC上任取一点M,求BM的长小于AB 的长的概率.
我们如何比 较小球落在 黄色和紫色 区域概率的 大小?
2020/12/10
3
1.几何概型
定义:如果每个事件发生的概率只与构成该 事件区域的长度(面积或体积)成比例,则 称这样的概率模型为几何概率模型
2.几何概型的特点
➢试验中所有可能出现的结果(基本事件) 有无限多个;
➢每个基本事件出现的可能性相等.
2020/12/10
4
3.几何概型的概率公式
P(A)试
构成A 事 的件 区域 (面 长积 度或 ) 体 验 的 全 部的 结区 果域 所 (面 长 构 积 度 成 或 )
2020/12/10
高三数学复习之几何概型(共18张PPT)

1 ABCD<6.
∴h<21,则点
M
在正方体的下半部分, 1
故所求事件的概率 P=2VV正正方方体体=12.
M
B
C
A
D
此时 VM-ABCD=16
思考:
如图,四边形ABCD为矩形,AB= 3,BC=1, 以A为圆心,1为半径作四分之一个圆弧 DE,在 ∠DAB内任作射线AP,则射线AP与线段BC有公共点 的概率为________.
飞行过程中始终保持与正方体 6 个表面的距离均大于 1,称其为“安全飞行”,则
蜜蜂“安全飞行”的概率为(
11 1 3 ) A.8 B.6 C.27 D.8
解析
1.审题,定模型
2.定测度,求测度 3.求比例,下结论
[训练 1] (1)(2017·江苏卷)记函数 f(x)= 6+x-x2的定义域为 D.在区间[-4,5]上
厦门市杏南中学 高三第一轮总复习
甲、乙两人玩数字游戏,先由甲心中任想一个 数字记为a,再由乙猜甲刚才想的数字,把乙想 的数字记为b,
且 aa,、b b∈1{,16,2,3,4,5,6}。
若|a-b|≤1,则称“甲乙心有灵犀”, 现任意找两个人玩这个游戏, 得出他们“心有灵犀”的概率为________.
5
可知 a-2≥0,即 a≥2,
解析 那么 p=4-(4--21)=25.
–1 O 1 2 3 4 x 2
例2.若张三每天的工作时间在6小时至9小时 之间随机均匀分布,则张三连续两天平均 工作时间不少于7小时的概率是 .
1.确定是几何概型
2.确定面积为研究的测度
6 x 9 6 y 9
.
--------课课堂堂小小结结1--------
2022年新高考数学总复习:几何概型

2022年新高考数学总复习:几何概型知识点一几何概型的定义如果每个事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,则称这样的概率模型为几何概率模型,简称几何概型.知识点二几何概型的特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.知识点三几何概型的概率公式P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__.知识点四随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是:①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.归纳拓展几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关.(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.(√)(5)与面积有关的几何概型的概率与几何图形的形状有关.(×)(6)从区间[1,10]内任取一个数,取到1的概率是P =19.(×)题组二走进教材2.(P 140T1)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是(A)[解析]∵P (A )=38,P (B )=14,P (C )=13,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).故选A .3.(P 146B 组T4)≤x ≤2,≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(D)A .π4B .π-22C .π6D .4-π4[解析]如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D的面积为4,而阴影部分(不包括AC ︵)表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D .题组三走向高考4.(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是(B)A .14B .π8C .12D .π4[解析]不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.故选B .5.(2019·全国)在Rt △ABC 中,AB =BC ,在BC 边上随机取点P ,则∠BAP <30°的概率为(B)A .12B .33C .33D .32[解析]在Rt △ABC 中,AB =BC ,Rt △ABC 为等腰直角三角形,令AB =BC =1,则AC =2;在BC 边上随机取点P ,当∠BAP =30°时,BP =tan 30°=33,在BC 边上随机取点P ,则∠BAP <30°的概率为:P =BP BC =33,故选B .考点突破·互动探究考点一与长度有关的几何概型——自主练透例1(1)(2021·山西运城模拟)某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15-8:30),一名职工在7:50到8:30之间到单位且到达单位的时刻是随机的,则他能正常刷卡上班的概率是(D)A .23B .58C .13D .38(2)(2021·福建龙岩质检)在区间-π2,π2上随机取一个实数x ,使cos x ≥12的概率为(B )A .34B .23C .12D .13(3)(2020·山东省青岛市模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为(C)A .15B .14C .13D .12[解析](1)一名职工在7:50到8:30之间到单位,刷卡时间长度为40分钟,但有效刷卡时间是8:15-8:30共15分钟,由测度比为长度比可得,该职工能正常刷卡上班的概率P =1540=38.故选D .(2)由y =cos x 在区间-π2,0上单调递增,在,π2上单调递减,则不等式cos x ≥12在区间-π2,π2上的解为-π3≤x ≤π3,故cos x ≥12的概率为2π3π=23.(3)直线l 与C 相交⇒|2k |1+k 2<1⇒-33<k <33.∴所求概率P =33-(-33)3-(-3)=13.故选C .[引申]本例(3)中“圆上到直线l 的距离为12的点有4个”发生的概率为__515__.[解析]圆上到直线l 的距离为12的点有4个⇔圆心到直线l 的距离小于12⇔|2k |1+k 2<12⇔-1515<k <1515,∴所求概率P =1515-3-(-3)=515.名师点拨与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.〔变式训练1〕(1)(2017·江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是__59__.(2)(2021·河南豫北名校联盟精英对抗赛)已知函数f (x )=sin x +3cos x ,当x ∈[0,π]时,f (x )≥1的概率为(D)A .13B .14C .15D .12[解析](1)D ={x |6+x -x 2≥0}=[-2,3],∴所求概率P =3-(-2)5-(-4)=59.(2)由f (x )=1,x ∈[0,π]得x ∈0,π2,∴所求概率P =π2π=12,故选D .考点二与面积有关的几何概型——师生共研角度1与平面图形有关的问题例2(1)(2021·河南商丘、周口、驻马店联考)如图,AC ,BD 上分别是大圆O的两条相互垂直的直径,4个小圆的直径分别为OA ,OB ,OC ,OD ,若向大圆内部随机投掷一点,则该点落在阴影部分的概率为(D)A .π4B .π8C .1πD .2π(2)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为(C )A .34+12πB .12+1πC .14-12πD .12-1π[解析](1)不妨设大圆的半径为2,则大圆的面积为4π,小圆的半径为1,如图,设图中阴影部分面积为S ,由图形的对称性知,S 阴影=8S .又S =12π×12×12-12×2=1,则所求概率为84π=2π,故选D .(2)∵|z |=(x -1)2+y 2≤1,∴(x -1)2+y 2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y ≥x 所表示的区域如图中阴影部分,故P =π4-12π=14-12π.[引申]本例(1)中图形改成下图,则此点取自图中阴影部分的概率为__π-22π__.[解析]不妨设大圆的半径为2,则小圆的半径为1,∴所求概率P 14×4π=π-22π.角度2与线性规划交汇的问题例3-y +1≥0,+y -3≤0,≥0的平面点集中随机取一点M (x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是(B )A .14B .34C .13D .23[解析]-y +1≥0+y -3≤0,≥0表示的平面区域为△ABC 且A (1,2),B (-1,0),C (3,0),显然直线l :y =2x 过A 且与x 轴交于O ,∴所求概率P =S △AOC S △ABC =|OC ||BC |=34.选B .名师点拨解决与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的几何元素,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.〔变式训练2〕(1)(2021·唐山模拟)右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为(B)A .8B .9C .10D .12(2)(2021·四川模拟)以正三角形的顶点为圆心,其边长为半径作圆弧,由这三段圆弧组成的曲边三角形被称为勒洛三角形,它是具有类似于圆的“等宽性”曲线,由德国机械工程专家、数学家勒洛首先发现.如图,D ,E ,F 为正三角形ABC 各边中点,作出正三角形DEF 的勒洛三角形DEF (阴影部分),若在△ABC 中随机取一点,则该点取自于该勒洛三角形部分的概率为(C)A .π-32B .23π-39C .3π-36D .3π-26[解析](1)根据面积之比与点数之比相等的关系,得黑色部分的面积S =4×4×225400=9,故选B .(2)设△ABC 的边长为2,则正△DEF 边长为1,以D 为圆心的扇形面积是π×126=π6,△DEF 的面积是12×1×1×32=34,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即图中勒洛三角形面积为3×π6-34+34=π-32,△ABC 面积为3,所求概率P =π-323=3π-36.故选C .考点三,与体积有关的几何概型——师生共研例4(1)(2021·山西省模拟)以正方体各面中心为顶点构成一个几何体,从正方体内任取一点P ,则P 落在该几何体内的概率为(C )A .18B .56C .16D .78(2)(2020·江西抚州临川一中期末)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC 的概率为(D)A .13B .49C .827D .1927[解析](1)如图以正方体各面中心为顶点的几何体是由两同底正四棱锥拼成,不妨设正方体棱长为2,则GH =2,∴所求概率P =V E -GHIJ -FV 正方体=2×(13×2×2×1)2×2×2=16,故选C .(2)作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC ,∴V P -ABC ≤13V S -ABC 的概率P =1-827=1927.故选D .名师点拨求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题常转化为其对立事件的概率问题求解.〔变式训练3〕一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(C)A .4π81B .81-4π81C .127D .827[解析]由已知条件可知,蜜蜂只能在以正方体的中心为中心棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.[引申]若蜜蜂在飞行过程中始终保持与正方体8个顶点的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为__1-4π81__.[解析]所求概率P =33-43π33=1-4π81.考点四,与角度有关的几何概型——师生共研例5(1)(2021·南岗区校级模拟)已知正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP 与正方形ABCD 的边交于点M ,则AM <2的概率为(D)A .32B .12C .33D .23(2)在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD <AC 的概率为__34__.[解析](1)正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP与正方形ABCD 的边交于点M ,如图所示:己知AD =AB =BC =CD =3,DM =1,所以AM =(3)2+12=2.所以∠DAM =π6.根据阴影的对称性,故P (AM <2)=π6+π6π2=23,故选D .(2)在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°.设事件A ={在∠ACB 内部作一条射线CD ,与线段AB 交于点D ,AD <AC }.则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.590=34.名师点拨与角度有关的几何概型的求解方法(1)若试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P (A )=构成事件A 的区域角度试验的全部结果所构成区域的角度.(2)解决此类问题时注意事件的全部结果构成的区域及所求事件的所有结果构成的区域,然后再利用公式计算.〔变式训练4〕(1)(2021·山西太原一模)如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB内任作射线AP ,则射线AP 与线段BC 有公共点的概率为__13__.(2)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM交BC 于点M ,则BM <1的概率为__25__.[解析](1)当点P 在BC 上时,AP 与BC 有公共点,此时AP 扫过△ABC ,所以所求事件的概率P =3090=13.(2)因为∠B =60°,∠C =45°,所以∠BAC =75°,在Rt △ABD 中,AD =3,∠B =60°,所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=3075=25.名师讲坛·素养提升转化与化归思想在几何概型中的应用例6(1)(2021·贵州遵义模拟)在区间[0,2]上任取两个数,则这两个数之和大于3的概率是(A)A .18B .14C .78D .34(2)(2021·济宁模拟)甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到则等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率为(A )A .38B .34C .35D .45[解析](1)设函数为x ,y ,≤x≤2,≤y≤2由图可知x+y>3的概率P=124=18.故选A.(2)以6点作为计算时间的起点,设甲到的时间为x,乙到的时间为y,则基本事件空间是Ω={(x,y)|0≤x≤1,0≤y≤1},事件对应的平面区域的面积S=1,设满足条件的事件对应的平面区域是A,则A={(x,y)|0≤x≤1,0≤y≤1,y-x≤12,且y≥x},其对应的区域如图中阴影部分所示,则C(0,1),则事件A对应的平面区域的面积是1-12×12×12-12×1×1=38,根据几何概型的概率计算公式得P=381=38.名师点拨]生活中的几何概型度量区域的构造方法:(1)审题:通过阅读题目,提炼相关信息.(2)建模:利用相关信息的特征,建立概率模型.(3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.〔变式训练5〕(2020·海口调研)张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是__78__.[解析]以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)=1×1-12×12×121×1=78.。
《高考数学专题讲座》课件

平面几何基本概念
点、线、面、角等基本元素的定义和性质。
几何公理与定理
欧几里得几何的公理、定理及其推论。
几何解题方法与技巧
总结词
掌握几何解题方法与技巧
几何证明方法
演绎法、归纳法、反证法等证明技巧 。
几何计算方法
面积、体积、角度等的计算方法。
辅助线与辅助平面
如何添加辅助线或辅助平面来简化问 题。
几何题型解析与练习
与他人交流
与同学、老师或家长交流备考心得和压力, 寻求支持和帮助,共同进步。
感谢观看
THANKS
的作用。
高考数学考试大纲解析
掌握考试大纲的各项要求,明确考试内容和考试 要求。
了解考试形式和试卷结构,熟悉各类题型和分值 分布。
针对不同知识点,分析其重要程度和考试频率, 合理分配复习时间。
高考数学命题趋势分析
01
分析近年来的高考试题,总结出命题规律和趋势。
02
关注数学与其他学科的交叉点,预测可能的命题方 向。
离散概率分布
列举了几种常见的离散概率分布 ,如二项分布、泊松分布等,并 介绍了它们的概率计算公式。
连续概率分布
介绍了正态分布、指数分布等几 种常见的连续概率分布,并给出 了它们的概率密度函数和性质。
概率与统计解题方法与技巧
古典概型与几何概型的求解方法
古典概型中,事件发生的概率等于该事件所有可能情况的基本事件个数除以全部可能情况的基本事件个数;几何概型 中,事件发生的概率等于该事件对应的长度、面积或体积占全部可能对应的长度、面积或体积的比。
03
针对不同题型,研究解题方法和技巧,提高解题速 度和准确性。
02
代数部分
代数基础知识梳理
2020高考数学总复习几何概型PPT课件

若本例中“在∠BAC 内作射线 AM 交 BC 于点 M”改为“在线 段 BC 上找一点 M”,求 BM<1 的概率.
解:依题意知 BC=BD+DC=1+ 3,
P(BM<1)=1+1
= 3
3-1 2.
与角度有关的几何概型 当涉及射线的转动,扇形中有关落点区域问题时,应以角 的大小作为区域度量来计算概率,且不可用线段的长度代替, 这是两种不同的度量手段. 提醒:有时与长度或角度有关的几何概型,题干并不直接 给出,而是将条件隐藏,与其他知识综合考察.
于 π,图中的三个扇形的面积之和等于一个半径为 2 的圆的面积 的一半,即三个扇形的面积之和等于 2π,故空白区域的面积是 12-2π,所求的概率为12- 122π=1-π6.
2.某校早上 8:00 开始上课,假设该校学生小张与小王在 早上 7:30~7:50 之间到校,且每人在该时间段的任何时刻到 校是等可能的,则小张比小王至少早 5 分钟到校的概率为 ________(用数字作答).
已知实数 x∈[-1,1],y∈[0,2],则点 P(x,y)落在区域2xx--2yy+ +21≥ ≤00, , x+y-2≤0
内的概率为( )
7 22× 22=74,则所求的概率 P=42=78.
[答案] (1)A (2)D
求解与面积有关的几何概型的注意点 求解与面积有关的几何概型时,关键是弄清某事件对应的 面积,以求面积,必要时可根据题意构造两个变量,把变量看 成点的坐标,找到试验全部结果构成的平面图形,以便求解.
1.已知一个三角形的三边长分别是 5,5,6,一只蚂蚁在其内
解析:由题意得 A={x|-1<x<5},B={x|2<x<3},由几何 概型知,在集合 A 中任取一个元素 x,则 x∈A∩B 的概率为 P =16.
高中数学《几何概型》课件

剪断,那么剪得两段的长度都不小于3米的概率
是多少?
解:记“剪得两段彩带都不小于3m” 为事件A.
把彩带三等分,于是当剪断位置处在中间一段上时,
事件A发生.由于绳子上各点被剪断是等可能的,且中间
一段的长度等于彩带的 1 . 即P A 1
3
3
PA
构成事件 A的区域长度 试验的全部结果所构成 的区域长度
问题2 某列岛周围海域面积约为17万平方公里,
如果在此海域里有面积达0.1万平方公里的大 陆架蕴藏着石油,假设在这个海域里任意选 定一点钻探,则钻出石油的概率是多少?
解:记“钻出石油”为事件A,则
PA 0.1 1
17 170
P
A
构成事件 A的区域面积 试验的全部结果所构成 的区域面积
问题3 有一杯1升的水, 其中含有1个细菌, 用
P(A) ACC 60 2 2 ACB 90 3 3
答:这时AM小于AC的概率为 .
练习题:
1.在等腰直角△ABC中,过直角顶点C任作一
条射线L与斜边AB交于点M,求AM小于AC的
概率.
3
4
2.在等腰直角△ABC中,在斜边AB上任取一点
M,求使△ACM为钝角三角形的概率. 1
2
3.在等腰直角△ABC中,在斜边AB上任取一点
p
A
m A m
数学理论:
古典概型的本质特征: 1、样本空间中样本点个数有限, 2、每一个样本点都是等可能发生的. 将古典概型中的有限性推广到无限性,而保留等
可能性,就得到几何概型.
几何概型的本质特征: 1、有一个可度量的几何图形S;
2、试验E看成在S中随机地投掷一点;
3、事件A就是所投掷的点落在S中的可度量图形A中.
几何概型 PPT课件

A.15
B.25
C.35
D.45
(2)如图所示,在直角坐标系内,射线OT落在30°角的终边上,任
作一条射线OA,则射线OA落在∠yOT内的概率为
.
三、知识的综合应用(高考的高层次要求)
考点2与面积、体积有关的几何概型
例3(1)(2015南昌二模)若在圆C:x2+y2=4内任取一点P(x,y),则
满足 y> x
式。
2.难点
几何概型应用中集合度量的确定及运算。
三、基础知识的深刻理解(高考的初级层次要求)
问题情境
问题1:射箭比赛的箭靶涂有五个彩色得分环, 从外向内为白色、黑色、蓝色、红色,靶心 为金色.金色靶心叫“黄心”.
奥运会的比赛靶面直径为 122cm,靶心直径为12.2cm, 运动员在70m外射.假设射箭 都能中靶,且射中靶面内任意 一点都是等可能的,那么射中 黄心的概率有多大?
30m
20m
2m
解:设事件A“海豚嘴尖离岸边小于2m”(见阴影部分)
P(A)=
d的测度 D的测度
=
30 20 2616 184 0.31
30 20
600
答:海豚嘴尖离岸小于2m的概率约为0.31.
三、基础知识的深刻理解(高考的初级层次要 (1)求在)区间(0,10)内的所有实数中随机取一个实数a,
三角形边长是 3 ,在圆内随机取一条弦,求弦长 超过 3 的概率.
4.一个服务窗口每次只能接待一名顾客,两名顾客将 在 8 小时内随机到达.顾客甲需要 1 小时服务时间, 顾客乙需要 2 小时.计算有人需要等待的概率.
下课了,期待再见!
SUCCESS
THANK YOU
2019/7/9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 设事件D为“作射线CM,使|AM|>|AC|”.
在AB上取点C′使|AC′|=|AC|,因为△ACC′是等
腰三角形,所以 ACC 180 30 75,
2
A
90 75
15, Ω
90, P(D)
15 90
1. 6
探究提高 几何概型的关键是选择“测度”,如本例
以角度为“测度”.因为射线CM落在∠ACB内的任意
阴影部分的梯形,其面积
SM
6
122 2
4.
由几何概型的概率计算公式可得方程f(x)=0没有实根
的概率 P(B) SM 4 2 . SΩ 6 3
思想方法 感悟提高
方法与技巧
1.几何概型也是一种概率模型,它与古典概型的区别 是试验的可能结果不是有限个.它的特点是试验结果 在一个区域内均匀分布,所以随机事件的概率大小与 随机事件所在区域的形状位置无关,只与该区域的大 小有关.
π. 81
4
探究提高 几何概型的概率计算公式中的“测度”,
既包含本例中的面积,也可以包含线段的长度、体积
等,而且这个“测度”只与“大小”有关,而与形状和
位置无关.
知能迁移2 在边长为2的正△ABC内任取一点P,
则使点P到三个顶点的距离至少有一个小于1的概率
3π 是__6___.
解析 以A、B、C为圆心,以1为半
3
600 2 025 3 600
7. 16
所以,两人能会面的概率是 7 . 16
探究提高 (1)甲、乙两人都是在6~7时内的任意时 刻到达会面地点,故每一对结果对应两个时间,分别用
x,y轴上的数表示,则每一个结果(x,y)就对应于图中 正方形内的任一点. (2)找出事件A发生的条件,并把它在图中的区域找出 来,分别计算面积即可. (3)本题的难点是把两个时间分别用x,y两个坐标表 示,构成平面内的点(x,y),从而把时间是一段长度问 题转化为平面图形的二维面积问题,进而转化成面积 型几何概型的问题.
OT落在30°角的终边上,任作一条
射线OA,则射线OA落在∠yOT内的
1 概率为___6__.
解析 如题图,因为射线OA在坐标系内是等可能分
布的,则OA落在∠yOT内的概率为 60 1 . 360 6
题型分类 深度剖析
题型一 与长度有关的几何概型 【例1】有一段长为10米的木棍,现要截成两段,每段
2.如图所示,边长为2的正方形中有
一封闭曲线围成的阴影区域,在正
方形中随机撒一粒豆子,它落在阴 影区域内的概率为 2 , 则阴影区域
3 的面积为
(B )
A. 4
B. 8
C. 2
3
3
3
解析 由几何概型知,
D.无法计算
S阴 S正方形
2 3
, 故S阴
2 3
22
8. 3
3.某路公共汽车每5分钟发车一次,某乘客到乘车点
知能迁移4 已知函数f(x)=x2-2ax +b2,a,b∈R. (1)若a从集合{0,1,2,3}中任取一个元素,b从集合 {0,1,2}中任取一个元素,求方程f(x)=0有两个不相 等实根的概率; (2)若a从区间[0,2]中任取一个数,b从区间[0,3]中 任取一个数,求方程f(x)=0没有实根的概率. 解 (1)∵a取集合{0,1,2,3}中任一个元素,b取集合 {0,1,2}中任一个元素,
∴a,b的取值的情况有(0,0),(0,1),(0,2),(1,0), (1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2),其中第一个数表示a的取值,第二个数表示b的 取值,即基本事件总数为12. 设“方程f(x)=0有两个不相等的实根”为事件A, 当a≥0,b≥0时,方程f(x)=0有两个不相等实根的充要 条件为a>b. 当a>b时,a,b取值的情况有(1,0),(2,0),(2,1), (3,0),(3,1),(3,2),即A包含的基本事件数为6, ∴方程f(x)=0有两个不相等实根的概率
的时刻是随机的,则他候车时间不超过3分钟的概率
是
A. 3 5
解析
( A)
B. 4
C. 2
D. 1
5
5
5
此题可以看成向区间[0,5]内均匀投点,而
且点落入[0,3]内的概率设为A={某乘客候车时间
不超过3分钟}.
则P(A)=
构成事件A的区域长度 试验的全部结果构成的区域长度
3. 5
4.如图所示,A是圆上固定的一点,在圆
定时检测
一、选择题
1.在长为12 cm的线段AB上任取一点M,并以线段AM
为边作正方形,则这个正方形的面积介于36 cm2与
81 cm2之间的概率为
(A )
A. 1
B. 1
C. 4
D. 4
4
3
27
15
解析 面积为36 cm2时,边长AM=6,
面积为81 cm2时,边长AM=9, P 96 3 1.
.
试验的全部结果所构成的区域长度(面积或体积)
3.要切实理解并掌握几何概型试验的两个基本特点: (1)无限性:在一次试验中,可能出现的结果有无限 多个; (2)等可能性:每个结果的发生具有等可能性.
4.几何概型的试验中,事件A的概率P(A)只与子区域A 的几何度量(长度、面积或体积)成正比,而与A的位 置和形状无关.
径作圆,与△ABC交出三个扇形,
当P落在其内时符合要求.
3 (1 π 12 ) P 2 3
3π.
3 22
6
4
题型三 与角度有关的几何概型 【例3】在Rt△ABC中,∠A=30°,过直角顶点C作射
线CM交线段AB于M,求使|AM|>|AC|的概率. 思维启迪 如图所示,因为过一 点作射线是均匀的,因而应把在 ∠ACB内作射线CM看做是等可能 的,基本事件是射线CM落在∠ACB内任一处,使 |AM|>|AC|的概率只与∠BCC′的大小有关,这符合 几何概型的条件.
思维启迪 应用几何概型的概率计算公式P(A)= d的测度 即可解决此类问题.
D的测度
解 (1)考虑圆心位置在中心相同且边长分别为7 cm
和9 cm的正方形围成的区域内,所以概率为
92 72 32 .
92
81
(2)考虑小圆板的圆心在以塑料板顶点为圆心的
1
圆
内,因正方形有四个顶点,所以概率为
π 92
方形塑料板的宽广地面上,掷一枚半径为1 cm的小 圆板.规则如下:每掷一次交5角钱,若小圆板压在正 方形的边上,可重掷一次;若掷在正方形内,须再交5 角钱可玩一次;若掷在或压在塑料板的顶点上,可获 1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?
P( A) 6 1 . 12 2
(2)∵a从区间[0,2]中任取一个数,
b从区间[0,3]中任取一个数,则试
验的全部结果构成区域 Ω={(a,b)|
0≤a≤2,0≤b≤3},这是一个矩形
区域,其面积 SΩ 2 3 6.
设“方程f(x)=0没有实根”为事件B,则事件B所构成
的区域为M={(a,b)|0≤a≤2,0≤b≤3,a<b},即图中
上其它位置任取一点A′,连接AA′,
它是一条弦,它的长度大于等于半径
长度的概率为()A源自 1B. 223
C. 3
D. 1
2
4
解析 如图所示,当AA′长度等于半
径时,A′位于B或C点,此时∠BOC=
120°,
则优弧 BC 4 π R, 3
∴满足条件的概率为
P
4 3
π
R
2.
2πR 3
答案 B
5.如图所示,在直角坐标系内,射线
题型四 可化为几何概型的概率问题 【例4】甲、乙两人约定在6时到7时之间在某处会面,
并约定先到者应等候另一人一刻钟,过时即可离去. 求两人能会面的概率. 思维启迪 在平面直角坐标系内用x轴表示甲到达 约会地点的时间,y轴表示乙到达约会地点的时间,用 0分到60分表示6时到7时的时间段,则横轴0到60与纵 轴0到60的正方形中任一点的坐标(x,y)就表示甲、 乙两人分别在6时到7时时间段内到达的时间.而能会 面的时间由|x-y|≤15所对应的图中阴影部分表示.
的面积大于 S 的概率是
4
A. 1
B. 1
C. 3
(C) D. 2
4
2
4
3
解析 由△ABC,△PBC有公共底边BC,所以只需P位
于线段BA靠近B的四分之一分点E与A之间,这是一个
几何概型, P AE 3 . AB 4
4.已知正三棱锥S—ABC的底面边长为4,高为3,在正
三棱锥内任取一点P,使得VP—ABC<
1 2
VS—ABC的概率
是
(A )
A. 7
B. 3
C. 1
D. 1
8
4
2
4
解析 当P在三棱锥的中截面及下底面构成的正三
棱台内时符合要求,由几何概型知,
P 1 1 7. 88
5.(2009·辽宁文,9)ABCD为长方形,AB=2,BC=1,O
为AB的中点,在长方形ABCD内随机取一点,取到的
5.求试验中几何概型的概率,关键是求得事件所占区
域和整个区域 Ω的几何度量,然后代入公式即可求
解.
基础自测
1.在区间[1,3]上任取一数,则这个数大于1.5的概
率为
( D)
A.0.25 B.0.5
C.0.6
D.0.75
解析 因为在[1,3]上任取一数是随机的,故这个
数大于1.5的概率 P 3 1.5 15 3 . 3 1 20 4