智能传感器的原理框图
常用传感器工作原理(智能式传感器)分解

(2) 敏感元件设计 利用集成电路工艺,根据圆形平膜片上各点应力分 布,在半导体圆形基片上扩散出四个电阻,同时生成 两个温敏二极管。
(3) 传感器工 艺设计 (4)软件设计 主要构成的智能 压力传感器软件 有控制程序、数 据处理程序及辅 助程序。
微型传感器
微型传感器
MEMS技术与微型传感器
与一般传感器比较,微传感器具有以下特点: (1)空间占有率小。 (2)灵敏度高,响应速度快。 (3)便于集成化和多功能化。 (4)可靠性提高。 (5)消耗电力小,节省资源和能量。 (6)价格低廉。
无线传感器网络
WSN是一种无基础设施的网络,它由一组传感器节点协 同感知、采集和处理网络覆盖区域中感知对象的信息,并对 这些数据进行处理,获得详尽准确的信息,处理后的信息通 过无线方式发送,并以自动组网、多跳的网络方式传送给观 察者。
(2) 固体图像传感器
固体图像传感器主要有三种类型:第一种是电荷耦合器件(CCD) ;第二 种是 MOS 图像传感器,又称为自扫描光电二极管阵列 (SSPA) ;第三种 是电荷注入器件(CID) 图 为这种三维结构智能化传感器的一种形式。
图为一由多个智能图像传感器组成的图像识别系统。这个系 统由光学透镜系统、多个智能图像传感器和一个主计算机组 成。
IUT提出的物联网体系结构
4、物联网的关键技术
感知设备 安全通信 智能处理
4.1 感知设备
传感器 RFID 全球定位(GPS/北斗/伽利略) 条形码、二维码 视频
4.2 安全通信
互联网是将机器和人连接起来,而物联网将 机器、人、设备等所有东西都连接起。
4.3 智能处理
无线传感器典型的网络拓扑结构及整体构架
智能传感器及系统集成

智能传感器的功能特点
1、具有逻辑思维与判断、信息处理功能,可对 检测数值进行分析、修正和误差补偿,提高测量 精度。
2、具有自诊断、自校准功能,提高了可靠性。
3、组态功能可以实现多传感器多参数复合测 量,扩大了检测使用范围。
用户可以选择需要的组态。包括检测范围,可编程通/ 断延时,选组计数器,常开/常闭,分辨率选择等。可 使同一类型的传感器工作在最佳状态,并且能在不同 场合从事不同的工作。
2、体形结构腐蚀加工 腐蚀加工有化学腐蚀和离子刻蚀技术两大类。
✓ 化学腐蚀是应用腐蚀剂腐蚀,腐蚀剂有各向同性和各 向异性两种,改变腐蚀剂中氧化剂、去除剂和稀释剂 的成分可以调整腐蚀速率、选择性和表面腐蚀条件。 各向异性腐蚀可形成三维结构。
✓ 离子刻蚀是在真空腔内进行。采用等离子定向刻蚀, 将硅片放在交流电源驱动的电极上,并置于充有含氟 里昂气体的化学反应等离子体中进行。
智能传感器主要由敏感元件、微处理器 及相关电路组成。
智能传感器的原理框图如下
传
信
输
微
通
感
号
入
处
讯
元
调
接
理
接
件
理
口
器
口
微处理器是智能传感器的智能核心,承担了数据收集、数据 存储、数据处理、系统校准、系统补偿等大量硬件难以完成 的工作,从而大大降低了传感器的制造难度,提高了传感器 的性能,降低了成本,提高了传感器的可靠性。
3、查表法
通过计算或实验得到检测值和被检测值的关系, 然后按一定规律把数据排成表格,存入内存单 元。微处理器根据检测的大小查表。
三、数字滤波
1、算术平均滤波
计算连续N个点的采样值的算术平均值作为滤 波器的输出.
智能传感技术介绍课件

敏
信
转
TEDS
感
号
换
元
调
IEEE1451逻辑
件
理
STIM
网络 适配器 (NCAP)
网络
网络传感器通用接口标准
10-3 网络传感器
基于IEEE1451.2和蓝牙标准的无线网络传感器体系结构
网络传感器通用接口标准
网络传感器测控系统体系结构
10-3 网络传感器
网络传感器发展形势
1、有线 无线 2、现场总线 互联网总线 3、分布式测控: 4、嵌入式网络
三) 噪声ห้องสมุดไป่ตู้制技术
二、功能实现
3、算术平均滤波法
对某一点连续采集N次,取平均值。数学期望。N小,灵 敏度高;N大,灵敏度低,更平滑。
三) 噪声抑制技术
二、功能实现
4、递推平均滤波法
测量N个点,多为一个长度为N的队列,每次进行一次新 的测量,把测量结果放到队尾,而扔掉对首都一次数据。
理想基线 实测基线
采用微机械加工技术和大规模集成电路工艺技术,利用半导体 材料硅作为基本材料来制作敏感元件,将信号调理电路、微处 理器单元等集成在一块芯片上。
一、体系结构
(二) 集成化结构
10-1智能传感器的体系结构与功能实现
优点:
1) 微型化 2) 结构一体化 3) 精度高 4) 多功能 5) 阵列式 6) 全数字化 7) 使用方便,操作简单
对周期干扰有良好的抑制作用,但对偶然出现的脉冲性干 扰抑制作用差。
三) 噪声抑制技术
5、一阶惯性滤波法 6、复合滤波 7、相关技术
二、功能实现
四)自补偿、自检验、自诊断
二、功能实现
自补偿
零位温漂补偿
精品文档-传感器原理及应用(郭爱芳)-第12章

第12章 智能传感器 图12.2 DTP型智能式压力传感器的结构
第12章 智能传感器
12.2.1 基本传感器 1. 传感器的主要技术要求 (1) 具有将被测量转换为后续电路可用信号的功能; (2) 转换范围与被测量实际变化范围一致,转换精度符
合在整个系统的总精度要求下而分配给传感器的精度指标(一 般应优于系统精度的十倍左右),转换速度应符合整机要求;
分析与处理功能,可完成非线性、温度、噪声、响应时间以及 零点漂移等误差的自动修正或补偿,提高测量准确度;
(2) 自校准、自诊断功能:实时进行系统的自检和故障 诊断,在接通电源时进行开机自检,在工作中进行运行自检, 自动校准工作状态,自行诊断故障部位,提高工作可靠性;
(3) 自适应、自调整功能:根据待测量的数值大小和工 作条件的变化情况,自动调整检测量程、测量方式、供电情况、 与上位机的数据传送速率等,提高检测适应性;
(4) 电源引起的失调:电源电压变化1%所引起放大器的 漂移电压值。一般数据采集系统的前置放大器常用稳压电源供 电,该指标是设计稳压电源的主要依据。
第12章 智能传感器
1. 仪用放大器 仪用放大器常采用三运放对称结构且具有较高的输入阻抗 和共模抑制比的单片集成放大器,只需外接一个电阻即可设定 增益,如美国BB(Burr Brown)公司生产的INA114, 美国 AD(Analog Devies)公司生产的AD521、AD524、AD8221等。 INA114是一种通用的仪用放大器,尺寸小、精度高、价格低 廉,可用于电桥、热电偶、数据采集以及医疗仪器等,其内部 电路如图12.3所示。
(3) 满足被测介质和使用环境的特殊要求,如耐高温、 耐高压、防腐、抗振、防爆、抗电磁干扰、体积小、质量轻和 不耗电(或耗电少)等;
【全文】智能传感器PPT课件 (1)

7
10.1
智能传感器及无线传感器网络
第10章 1) 研究与开发传感器的自由度大。 (2) 精度高。 (3) 具有一定的可编程自动化能力。 (4) 输出形式多。 (5) 功能价格比大。
8
10.1
智能传感器及无线传感器网络
第10章 智能传感器
• 近几年发展起来的无线传感器网络是智能传感器 的又一深层次研究,是又一个新的飞跃。
22
10.3
智能传感器的结构框图
第10章 智能传感器
10.3.1 μP主机模板
• 因此,在智能传感器设计时,应参照如下原则来选择 μP。
• (1) 根据任务选机型。
• 根据所研制的智能传感器是用于数据处理完成某些测 量任务,还是用于某种系统控制,对于不同的任务, 应选择不同的机型。
23
10.3
智能传感器的结构框图
24
10.3
智能传感器的结构框图
10.3.2 模拟量输入模板
第10章 智能传感器
• 传感器的输出一般为毫伏数量级模拟量。要满足A /D转换电路的要求,还必须经过模拟量输入模板 上有关电路的放大、处理,再经A/D转换电路传 输到主机板上。
25
10.3
智能传感器的结构框图
10.3.3 IEEE-488标准总线模板
3
第10章 智能传感器
• 迅速发展的微处理机技术推动和影响着其他技术
10.1
领智域能的传变感革器。及把无微线处传理感机器技网术络引入传感器,可以
使传感器实现过去实现不了的功能,具有智能本
领,这就是新一代的传感器——智能传感器
(Intelligent Sensor或Smart Sensor)。
• “Intelligent Sensor”是英国人对智能传感器 的称谓,而“Smart Sensor”是美国人对智能传 感器的俗称。
智能传感器

(a)
(b)
(c)
图7-5 A/D转换芯片
(a)ADC0809芯片 (b)AD9220芯片 (c)ADS1015芯片
1.2.2 智能传感器的软件设计
智能传感器的软件部分可分为系统软件和应用软件两种。系统软件一般由微处理器 厂家提供;而应用软件则是面向用户的程序,
在智能传感器中,软件的最主要功能是完成数据处理任务,其主要内容包括标度变 换、非线性校正及误差的自校准、自诊断和自补偿等。
在智能传感器校零过程中,多路选择开关首先接通零点标准值( x0 0 ),此时的
输出 y0 a0 ;然后,多路选择开关接通标准值 xR (标定),此时的标定输出 yR 为
yR y0 a1xR
(7-3)
即
a1
yR xR
y0
(7-4)
最后,多路选择开关接测量值 x(测量),智能传感器的输出量 yx 与输入量的关系 x
(1)非集成式智能传感器。
传感器与微处理器可为两个分立的功 能单元,传感器的输出信号经调理、放大 和转换后由接口电路送入微处理器进行处 理,故非集成式智能传感器又称为传感器 智能化。
(3)混合结构智能传感器。
根据需要以不同的组合方式集成在两块或三 块芯片上,并装在一个外壳里,实现混合集成。
(2)集成式智能传感器。 具有完善的智能化功能,还具有更 高级的传感器阵列信息融合功能, 从而使其集成度更高、功能更强大
图7-4 程控测量放大器原理
3.A/D转换电路设计
在A/D转换电路设计中,最关键的问题是A/D转换芯片的选择。 在选择A/D转换芯片时,主要考虑其分辨率,即输出数字量对输入模拟量变化的分辨 能力。 其输出位数越大,分辨率就越高,但成本和功耗也会随之增加,因此,要根据系统精 度要求选择合适的A/D转换芯片。 目前常用的A/D转换芯片多为8位、12位、16位和24位4种。
《智能传感器》PPT课件

整理课件
18
目前,由于传感器智能化和集成化的要求,使得固体图像传感器有三 维集成的发展趋势。例如,在同一硅片上,用超大规模集成电路工艺 制作三维结构的智能传感器,下图为这种三维结构智能化传感器的一 种形式。
整理课件
19
右图为具有三层结构的三维集成智能图 像传感器的结构图。它用以提取待测物 体的轮廓图,它的第一层为光电转换面 阵,由第一层输出的信号并行进入第二 层电流型MOS模拟信号调理电路,输 出的模拟信号再进入第三层,转换成二 进制数并存储在存储器中,与第三层相 连的是信号读出(放大)单元。信号读 出单元的作用是通过地址译码读取存储 器中的信号信息。
整理课件
7
(2)可靠性与高稳定性强
1.自动补偿因工作条件与环境参数发生变化所引起的系统 特性的漂移,如温度变化而产生的零点和灵敏度漂移;
2.当被测参数变化后能自动改换量程; 3.能实时自动进行系统的自我检验,分析、判断所采集到 的数据的合理性,并给出异常情况的应急处理(报警或故障提 示)。
整理课件
9
(4)自适应能力强
由于智能传感器具有判断、分析与处理功能,它能根据系 统工作情况决策各部分的供电情况,优化与上位计算机的数据 传送速率,并保证系统工作在最优低功耗状态。
整理课件
10
(5)性格价格比高
智能传感器所具有的上述高性能,不是像传统传感器技术 追求传感器本身的完善,对传感器的各个环节进行精心设计与 调试来获得,而是通过与微处理器/计算机相结合,即是采用低 价的集成电路工艺和芯片以及强大的软件来实现的。
整理课件
2
现代信息技术的三大基础: 传感器技术:信息的采集 通 信 技 术 :信息的传输 计算机技术:信息的处理
“感官” “神经” “大脑”
《智能传感器》PPT课件

(11-7) (11-8)
精选课件ppt
34
11.5.3 非线性补偿技术
二次曲线差值法
若传感器的输入和输出之间的特性曲线的斜率变化很大, 则两插值点之间的曲线将很弯曲,如图11-14所示。这时 若仍采用线性插值法,误差就很大。可以采用二次曲线插 值法,这是通过曲线上的三个点作一抛物线(图中的实 线),用此曲线代替原来的曲线。
精选课件ppt
9
11.2.1 非集成化实现
非集成化智能传感器是将传统的经典传感器(采用非集成化 工艺制作的传感器,仅具有获取信号的功能)、信号调理电 路、带数字总线接口的微处理器组合为一整体而构成的一个 智能传感器系统。其框图如图11-4所示。
图11-4 非集成式智能传感器外壳
这种非集成化智能传感器是在现场总线控制系统发展形势的
精选课件ppt
37
11.5.3 非线性补偿技术 (二)对分搜索法
在实际应用中,很多表格都很长,且难以用计算查表法进行查找, 但是这种表格一般都满足从大到小(或从小到大)的顺序。对于这 种表格可以采用对分搜索法进行查找。
精选课件ppt
24
11.4.3 A/D转换器的选择 A/D转换器的种类很多,主要有比较型和积分型两大类,其 中常用的是逐次逼近型、双积分型和V-F转换器。 虽然芯片繁多,性能各异,但从使用角度看,其外特性不外乎 有以下四点:
模拟信号输入端 数字量的并行输出端; 启动转换的外部控制信号; 转换完毕同转换器发出的转换结束信号。
精选课件ppt
17
11.2.4 集成化智能传感器的几种模式
中级形式/自立形式
中级形式是在组成环节中除敏感单元与信号调理电路外, 必须含有微处理器单元,即一个完整的传感器系统封装在 一个外壳里的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能传感器的原理框图
智能传感器是一种能够感知和理解环境信息,并将其转化为可理解的数据的装置。
它通过内部的传感器、处理器和通信模块,实现对环境的实时监测和数据的传输。
智能传感器的原理框图由以下几部分组成:
1. 传感器模块:智能传感器的核心部件是传感器模块,它能够感知并测量环境中的各种物理量,例如温度、湿度、压力、光照、声音等。
传感器模块通常由传感器元件、信号调理电路和放大电路组成。
传感器元件负责将环境中的物理量转化成电信号,信号调理电路则负责对电信号进行滤波、放大和增益,放大电路则将信号放大到适合处理器处理的范围。
2. 处理器模块:智能传感器还配备了处理器模块,用于对传感器模块采集到的数据进行处理和分析。
处理器模块通常由微处理器或微控制器组成。
处理器通过控制和配置传感器模块的参数,对环境数据进行处理和分析,并提取有用信息。
处理器还可以执行其他功能,如数据压缩、图像处理和模式识别等。
3. 存储器模块:智能传感器通常还配备了存储器模块,用于存储处理器模块处理后的数据。
存储器模块通常分为两种:一种是用于临时存储数据的随机访问存储器(RAM),例如用于缓存和临时存储传感器数据;另一种是用于永久存储数据的非易失性存储器(ROM或闪存),例如用于存储配置信息和历史数据。
4. 通信模块:智能传感器还配备了通信模块,用于与外部设备进行数据交换和
通信。
通信模块通常由无线电模块或有线接口组成。
无线电模块可以采用无线网络(例如Wi-Fi、蓝牙、Zigbee等)进行数据传输,以实现智能传感器的远程监测和控制。
有线接口可以通过串口、以太网等方式与其他设备进行通信。
5. 电源模块:智能传感器还需要配备适当的电源模块,用于提供工作电压和电流。
电源模块可以采用电池、太阳能电池板、交流电源等形式,以满足智能传感器的工作需求。
智能传感器的原理框图如下所示:
传感器模块> 处理器模块> 存储器模块> 通信模块> 电源模块
V V
传感器元件> 信号调理电路> 放大电路
智能传感器的工作流程如下:
1. 传感器模块感知环境中的物理量,并将其转化为电信号。
2. 传感器元件将电信号转化为与物理量相关的电信号。
3. 信号调理电路对电信号进行滤波、放大和增益,以便处理器模块能够准确地读取和处理信号。
4. 处理器模块通过控制和配置传感器模块的参数,对环境数据进行处理和分析,并提取有用信息。
5. 处理器模块将处理后的数据存储到存储器模块中,以备后续查询和分析。
6. 处理器模块通过通信模块将数据传输到外部设备,例如智能手机、计算机等。
7. 电源模块提供工作电压和电流,以满足智能传感器的工作需求。
总结:智能传感器的原理框图由传感器模块、处理器模块、存储器模块、通信模块和电源模块组成。
传感器模块负责感知和测量环境中的物理量,传感器元件将其转化为电信号,信号调理电路进行滤波、放大和增益,处理器模块对数据进行处理和分析,存储器模块存储数据,通信模块与外部设备进行数据交换,电源模块提供工作电压和电流。
这一框图展示了智能传感器的工作流程和各部分的相互关系。