利用氧化石墨烯制备具有二维多孔结构的锂离子电池负极材料
石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用摘要:随着近几年石墨烯的研究进展,在复合材料领域石墨烯扮演的角色越来越重要。
随着科技的发展,锂离子电池应用的范围越来越广。
负极材料作为锂离子电池重要部分,越来越多的被人们研究开发。
基于此,文章就锂离子电池负极材料中石墨烯的应用加以分析和探讨。
关键词:锂离子电池;负极材料;石墨烯随着科技的发展,锂电池凭借高电压、高能量密度、良好的循环性能、低自放电等突出优势在人们生活中的应用越来越广泛。
在锂离子电池中电位比较低的一端叫负极,在原电池中起氧化作用。
锂电池中负极所需要的材料为负极材料。
根据实际生产中锂离子电池生产成本核算,负极材料成本约占比锂电池总成本的1/4~1/3,因此负极材料的研究至关重要。
一、什么是石墨烯石墨烯是由单层碳原子排列成六边形晶格而形成的一种异形体。
自然界中有许多它的“同胞兄弟”如石墨、钻石、碳、碳纳米管。
这些都是碳的其他异形体。
石墨烯他的化学结构很简单,作为一种新型的材料,将会变得极其容易获得,不会像之前难以获得的材料那么昂贵,这将会使价格变得低廉,也让人们更容易所接受。
再说它的空间结构,它的形状是一种类似足球比赛中守门员的球网,是一种薄膜,是一种六角型晶格平面的薄膜,是一种只有一个碳原子的厚度二维材料,是一种新型的、坚固的二维材料,这就区别了和三维材料的区别,在后面我们会说出石墨烯也是可以由二维材料变成三维材料的。
石墨烯具有一些不同于其他材料的一些特性,他是最坚固的材料,它能传导热量和电能,它几乎是透明的。
所以相较于之前用于储能材料,和用于光电催化方面的材料,石墨烯具有着一些得天独厚的优势,也意味这在这些方面上,石墨烯将会得到更为广泛的使用。
二、石墨烯的制备技术目前我们国家在研究石墨烯生产方法时主要有两个方向,分别是物理法制备和化学法制备。
利用微机械剥离法能够得到高质量的石墨烯,但是由于此种方法处理出来的石墨烯通常尺寸较小,应用范围不广阔因此并不适合大规模生产,目前比较适用的还是化学方法,化学方法总共分为两种,一种是化学气象沉积法,这种方法通常是用Ni,Ru等一些过度金属来做基底,在利用甲烷和乙烯等一些小分子来高温气态的条件下发生一些化学反映,在基底层可以生长出石墨烯,这种方法目前主要用来制备墨烯薄膜,但是由于使用过渡金属作为基底,成本相对比较高。
《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《基于石墨烯的锂离子电池负极材料的研究》篇一一、引言随着科技的发展和社会的进步,能源问题已成为全球共同关注的焦点。
锂离子电池因其高能量密度、长寿命和环保等优点,被广泛应用于电动汽车、电子设备等领域。
然而,传统锂离子电池的负极材料存在着一些不足,如容量低、循环性能差等。
因此,开发新型高性能的锂离子电池负极材料具有重要意义。
近年来,基于石墨烯的锂离子电池负极材料因其独特的结构和性能受到了广泛关注。
本文将重点研究基于石墨烯的锂离子电池负极材料,分析其制备方法、性能及改进方向。
二、石墨烯的基本性质与结构石墨烯是一种由单层碳原子组成的二维材料,具有优异的导电性、导热性、机械强度和较大的比表面积。
这些特性使得石墨烯在锂离子电池负极材料中具有巨大的应用潜力。
石墨烯的片层结构可以为锂离子提供更多的嵌入位点,从而提高电池的容量。
此外,石墨烯的优异导电性有助于提高电池的充放电速率。
三、基于石墨烯的锂离子电池负极材料的制备方法1. 化学气相沉积法:通过在高温下使碳源气体分解,并在基底上沉积石墨烯。
该方法可以制备出高质量的石墨烯薄膜,但成本较高,生产效率较低。
2. 液相剥离法:利用溶剂剥离石墨得到单层或多层石墨烯。
该方法工艺简单,成本低,但产物中杂质较多,影响电池性能。
3. 化学氧化还原法:通过化学氧化天然石墨得到氧化石墨,再通过还原得到石墨烯。
该方法工艺成熟,可实现大规模生产。
四、基于石墨烯的锂离子电池负极材料的性能研究基于石墨烯的锂离子电池负极材料具有较高的理论容量和良好的循环性能。
在充放电过程中,锂离子可以在石墨烯片层间嵌入和脱出,从而实现能量的存储和释放。
此外,石墨烯的优异导电性有助于提高电池的充放电速率,降低内阻。
然而,在实际应用中,还需解决石墨烯材料的一些问题,如容量衰减、循环稳定性等。
五、性能改进措施及研究进展针对基于石墨烯的锂离子电池负极材料存在的问题,研究者们提出了多种改进措施。
1. 纳米结构化:通过制备具有特殊纳米结构的石墨烯材料,如三维网络结构、多孔结构等,提高材料的比表面积和嵌锂能力,从而提高电池性能。
介孔/多孔状结构SnO2锂离子电池负极材料的研究进展

广 州化 工
・ 9・ l
介孔/ 多孔 状 结构 SO n 2锂 离子 电池 负极 材 料 的研 究进展 木
贾铁 昆 ,王晓峰 ,刘 红飞 ,廖桂华 ,刘 缙
( 1洛 阳理 工 学院材料 科 学与 工程 系,河南 洛 阳 4 12 ;2武 汉理工 大 学材 料 复合新技 术 国家重点 实验 室, 70 3 湖北 武 汉 4 0 7 ) 300
10 m / , 径 为 0 3 m / 。介 孑 n 米 晶 组 装 成 电池 , 6 g孔 .4c g L O 纳 S 在 充 电 电压 0—12V、 电 电 流 密度 40mA g 件 下 进 行 充 放 电 . 充 0 / 条
电化学性能进行研究 , 相关结果已经 申请 国家发明专利 。 通过以上综述 电纺 丝法 、 板法 和水 热/ 剂热法 制备 多 模 溶 孔/ 介孔 S O n 的特点 , 我们认为 , 水热 法/ 溶剂热合成方法简单 、 易行 , 过调整T艺参数 , 制水热 或溶剂化 过程 , 用结晶 一 通 控 利 溶 解 一结 晶或 奥 斯 瓦 尔 多 熟 化 机 理 , 得 多 孔/ 孑 结 构 。该 方 获 介 L 法 无 须后 续 的高 温热 处 理 T艺 , 保证 产物 结 构 的稳定 性 , 种 可 是一 大面积 、 高产率获得较 为理想 的多孔/ 介孔 S O 方法 , 成产物 n, 合
1 多孔 氧 化 锡 锂 电池 材 料 的合 成 方 法
1 1 电 纺 丝 法 .
电纺丝法是 一种 通过 高 压 静 电来获 得 纳米 纤 维 的技 术方
基金 项 目 : 南 省 基 础 与 前 沿 研 究 计 划项 目( o 1 2 0 4 0 7 ) 洛 阳理 T 学 院项 日( 0 9 0 ) 助 。 河 N 0 3 0 1 12 和 2 0 YZ 4 资
锂离子电池用石墨负极材料及其设备制作方法与制作流程

锂离子电池用石墨负极材料及其设备制作方法与制作流程锂离子电池是一种重要的储能装置,具有高能量密度、长循环寿命和低自放电等特点。
石墨作为锂离子电池的负极材料,具有良好的导电性、稳定的化学性质和较大的比表面积,被广泛应用于锂离子电池中。
下面将介绍石墨负极材料的制作方法及其制作流程。
石墨负极材料的制作方法主要包括石墨烯还原法、溶液浸渍法和化学气相沉积法等。
其中,石墨烯还原法是制备石墨负极材料的一种常用方法,具体制作流程如下:1.原料准备:准备氧化石墨、还原剂和溶剂。
其中,氧化石墨是石墨的初始形式,还原剂用于还原氧化石墨形成石墨烯,溶剂用于形成均匀的溶液。
2.溶液制备:将适量的氧化石墨加入溶剂中,搅拌使其均匀分散,并加入适量的还原剂。
控制溶液的浓度和温度,以达到最佳的反应条件。
3.石墨烯还原:将加入还原剂的溶液进行热处理,通常使用高温热处理或化学还原的方式。
在适当的温度和时间下,还原剂将还原氧化石墨形成石墨烯。
4.石墨烯清洗:将还原后的石墨烯进行过滤、洗涤和干燥等处理,以去除多余的溶剂和杂质。
此步骤可重复进行多次,以获得更纯净的石墨烯。
5.石墨烯负极材料制备:将石墨烯与适量的粘结剂和导电剂混合,通过压制、成型和烘干等工艺制备成石墨负极材料。
其中,粘结剂可提高石墨材料的粘结度和机械强度,导电剂可提高电子传导性。
6.石墨负极材料的包覆:将制备好的石墨负极材料进行包覆处理,以提高电池的循环寿命和稳定性。
包覆材料通常为氧化物或碳酸盐等。
上述制作流程是石墨负极材料的一种常用方法,实际生产中可以根据特定要求和条件进行调整和改进。
通过合理的制作方法和制作流程,可以获得具有较高性能的石墨负极材料,提高锂离子电池的性能和寿命。
【精品文章】一文了解石墨烯-CuO锂离子电池负极材料

一文了解石墨烯/CuO锂离子电池负极材料
石墨烯/CuO复合材料作为锂离子电池负极材料,石墨烯可以提高复合材料的电导率,缓解金属氧化物在充放电过程中的体积效应,金属氧化物可以提高复合材料的储锂容量,并能阻止石墨烯在充放电过程中团聚,充分发挥石墨烯与过渡金属的协同效应,提高锂离子电池的综合电化学性能。
一、石墨烯/CuO复合材料的储锂机制
1、氧化铜材料储锂行为
氧化铜作为有前景的负极材料,具有易合成、理论比容量高、安全性高、无毒性、资源丰富、成本低和环境亲和性较好等优点,是当前锂电池负极材料发展的重点方向。
氧化铜储锂的化学反应式如下:
CuO + 2 Li++ 2e-⇄Cu + Li2O
图1 氧化铜材料储锂机制示意图
目前,对于氧化铜应用于负极材料的研究方向,侧重于在碱性条件下制备出三维结构纳米氧化铜颗粒以提高与电解质的接触面积,增加反应接触面,提高充放电的可逆性,来获得较高的电容量。
纳米结构电极还可以使得Li+扩散更容易,反应动力学更快,结构更稳定,适应大的应变而不会严重粉碎。
2、石墨烯材料的储锂行为
石墨烯具有较好的电子和离子传输通道,有利于加快充放电速率, 石墨烯作为负极材料时化学反应式如下:。
氧化石墨烯在电化学催化中的应用

氧化石墨烯在电化学催化中的应用氧化石墨烯是一种非常热门的二维材料,它具有独特的结构和特性,广泛应用于各种领域,包括电化学催化。
本文将深入探讨氧化石墨烯在电化学催化中的应用,并介绍其优势和挑战。
电化学催化是一种将电能转化为化学反应能的过程,它广泛应用于电池、燃料电池、电解等领域。
氧化石墨烯是一种具有高导电性、高比表面积和化学稳定性的材料,能够作为电化学催化剂用于提高反应速率和选择性。
1. 氧化石墨烯的制备方法在电化学催化中应用氧化石墨烯,首先就要考虑如何制备高质量的氧化石墨烯。
目前常用的制备方法包括化学还原法、热还原法和氧化法等。
化学还原法是将氧化石墨烯还原成石墨烯的方法之一。
这种方法利用还原剂如氢气、乙二醇和氨水等与氧化石墨烯反应,从而还原氧化石墨烯。
热还原法是将氧化石墨烯加热,使其还原成石墨烯。
这种方法需要高温和惰性气氛,在制备过程中有一定的难度。
氧化法是通过强氧化剂氧化石墨烯制备氧化石墨烯的方法。
这种方法具有高产率和控制精度,但普遍存在氧化程度难以控制的问题。
2. 氧化石墨烯在电化学催化中的应用氧化石墨烯在电化学催化中有广泛的应用,例如作为电极材料、电解液、还原剂和氧化剂等。
在这些应用中,氧化石墨烯的高导电性和高比表面积是其重要的优势。
氧化石墨烯作为电极材料,可以用于提高电极反应的速率和选择性。
例如,在燃料电池中,氧化石墨烯可以作为阳极材料,提高燃料气体的氧化反应速率和效率。
在电池中,氧化石墨烯可以作为负极材料,提高电池的输出功率和循环寿命。
氧化石墨烯作为电解液,可以用于改善电解反应的速率和效率。
例如,在电化学加工中,氧化石墨烯可以作为电解液,促进金属的溶解和析出反应。
在电解制备中,氧化石墨烯可以作为电解质,提高电解反应的效率和产率。
氧化石墨烯还可以作为还原剂和氧化剂,用于电化学合成和分解反应。
例如,在电化学还原中,氧化石墨烯可以作为还原剂,将有机分子还原成相应的化合物。
在电化学分解中,氧化石墨烯可以作为氧化剂,将有机分子氧化成相应的化合物。
石墨烯在锂离子电池负极材料中的应用研究进展

石墨烯在锂离子电池负极材料中的应用研究进展结合当前利用石墨烯材料特殊二维结构、优良物理化学特性来改善锂离子电池较低能量密度、较差循环性能等缺陷的研究热点,综述石墨烯材料及石墨烯复合材料在锂离子电池负极材料中的应用研究进展,指出现有电极材料的缺陷和不足,讨论作为锂离子电池电极的石墨烯复合材料结构与功能调控的重要性,并简要评述石墨烯在相关领域中所面临的挑战和发展前景。
标签:石墨烯;锂离子电池;负极材料石墨烯是一种结构独特并且性能优异的新型材料,它是由碳原子以sp2杂化连接的单原子层二维蜂窝状结构,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1,2]。
由于石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用,特别是在未来实现基于石墨烯材料的高能量密度、高功率密度应用有着非常重要的理论和工程价值。
理想的石墨烯是真正的表面性固体,其所有碳原子均暴露在表面,具有用作锂离子电池负极材料的独特优势:(1)石墨烯具有超大的比表面积,比表面积的增大可以降低电池极化,减少电池因极化造成的能量损失。
(2)石墨烯具有优良的导电和导热特性,即本身已具有了良好的电子传输通道,而良好的导热性确保了其在使用中的稳定性。
(3)在聚集形成的宏观电极材料中,石墨烯片层的尺度在微纳米量级,远小于体相石墨的,这使得Li+在石墨烯片层之间的扩散路径较短;而且片层间距也大于结晶性良好的石墨,更有利于Li+的扩散传输。
因此,石墨烯基电极材料同时具有良好的电子传输通道和离子传输通道,非常有利于锂离子电池功率性能的提高。
1 石墨烯直接作为锂离子电池负极材料商业化锂离子电池石墨负极的理论容量为372 mAh/g。
为实现锂离子电池的高功率密度和高能量密度,提高锂离子电池负极材料的容量是一个关键性问题。
无序或比表面积高的热还原石墨烯材料具有大量的微孔缺陷,能够提高可逆储锂容量。
因此,相对石墨材料,石墨烯的储锂优点有:(1)高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达到700~2000 mAh/g,远超过石墨材料的理论比容量372 mAh/g(LiC6);(2)高充放电速率:多层石墨烯材料的面内结构与石墨的相同,但其层间距离要明显大于石墨的层间距,因而更有利于锂离子的快速嵌入和脱嵌。
石墨烯材料在锂离子电池中的应用

石墨烯材料在锂离子电池中的应用
石墨烯材料可以作为锂离子电池的负极材料。
传统锂离子电池的负极材料常采用石墨材料,但其容量有限,存在容量衰减和安全问题。
石墨烯材料由于其独特的二维结构和高度导电性,可以提供更高的比容量和更好的循环性能。
石墨烯负极还可以通过调控多孔结构增加锂离子的扩散速度,提高电池放电性能。
石墨烯材料还可用于锂离子电池的电解液中。
电解液是锂离子电池中起着电荷传递和离子输运的关键作用的部分。
加入石墨烯材料可以改善电解液的电导率、离子传输速率和电池的循环寿命。
石墨烯通过其高度的表面积和化学活性,可以增加电解液中锂离子与电解液的接触面积,提高离子的扩散速度和电池的性能。
石墨烯材料在锂离子电池中具有重要的应用潜力。
通过其优异的电化学性能和结构特性,石墨烯可以提高锂离子电池的能量密度、循环性能和安全性,为锂离子电池的进一步发展和应用提供了新的可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用氧化石墨烯制备具有二维多孔结构的锂离子电池负极材料目前,商业化锂离子电池普遍采用石墨类负极材料,其理论比容量较低、倍率性能不佳,无法满足高比能、大功率锂离子电池的发展需要。
因此研究和开发新型负极材料是当前的关注焦点。
石墨烯作为新型的二维碳纳米材料,具有超高的导电性、巨大的比表面积和良好的化学稳定性等特性,是替代石墨作为锂离子电池负极的理想材料,引起了研究人员的广泛关注。
尽管近年来石墨烯基电极材料的研究取得了重要进展,但作为新兴研究领域,从材料的组成、结构到电化学性能与储能机理等各方面仍存在一系列关键科学问题需要解决,尤其在充分利用石墨烯的结构特性以不断提升材料电化学性能方面还需要持续的创新研究以不断推动该领域的技术进步。
基于石墨烯,研发具有新颖纳米结构和优异电化学性能的电极材料已成为锂离子电池领域的研究热点和重要发展方向。
本论文以氧化石墨烯(GO)为起始原料,从多孔石墨烯的可控制备、多孔石墨烯电极的结构设计及以GO为导向模板制备二维多孔微纳结构金属氧化物等方面出发,设计制备了一系列具有新颖二维多孔结构和优异电化学性能的锂离子电池负极材料,为基于石墨烯构建新型锂离子电池电极材料提供了创新的实验思路。
本论文的主要研究工作如下:1.发展了一种简单可控的制备多孔石墨烯的方法,将金属盐与GO溶液均匀混合,冷冻干燥后在惰性气氛保护下高温退火处理,最后用稀酸除去金属纳米颗粒即可制得多孔石墨烯。
以金属镍为研究体系,考察了GO/Ni比例、保温时间及金属盐种类对纳米孔形成的影响,对可能的反应机理进行了探索,并对多孔石墨烯的电化学性能进行了研究。
结果表明,当退火温度达到700℃以上,镍、铁、钴、铜均可以蚀刻石墨烯在
其表面造孔;通过改变GO/金属比例、退火温度、保温时间及采用不同的金属盐可以调控石墨烯表面纳米孔的密度和大小;由于其独特的多孔结构和石墨烯本身的优异特性,多孔石墨烯具有更高的比容量,在50 m A g<sup>-1</sup>电流密度时,其比容量高达933 m Ah g<sup>-1</sup>,约是还原石墨烯比容量的两倍。
2.以金属蚀刻法制备多孔石墨烯为基础,构建了二维多孔石墨烯薄膜电极材料,并进一步研究了材料结构与电化学性能间的关系。
首先采用水热自组装及退火处理制备了具有多级孔结构的石墨烯/钴气凝胶电极材料,石墨烯纳米片相互连接形成三维导电网络,其表面负载的钴纳米颗粒不仅可以原位蚀刻造孔还可以提高电极的导电性,进一步通过物理压缩该气凝胶制得多孔石墨烯/钴薄膜电极材料,可直接用于锂离子电池负极。
压缩后其密度提高近17倍,达0.38 g cm<sup>-3</sup>,由于其独特的多孔结构,有利于电解液的传导及锂离子的扩散,50 m A g<sup>-1</sup>电流密度时,该薄膜电极同时表现出了很高的质量比容量(900 m Ah g<sup>-1</sup>)和体积比容量(358 m Ah cm<sup>-3</sup>)。
其次,利用简单的真空抽滤法制备了柔性自支撑的二维多孔石墨烯/镍薄膜电极材料,由于薄膜内部具有丰富的纳米孔道,有利于锂离子在垂直于石墨烯纳米片方向上的扩散,该复合薄膜也表现了较高的比容量、优异的倍率性和循环稳定性。
3.以GO为导向模板制备了具有新颖微纳结构的金属氧化物。
以Ni O体系为研究对象,研究了GO/Ni比例、退火温度、保温时间等条件对于产物结构和形貌的影响规律及其电化学性能,并考察了该反应体系的普适性。
结果表明,当GO/Ni为10/1,在600℃保温3 h可以制得结构均匀的具有二维多孔微纳结构的Ni O。
由于其独特的微纳结构,Ni O表现出优异的电化学性能;采用相同的方法,还成功制备了具有二维多孔微纳结构的其他金属氧化物,包括Fe2O3、Co3O4、Mn3O4和Ni Fe2O4。
4.将石墨烯、金属盐和GO在水溶液中均匀混合,通过原位抽滤和高温退火,获得了具有优异电化学性能的钴酸锌/石墨烯复合薄膜电极材料。
以GO为模板在制得二维多孔微纳结构钴酸锌的同时,又能保证其在薄膜中的均匀分散,避免了纳米颗粒的团聚。
该复合薄膜表现出了很高的比容量和优异的循环稳定性。
0.1 A g<sup>-1</sup>电流密度时,比容量高达1255 mAh g<sup>-1</sup>,以2 A g<sup>-1</sup>电流密度循环1000次后,其比容量仍保持980 mAh
g<sup>-1</sup>。
在此基础上,以该复合薄膜为负极,磷酸铁锂为正极制得了柔性全电池,同样表现出了优异的电化学性能,0.5C时其比容量为140 mAh
g<sup>-1</sup>,2 C充放电循环100次后,容量保持率为87%。