最新高考专题 抛物线(解答题压轴题)解析版)-(全国通用版)
2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。
高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.抛物线的焦点为,点在抛物线上,且,弦中点在其准线上的射影为,则的最大值为()A.B.C.D.【答案】A【解析】设,由抛物线定义,.而余弦定理,,再由,得到,所以的最大值为,故选:A.【考点】双曲线的简单性质.2.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.【答案】(1)x2-x+y2=4(2)存在,(1,-2)和(1,2)【解析】(1)连接CP、OP,由·=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|.由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9.设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得到x2-x+y2=4.(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x.由方程组,得x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).3.动直线l的倾斜角为60°,且与抛物线x2=2py(p>0)交于A,B两点,若A,B两点的横坐标之和为3,则抛物线的方程为________.【答案】x2=y【解析】设直线l的方程为y=x+b,联立,消去y,得x2=2p(x+b),即x2-2px-2pb=0,∴x1+x2=2p=3,∴p=,则抛物线的方程为x2=y.4.已知点在抛物线C:的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.【答案】D【解析】由于点在抛物线C:的准线上,所以,设直线AB的方程为,将与联立,即,则(负值舍去),将k=2代入得y=8,即可求出x=8,故B(8,8),所以,故选D.【考点】1.直线与抛物线的位置关系;2.斜率公式.5.已知抛物线C:的焦点为F,过点F倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,则的值等于()(A)2 (B)3 (C)4 (D)5【答案】B【解析】由抛物线的方程可知焦点,直线的斜率为,则直线的方程为,设.将直线方程和抛物线方程联立削去并整理可得,解得.所以.故B正确.【考点】1直线与抛物线的位置关系;2数形结合思想.6.设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为________.【答案】【解析】设P(x0,x2),又y′=2x,则直线PQ的方程为y=-++x2.代入y=x2得x2+--x2=0,即(x-x)=0,所以点Q的坐标为.从而PQ2=2+2,令t=4x2,则PQ2=f(t)=t+++3(t>0),则f′(t)=,即f(t)在(0,2)上是减函数,在(2,+∞)上是增函数,故当t=2时,PQ有最小值.7.已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.(1)如图所示,若,求直线l的方程;(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.【答案】(1);(2)长轴长的最小值为.【解析】(1)首先求得抛物线方程为.设直线方程为,并设利用,得到;联立,可得,应用韦达定理得到,从而得到,求得直线方程.(2)可求得对称点,代入抛物线中可得:,直线方程为,考虑到对称性不妨取,椭圆设为联立直线、椭圆方程并消元整理可得,由,可得,即得解.(1)由题知抛物线方程为。
专题27 抛物线(解答题)(新高考地区专用)(原卷版)

专题27 抛物线(解答题)1.已知抛物线2:2(0)C y px p =>经过点()06,P y ,F 为抛物线的焦点,且||10PF =. (1)求0y 的值;(2)点Q 为抛物线C 上一动点,点M 为线段 FQ 的中点,试求点M 的轨迹方程.2.设抛物线C :22x py =(0p >)过点()2,1. (1)求抛物线C 的标准方程;(2)若直线l 交曲线C 于M 、N 两点,分别以点M 、N 为切点作曲线C 的切线相交于点P ,且两条切线垂直,求三角形MNP 面积的最小值.3.已知点F 为曲线2:2(0)C y px p =>的焦点,点M 在曲线C 运动,当点M 运动到x 轴上方且满足MF x ⊥轴时,点M 到直线4l y x p =+:的距离为. (1)求曲线C 的方程;(2)设过点F 的直线与曲线C 交于,A B 两点,则在x 轴上是否存在一点P ,使得直线PA 与直线PB 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由. 4.已知抛物线()2:20C y px p =>上一点()0,2P x 到焦点F 的距离02PF x =.(1)求抛物线C 的方程;(2)过点P 引圆()(222:30M x y rr -+=<≤的两条切线PA PB 、,切线PA PB、与抛物线C 的另一交点分别为A B 、,线段AB 中点的横坐标记为t ,求t 的取值范围.5.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为2的直线交抛物线于,P Q 两点,10PQ =.(1)求抛物线C 的方程;(2)过点(3,0)的直线l 与抛物线C 相交于,A B 两点,已知(3,0)M -,且以线段AM 为直径的圆与直线3x =-的另一个交点为N ,试问在x 轴上是否存在一定点,使得直线BN 恒过此定点.若存在,请求出定点坐标,若不存在,请说明理由.6.设点F 为抛物线22(0)y px p =>的焦点,,,A B C 三点在抛物线上,且四边形ABCF 为平行四边形,当B 点到y 轴距离为1时,5BF =.(1)求抛物线的方程;(2)平行四边形ABCF 的对角线AC 所在的直线是否经过定点?若经过,求出定点的坐标;若不经过定点,请说明理由.7.设抛物线()2:20E x py p =>的焦点为F ,点A 是E 上一点,且线段AF 的中点坐标为()1,1.(1)求抛物线E 的标准方程;(2)若B ,C 为抛物线E 上的两个动点(异于点A ),且BA BC ⊥,求点C 的横坐标的取值范围.8.已知O 是坐标系的原点,F 是抛物线2:4C x y =的焦点,过点F 的直线交抛物线于A ,B 两点,弦AB 的中点为M ,OAB 的重心为G .(1)求动点G 的轨迹方程;(2)设(1)中的轨迹与y 轴的交点为D ,当直线AB 与x 轴相交时,令交点为E ,求四边形DEMG 的面积最小时直线AB 的方程. 9.已知抛物线2:2(0)C y px p =>过点(4,4)D (1)求抛物线C 的方程,并求其焦点坐标与准线方程;(2)直线l 与抛物线C 交于不同的两点E ,F 过点E 作x 轴的垂线分别与直线OD ,OF 交于A ,B 两点,其中O 为坐标原点.若A 为线段BE 的中点,求证:直线l 恒过定点. 10.已知抛物线2:4E y x =的焦点为F ,准线为l ,过焦点F 的直线交抛物线E 于A 、B . (1)若1AA 垂直l 于点1A ,且16AFA π∠=,求AF 的长;(2)O 为坐标原点,求 OAB 的外心C 的轨迹方程.11.已知抛物线2:2(0)T x py p =>的焦点为F ,B ,C 为抛物线C 上两个不同的动点,(B ,C 异于原点),当B ,C ,F 三点共线时,直线BC 的斜率为1,2BC =.(1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若MNPBCFS S=,求BC 中点P 的轨迹方程.12.已知抛物线2:2(0)T x py p =>的焦点为F ,B 、C 为抛物线T 上两个不同的动点,当B ,C 过F 且与x 轴平行时,BC 长为1. (1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若2MNFBCFS S=,求BC 中点的轨迹方程.13.已知抛物线()2:20C y px p =>的内接等边三角形AOB 的面积为O 为坐标原点).(1)试求抛物线C 的方程;(2)已知点()1,1,,M P Q 两点在抛物线C 上,MPQ ∆是以点M 为直角顶点的直角三角形. ①求证:直线PQ 恒过定点;②过点M 作直线PQ 的垂线交PQ 于点N ,试求点N 的轨迹方程,并说明其轨迹是何种曲线.14.设抛物线E :()220y px p =>焦点为F ,准线为l ,A 为E 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(1)若60BFD ∠=︒,BFD △的面积为3,求p 的值及圆F 的方程; (2)若点A 在第一象限,且A 、B 、F 三点在同一直线1l 上,直线1l 与抛物线E 的另一个交点记为C ,且CF FA λ=,求实数λ的值.15.已知动圆Q 经过定点()0,F a ,且与定直线:l y a =-相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a -,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.16.在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB .17.已知抛物线C 的顶点在原点,焦点为()1,0F -. (1)求C 的方程;(2)设P 为C 的准线上一点,Q 为直线PF 与C 的一个交点且F 为PQ 的中点,求Q 的坐标及直线PQ 的方程.18.光学是当今科技的前沿和最活跃的领域之一,抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线2:2(0)C x py p =>,一平行于y 轴的光线从上方射向抛物线上的点P ,经抛物线2次反射后,又沿平行于y 轴方向射出,若两平行光线间的最小距离为8.(1)求抛物线C 的方程;(2)若直线:l y x m =+与抛物线C 交于A ,B 两点,以点A 为顶点作ABN ,使ABN 的外接圆圆心T 的坐标为493,8⎛⎫⎪⎝⎭,求弦AB 的长度. 19.已知抛物线C 的顶点在坐标原点,准线方程为12y =,F 为抛物线C 的焦点,点P 为直线123=+y x 上任意一点,以P 为圆心,PF 为半径的圆与抛物线C 的准线交于A 、B 两点,过A 、B 分别作准线的垂线交抛物线C 于点D 、E .(1)求抛物线C 的方程;(2)证明:直线DE 过定点,并求出定点的坐标. 20.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4. (1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.21.已知圆221:(1)4M x y -+=,动圆N 与圆M 相外切,且与直线12x =-相切.(1)求动圆圆心N 的轨迹C 的方程. (2)已知点11(,),(1,2)22P Q --,过点P 的直线l 与曲线C 交于两个不同的点,A B (与Q 点不重合),直线,QA QB 的斜率之和是否为定值?若是,求出该定值;若不是,说明理由. 22.已知抛物线()220y px p =->的焦点为F ,x 轴上方的点()2,M m -在抛物线上,且52MF =,直线l 与抛物线交于A ,B 两点(点A ,B 与M 不重合),设直线MA ,MB 的斜率分别为1k ,2k . (1)求抛物线的方程;(2)已知122k k +=-,l :y kx b =+,求b 的值.23.如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上. (1)求FA FB +的值;(2)求AB 的最大值.24.已知直线2y x =-与抛物线22y px =相交于A ,B 两点,满足OA OB ⊥.定点()4,2C ,()4,0D -,M 是抛物线上一动点,设直线CM ,DM 与抛物线的另一个交点分别是E ,F .(1)求抛物线的方程;(2)求证:当M 点在抛物线上变动时(只要点E 、F 存在且不重合),直线EF 恒过一个定点;并求出这个定点的坐标.25.已知曲线C 是顶点为坐标原点O ,且开口向右的抛物线,曲线C 上一点A (x 0,2)到准线的距离为52,且焦点到准线的距离小于4. (1)求抛物线C 的方程与点A 的坐标;(2)若MN ,PQ 是过点(1,0)且互相垂直的C 的弦,求四边形MPNQ 的面积的最小值.26.设抛物线2:4y x Γ=的焦点为F ,直线:0l x my n --=经过F 且与Γ交于A 、B 两点.(1)若8AB =,求m 的值;(2)设O 为坐标原点,直线AO 与Γ的准线交于点C ,求证:直线BC 平行于x 轴. 27.已知抛物线2:2C y px =的焦点为()1,0F ,斜率为k 的直线1l 过点()()0,0P m m >,直线1l 与抛物线C 相交于A ,B 两点.(1)求抛物线C 的方程;(2)直线2l 过点()()0,0P m m >,且倾斜角与1l 互补,直线2l 与抛物线C 交于M ,N 两点,且FAB 与FMN 的面积相等,求实数m 的取值范围.28.已知曲线C 上每一点到直线l :32x =-的距离比它到点1,02F ⎛⎫⎪⎝⎭的距离大1. (1)求曲线C 的方程;(2)若曲线C 上存在不同的两点P 和Q 关于直线l :20x y --=对称,求线段PQ 中点的坐标.29.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.30.已知抛物线22x py =(0p >)上点P 处的切线方程为10x y --=. (1)求抛物线的方程;(2)设11()A x y ,和22()B x y ,为抛物线上的两个动点,其中12y y ≠,且124y y +=,线段AB 的垂直平分线l 与y 轴交于点C ,求ABC 面积的最大值.31.已知点P 是抛物线C :212y x =上的一点,其焦点为点F ,且抛物线C 在点P 处的切线l 交圆O :221x y +=于不同的两点A ,B . (1)若点()2,2P ,求AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为'F ,求'F M 的取值范围. 32.已知M 是抛物线2:4C y x =上一点,F 是抛物线C 的焦点,4MF =. (1)求直线MF 的斜率;(2)已知动圆E 的圆心E 在抛物线C 上,点()2,0D 在圆E 上,且圆E 与y 轴交于A ,B 两点,令||DA m =,||DB n =,求n mm n+最大值.33.已知抛物线2:2(0)C x py p =>的焦点为F ,Q 是抛物线上的一点,()2FQ =.(1)求抛物线C 的方程;(2)过点()0,4P x 的直线l 与抛物线C 交于M 、N 两点,且P 为线段MN 的中点.若线段MN 的中垂线交y 轴于A ,求AMN 面积的最大值.34.已知抛物线()2:20C y px p =>的焦点为F ,点F 到直线10x y -+=.(1)求抛物线C 的方程;(2)点O 为坐标原点,直线1l 、2l 经过点()1,0M -,斜率为1k 的直线1l 与抛物线C 交于A 、B 两点,斜率为2k 的直线2l 与抛物线C 交于D 、E 两点,记MA MB MD ME λ=⋅⋅⋅,若1212k k =-,求λ的最小值. 35.已知曲线C 上的动点M 到y 轴的距离比到点F (1,0)的距离小1, (1)求曲线C 的方程;(2)过F 作弦PQ RS 、,设PQ RS 、的中点分别为A B 、,若0PQ RS ⋅=,求||AB 最小时,弦PQ RS 、所在直线的方程;(3)在(2)条件下,是否存在一定点T ,使得AF TB FT λ=-?若存在,求出T 的坐标,若不存在,试说明理由.36.已知抛物线2:2(0)C x py p =>的焦点到直线:l y x =-的距离为.(1)求抛物线C 的方程; (2)如图,若1,02N ⎛⎫-⎪⎝⎭,直线l '与抛物线C 相交于,A B 两点,与直线l 相交于点M ,且||||AM MB =,求ABN 面积的取值范围.37.已知抛物线2:4C y x =的焦点为F ,过点()2,0P 的直线交抛物线C 于()11,A x y 和()22,B x y 两点.(1)当124x x +=时,求直线AB 的方程;(2)若过点P 且垂直于直线AB 的直线l 与抛物线C 交于,C D 两点,记ABF 与CDF 的面积分别为12,S S ,求12S S 的最小值.38.已知抛物线2:2(0)C x py p =>上一点()M ,9m 到其焦点下的距离为10. (1)求抛物线C 的方程;(2)设过焦点F 的的直线l 与抛物线C 交于,A B 两点,且抛物线在,A B 两点处的切线分别交x 轴于,P Q 两点,求AP BQ ⋅的取值范围.39.已知抛物线E :()220y px p =>的焦点为F ,过点F 作圆C :229(2)2x y ++=的两条切线1l ,2l 且12l l ⊥. (1)求抛物线E 的方程;(2)过点F 作直线l 与E 交于A ,B 两点,若A ,B 到直线34200x y ++=的距离分别为1d ,2d .求12d d +的最小值.40.已知抛物线C 的顶点在原点O ,准线为12x =-.(1)求抛物线C 的标准方程;(2)点A ,B 在C 上,且OA OB ⊥,⊥OD AB ,垂足为D ,直线OD 另交C 于E ,当四边形OAEB 面积最小时,求直线AB 的方程.。
抛物线(考题猜想,易错必刷25题4种题型)(解析版)—高二数学上学期期中

抛物线(易错必刷25题4种题型专项训练)➢抛物线的定义➢抛物线的方程➢抛物线的焦半径➢直线与抛物线的位置关系一.抛物线的定义(共5小题)1.已知抛物线214y x =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .1716B .5C .6D .【答案】B【详解】依题意,由抛物线的定义知,点A 到抛物线焦点的距离即点A 到准线1y=-的距离,即4(1)5--=.故选:B.2.(多选)已知抛物线的焦点在y 轴上,抛物线上一点(),3M m -到焦点的距离为5,则m 的值为( )A .B .-C .D .-3.,P Q 分别是抛物线 22x y = 和 x 轴上的动点, ()2,1M - ,则 PM PQ + 的最小值为( )A .5B .52C D .24.已知点()01,P y 是抛物线2:2(0)C y px p =>上一点,且点P 到C 的焦点距离为2,则p = .【答案】2【详解】抛物线准线方程为故答案为:2.5.已知抛物线2:4C y x =的焦点为F ,点M 在C 上,且点M 到直线2x =-的距离为6,则MF = .二.抛物线的方程(共3小题)6.已知曲线()2024log 3y x =-过抛物线2:C y mx =的焦点,则C 的准线方程为( )A .14=-x B .4y =-C .4x =-D .14y =-【答案】C【详解】易知函数()2024log 3y x =-过x 轴上定点()4,0,即为C 的焦点,故C 的准线方程为4x =-.故选:C.7.过抛物线C :22y px =(0p >)的顶点O ,且倾斜角为60°的直线与抛物线的另一个交点为A ,若8OA =,则抛物线的方程为 .由题意可知4,OB AB ==代入抛物线方程得488p =故答案为:212y x=8.抛物线()220y px p =>的焦点为F ,其准线与双曲线22142x y-=的渐近线相交于A 、B 两点,若ABF △的周长为42,则抛物线方程是 .故答案为:24y x=三.抛物线的焦半径(共8小题)9.设F 为抛物线2:8C y x =的焦点,点()00,P x y 为C 上一点,过P 作y 轴的垂线,垂足为A ,若3PF PA =,则cos FPA Ð=( )A .223B .2-C .13D .13-所以022,y O =为原点,10.已知抛物线24x y =的焦点为F ,过F 的直线l 交抛物线于A 、B 两点,若4AF BF =,则AF = .11.已知M 是抛物线28y x =上一点,F 是抛物线的焦点,O 为坐标原点.若120MFO Ð=o ,则线段MF 的长为 .【答案】8【详解】如图所示:设MF a =,易求(F 因为 120MFO Ð=o 所以在Rt MEF V ,ME 所以 132,22M a æ+ççè12.已知抛物线216y x =,的焦点为F ,P 点在抛物线上,Q 点在圆C :()()22624x y -+-=上,则PQ PF +的最小值为 .13.已知抛物线C :24y x =的焦点为F ,点A 、B 是抛物线C 上不同的两点,且A 、B 中点的横坐标为2,则AF BF += .【答案】6【详解】设()()1122,,,A x y B x y ,由A ,B 中点的横坐标为2,可得124x x +=,所以||||+=AF BF 12116x x +++=.故答案为:6.14.直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点.若3AF BF =,则AB =( )A .83B .3C .163D .32设1122()A x y B x y ,,(,),则由3AF BF =,得1y 由3AF BF =,得1x 联立解得3x =,x =15.(多选)设抛物线24y x =,F 为其焦点,P 为抛物线上一点,则下列结论正确的是( )A .抛物线的准线方程是=1x -B .焦点到准线的距离为4C .若()2,1A ,则PA PF +的最小值为3D .以线段PF 为直径的圆与y 轴相切由抛物线的定义,得PF因此,以PF 为直径的圆与故选:ACD16.(多选)已知抛物线24y x =的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是.( )A .若O 为线段PQ 中点,则l 的斜率为±2B .若4PF =,则OP =C .存在直线l ,使得PF QF ^D .PFQ △面积的最小值为2若O 为PQ 中点,则OHP △即H 与焦点F 重合,所以x 代入方程24y x =,得P y =±所以直线l 的斜率为2PPy x =±B 项,若4=PF ,则PF =四.直线与抛物线的位置关系(共9小题)17.(多选)在平面直角坐标系中,过抛物线C :24y x =的焦点F 作一条与坐标轴不平行的直线l ,与C 交于()11,A x y ,()22,B x y 两点,则下列说法正确的是( )A .若直线OB 与准线交于点D ,则0AD k =B .对任意的直线l ,121x x =C .2AF BF +的最小值为3+D .以AF 为直径的圆与y 轴的公共点个数为偶数【答案】ABC【详解】对于A ,点A (x 1,y 1),B (x 2,y 2)在抛物线C :24y x =上,18.已知抛物线2:4C y x =的焦点为,,F A B 为C 上的两点.若直线FA 的斜率为12,且0FA FB ×=,延长,AF BF 分别交C 于,P Q 两点,则四边形ABPQ 的面积为.【答案】50【详解】由题可知,抛物线的焦点坐标为119.斜率为2的直线l 与抛物线2y px =相交于A 、B 两点,若A 、B 两点的中点为()2,1M ,则p 的值是 20.已知抛物线24C y x =:的焦点为F ,过F 的直线l 交C 于,A B 两点,y 轴被以AB 为直径的圆所截得的弦长为6,则AB = .【答案】10【详解】抛物线C :24y x =的焦点故设直线AB 的方程为y 设A (x 1,y 1),B (x 2,y 2).则()24,1,y x y k x ì=ïí=-ïî即22k x ()2222Δ244k k k =+-×21.已知椭圆C :()222210+=>>x y a b a b 的左、右焦点分别为1F ,2F ,椭圆C 的右焦点与抛物线24y x =的焦点重合,两曲线在第一象限的交点为P ,12PF F V (1)求椭圆C 的方程;(2)过点P 的直线l 交椭圆C 于另一点A ,若212PAF PF F S S =△△,求l 的方程.直线()1:261AF y x =-+,联立()22261143y x x y ì=-+ïí+=ïî,消去y 得,23364280x x ++=,解得23x =-或1411x =-,当23x =-时,22626133y æö=--+=-ç÷èø,22.已知椭圆22221(0)x y a b a b +=>>的离心率为12,抛物线24x y =的焦点为点F ,过点F 作y 轴的垂线交椭圆于P ,Q 两点,||PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作抛物线的切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴于点G ,若GED V ,FOD V 的面积分别记为1S ,2S ,且121849S S =,点A 在第一象限,求点A 的坐标.23.已知椭圆2222:1(0)x y C a b a b +=>>过点,且其一个焦点与抛物线28y x =的焦点重合.(1)求椭圆C 的方程;(2)设直线AB 与椭圆C 交于A ,B 两点,若点(2,1)M -是线段AB 的中点,求直线AB 的方程.24.已知抛物线21:3C y x =及抛物线22:2(0)C y px p =>,过2C 的焦点F 的直线与1C 交于A ,B 两点,O 为坐标原点,OA OB ^.过F 的两条直线MN ,PQ 与2C 交于M ,N ,P ,Q 四点,其中M ,P 在第一象限,若直线MP 与x 轴的交点为(),0T t .(1)求2C 的方程;(2)若2t=-,求直线NQ与x轴的交点的坐标;(3)是否存在点T,使得M,N,P,Q四点共圆?若存在,求出t的值;若不存在,请说明理由.(2)由(1)可得设直线MN的方程为由2123y xx myì=í=+î,得(3)由(2)可得1y y 若M ,N ,P ,Q 四点共圆,则有即2212331212y y æöæö++=ç÷ç÷èøèø即22223124y y y y +=+,所以25.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且90MFN Ð=°,求MFN △面积的最小值.【答案】(1)2p =;∵F(1,0),显然直线MN的斜率不可能为零,设直线MN:x my n=+,M由24y xx my nì=í=+î可得,24y-。
专题14 抛物线-2023年高考数学真题题源解密(新高考)(解析版)

专题14 抛物线目录一览2023真题展现考向一 直线与抛物线真题考查解读近年真题对比考向一 抛物线的性质考向二 直线与抛物线命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 直线与抛物线1.(多选)(2023•新高考Ⅱ•第10题)设O 为坐标原点,直线y =x ﹣1)过抛物线C :y 2=2px (p >0)的焦点,且与C 交于M 两点,l 为C 的准线,则( )A .p =2B .|MN |=83C .以MN 为直径的圆与l 相切D .△OMN 为等腰三角形【答案】AC解:直线y =x ﹣1)过抛物线C :y 2=2px (p >0)的焦点,可得p2=1,所以p =2,所以A 正确;抛物线方程为:y 2=4x ,与C 交于M ,N 两点,直线方程代入抛物线方程可得:3x 2﹣10x +3=0,x M +x N =103,所以|MN |=x M +x N +p =163,所以B 不正确;M ,N 的中点的横坐标:53,中点到抛物线的准线的距离为:1+53=83,所以以MN 为直径的圆与l 相切,所以C 正确;3x 2﹣10x +3=0,不妨可得x M =3,x N =13,y M =﹣x N =|OM ||ON |=|MN |=163,所以△OMN 不是等腰三角形,所以D 不正确.【命题意图】考查抛物线的定义、标准方程、几何性质、直线与抛物线.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】抛物线的定义、方程、性质是高考常考内容,以小题出现,常规题,难度中等.【得分要点】一、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l 不经过点F ”,点的轨迹还是抛物线吗?不一定是,若点F 在直线l 上,点的轨迹是过点F 且垂直于直线l 的直线.②定义的实质可归纳为“一动三定”一个动点M ;一个定点F (抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F 的距离二、抛物线的方程及简单几何性质(p)(p )(p)(p)设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成关于x 的方程k 2x 2+2(km -p )x +m 2=0.(1)若k ≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k =0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.四、弦长问题过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,那么线段AB 叫做焦点弦,如图:设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .注:(1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2p sin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p为定值(F 是抛物线的焦点).(5)求弦长问题的方法①一般弦长:|AB |x 1-x 2|,或|AB |y 1-y 2|.②焦点弦长:设过焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .考向一 抛物线的性质2.(多选)(2022•新高考Ⅱ)已知O 为坐标原点,过抛物线C :y 2=2px (p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M (p ,0).若|AF |=|AM |,则( )A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°【解答】解:如图,∵F(,0),M(p,0),且|AF|=|AM|,∴A(,),由抛物线焦点弦的性质可得,则,则B(,﹣),∴,故A正确;,|OF|=,|OB|≠|OF|,故B错误;|AB|=>2p=4|OF|,故C正确;,,,,|OM|=p,∵|OA|2+|AM|2>|OM|2,|OB|2+|BM|2>|OM|2,∴∠OAM,∠OBM均为锐角,可得∠OAM+∠OBM<180°,故D正确.故选:ACD.3.(2021•新高考Ⅱ)若抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为,则p=( )A.1B.2C.2D.4【解答】解:抛物线y2=2px(p>0)的焦点(,0)到直线y=x+1的距离为,可得,解得p=2.故选:B.4.(2021•新高考Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF 与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为 .【解答】解:法一:由题意,不妨设P在第一象限,则P(,p),k OP=2,PQ⊥OP.所以k PQ=﹣,所以PQ的方程为:y﹣p=﹣(x﹣),y=0时,x=,|FQ|=6,所以,解得p=3,所以抛物线的准线方程为:x=﹣.法二:根据射影定理,可得|PF|2=|FO||FQ|,可得p2=,解得p=3,因此,抛物线的准线方程为:x=﹣.故答案为:x=﹣.考向二直线与抛物线5.(多选)(2022•新高考Ⅰ)已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,﹣1)的直线交C于P,Q两点,则( )A.C的准线为y=﹣1B.直线AB与C相切C.|OP|•|OQ|>|OA|2D.|BP|•|BQ|>|BA|2【解答】解:∵点A(1,1)在抛物线C:x2=2py(p>0)上,∴2p=1,解得,∴抛物线C的方程为x2=y,准线方程为,选项A错误;由于A(1,1),B(0,﹣1),则,直线AB的方程为y=2x﹣1,联立,可得x2﹣2x+1=0,解得x=1,故直线AB与抛物线C相切,选项B正确;根据对称性及选项B的分析,不妨设过点B的直线方程为y=kx﹣1(k>2),与抛物线在第一象限交于P(x1,y1),Q(x2,y2),联立,消去y并整理可得x2﹣kx+1=0,则x1+x2=k,x1x2=1,,,由于等号在x1=x2=y1=y2=1时才能取到,故等号不成立,选项C正确;=,选项D正确.故选:BCD.根据近几年考题推测考查内容抛物线的定义、方程、性质,以小题出现,常规题,难度中等.一.抛物线的标准方程(共1小题)1.(2023•道里区校级二模)已知抛物线的顶点在原点,对称轴为x轴,且过点(﹣3,3),则此抛物线的标准方程为 .【解答】解:抛物线的顶点在原点,对称轴为x轴,且过点(﹣3,3),设抛物线y2=﹣2px,可得9=6p,所以2p=3,所以抛物线的标准方程y2=﹣3x.故答案为:y2=﹣3x.二.抛物线的性质(共39小题)2.(2023•海淀区一模)已知抛物线y2=4x的焦点为F,点P在该抛物线上,且P的横坐标为4,则|PF|=( )A.2B.3C.4D.5【解答】解:∵抛物线方程为2=4x,∴,又点P在该抛物线上,且P的横坐标为4,∴|PF|==5.故选:D.3.(2023•润州区校级二模)图1是世界上单口径最大、灵敏度最高的射电望远镜“中国天眼”——500m 口径抛物面射电望远镜,反射面的主体是一个抛物面(抛物线绕其对称轴旋转所形成的曲面称为抛物面),其边缘距离底部的落差约为156.25米,它的一个轴截面是一个开口向上的抛物线C的一部分,放入如图2所示的平面直角坐标系xOy内,已知该抛物线上点P到底部水平线(x轴)距离为125m,则点P到该抛物线焦点F的距离为( )A.225m B.275m C.300m D.350m【解答】解:令抛物线方程为x2=2py且p>0,由题设,(250,156.25)在抛物线上,则312.5p=2502,解得,又P(x P,y P)且y P=125,则P到该抛物线焦点F的距离为米.故选:A.4.(2023•郑州模拟)抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,反之,平行于抛物线对称轴的光线,经过抛物线上的一点反射后,反射光线经过该抛物线的焦点.已知抛物线C:x2=2py(p>0),一条平行于y轴的光线,经过点A(1,4),射向抛物线C的B处,经过抛物线C的反射,经过抛物线C的焦点F,若|AB|+|BF|=5,则抛物线C的准线方程是( )A.B.y1C.y=﹣2D.y=﹣4【解答】解:由题意可知,抛物线的准线方程为,根据抛物线的定义可知,抛物线上的点到焦点的距离和到准线的距离相等,所以,得p=2,所以抛物线的准线方程为y=﹣1.故选:B.5.(2023•红山区模拟)已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为4,点M(x1,y1),N (x2,y2)在抛物线C上,若(y1﹣2y2)(y1+2y2)=48,则=( )A.4B.2C.D.【解答】解:抛物线C:y2=2px(p>0)的焦点F到准线的距离为4,则p=4,C:y2=8x,依题意,,而,,故8x1﹣32x2=48,即8x1+16=32x2+64,则x1+2=4(x2+2),故.故选:A.6.(2023•河南模拟)设F为抛物线的焦点,点P在抛物线上,点Q在准线l上,满足PQ∥x轴.若|PQ|=|QF|,则|PF|=( )A.2B.C.3D.【解答】解:依题意有|PQ|=|QF|=|PF|,则△PQF为等边三角形,又PQ∥x轴,所以|PF|=|PQ|=4|OF|=2.故选:A.7.(2023•四川模拟)抛物线C:x2=4y的焦点为F,直线x﹣y+3=0与C交于A,B两点,则△ABF的面积为( )A.4B.8C.12D.16【解答】解:∵抛物线C:x2=4y的焦点F为(0,1),又易知直线x﹣y+3=0与y轴交点P为(0,3),联立,可得x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴△ABF的面积为==8,故选:B.8.(2023•乌鲁木齐三模)“米”是象形字.数学探究课上,某同学用抛物线C1:y2=﹣2px(p>0)和C2:y2=2px(p>0)构造了一个类似“米”字型的图案,如图所示,若抛物线C1,C2的焦点分别为F1,F2,点P在抛物线C1上,过点P作x轴的平行线交抛物线C2于点Q,若PF1=3PQ=6,则p=( )A.4B.6C.8D.10【解答】解:因为3PQ=6,即PQ=2,由抛物线的对称性知x P=﹣1,由抛物线定义可知,,即,解得p=10,故选:D.9.(2023•平罗县校级模拟)已知抛物线C:y2=20x的焦点为F,抛物线C上有一动点P,Q(6,5),则|PF|+|PQ|的最小值为( )A.10B.16C.11D.26【解答】解:设抛物线C的准线为l,作PT⊥l于T,由抛物线的定义知|PF|=|PT|,所以,当P,Q,T三点共线时,|PF|+|PQ|有最小值,最小值为.故选:C.10.(2023•新疆模拟)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为( )A.y2=x B.y2=2x C.y2=4x D.y2=8x【解答】解:抛物线的准线方程为x=−,根据抛物线的定义可知,抛物线C上任意一点到准线的距离比到y轴的距离大1,则=1,所以,p=2,因此,抛物线C的方程为y2=4x.故选:C.11.(2023•河南模拟)已知抛物线y2=2px(p>0)的准线为l,且点A(4,4)在抛物线上,则点A到准线l的距离为( )A.5B.4C.3D.2【解答】解:由题意知16=8p,所以p=2,所以抛物线方程为y2=4x,则抛物线的准线l为x=﹣1,所以点A到抛物线准线的距离为4﹣(﹣1)=5.故选:A.12.(2023•海淀区校级三模)已知抛物线y=ax2(a>0),焦点F到准线的距离为1,若点M在抛物线上,且|MF|=5,则点M的纵坐标为 .【解答】解:抛物线的标准方程为,其焦点为,准线方程为,由抛物线的焦点F到准线的距离为1,得,可得,所以,抛物线的标准方程为x2=2y,其准线方程为,设点M(x0,y0),由抛物线的定义可得,解得.故答案为:.13.(2023•3月份模拟)已知点M为抛物线y2=8x上的动点,点N为圆x2+(y﹣4)2=5上的动点,则点M到y轴的距离与点M到点N的距离之和最小值为 .【解答】解:已知点M为抛物线y2=8x上的动点,点N为圆x2+(y﹣4)2=5上的动点,由题意可得圆x2+(y﹣4)2=5的圆心坐标为(0,4),半径为,抛物线y2=8x的焦点坐标为F(2,0),过M作MQ垂直y轴交y轴于点Q,由抛物线的定义可得|MQ|+|MN|=|MF|+|MN|﹣2==,当且仅当A、M、N、F共线时取等号,则点M到y轴的距离与点M到点N的距离之和最小值为.故答案为:.14.(2023•兴国县模拟)已知过抛物线C:y2=2px(p>0)的焦点F(1,0)的直线与抛物线C交于A,B两点(A在第一象限),以AB为直径的圆E与抛物线C的准线相切于点D.若,O 为坐标原点,则△AOB的面积为( )A.B.C.D.4【解答】解:依题意,=1,可得p=2,所以抛物线C的方程为y2=4x.依题意可知DE与抛物线的准线x=﹣1垂直,在直角三角形ABD中,|AD|=|BD|,则∠BAD=,∠ABD=∠DEB=∠AFx=,所以直线AB的方程为y=(x﹣1),由,消去y并化简得3x2﹣10x+3=0,易得Δ>0,x A+x B=,则|AB|=x A+x B+p=+2=,原点(0,0)到直线x﹣y﹣=0的距离d=,所以S=|AB|•d=××=.△AOB故选:B.15.(2023•重庆模拟)已知点P为抛物线y2=2px(p>0)上一动点,点Q为圆C:(x+1)2+(y﹣4)2=1上一动点,点F为抛物线的焦点,点P到y轴的距离为d,若|PQ|+d的最小值为2,则p=( )A.B.p=1C.p=2D.p=4【解答】解:画出图形,如图所示:易知圆C:(x+1)2+(y﹣4)2=1的圆心C(﹣1,4),半径r=1,由抛物线的定义可知:点P到y轴的距离d=|PF|﹣,所以|PQ|+d=|PQ|+|PF|﹣,由图可知:当C,Q,P,F共线,且P,Q在线段CF之间时,PQ+PF最短,而|CF|=,故有|PQ|+|PF|﹣=|CF|﹣r﹣=2,即,解得:p=4.故选:D.16.(2023•武昌区校级模拟)已知抛物线和,若C1和C2有且仅有两条公切线l1和l2,l1和C1、C2分别相切于M,N点,l2与C1、C2分别相切于P,Q两点,则线段PQ与MN ( )A.总是互相垂直B.总是互相平分C.总是互相垂直且平分D.上述说法均不正确【解答】解:抛物线=(x+1)2﹣1,,两曲线分别是y=x2经过平移、对称变换得到的,则两曲线的大小与形状相同,且具有中心对称性,∵l1和l2是它们的公切线,l1和C1、C2分别相切于M,N两点,l2和C1、C2分别相切于P,Q两点,∴M,N关于对称中心对称,P,Q关于对称中心对称,线段PQ与MN互相平分.故选:B.17.(2023•武汉模拟)设抛物线y2=6x的焦点为F,准线为l,P是抛物线上位于第一象限内的一点,过P 作l的垂线,垂足为Q,若直线QF的倾斜角为120°,则|PF|=( )A.3B.6C.9D.12【解答】解:设准线与x轴的交点为M,由题意可知,F(,0),准线l方程为x=﹣,在Rt△QMF中,∠QFM=60°,|MF|=3,∴|QF|=6,∵PQ垂直于准线l,∴∠PQF=∠QFM=60°,由抛物线的性质可知,|PQ|=|PF,∴△PQF为等边三角形,∴|PF|=|QF|=6.故选:B.18.(2023•晋中二模)设F为抛物线C:y2=4x的焦点,点M在C上,点N在准线l上且MN平行于x轴,若|NF|=|MN|,则|MF|=( )A.B.1C.D.4【解答】解:根据题意可得p=2,∴抛物线焦点F为(1,0),准线l为x=﹣1,设准线l与x轴的交点为E,如图所示,由题知MN⊥l,由抛物线的定义可知|MN|=|MF|,因为|NF|=|MN|,所以△MNF是正三角形,则在Rt△NEF中,因为MN∥EF,所以∠EFN=∠MNF=60°,所以|MF|=|NF|=2|EF|=2p=4.故选:D.19.(2023•湖北模拟)在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,A,B是其准线上的两个动点,且FA⊥FB,线段FA,FB分别与抛物线C交于P,Q两点,记△PQF的面积为S1,△ABF 的面积为S2,当时,|AB|= .【解答】解:设l PQ:x=ky+m,P(x1,y1)、Q(x2,y2),联立直线PQ与抛物线方程得y2﹣4ky﹣4m=0,则y1+y2=4k,y1⋅y2=﹣4m由FA⊥FB可得:,即(x1﹣1)(x2﹣1)=﹣y1y2,化简得m2﹣6m+1=4k2,又,则,同理,可得y A y B==﹣4,而,即,所以m=,k2=所以|AB|=|y A﹣y B|=|+|=||=||=.故答案为:.20.(2023•包河区模拟)已知F为抛物线C:y2=4x的交点,过F作两条互相垂直的直线l1,l2,直线l1与C交A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为 .【解答】解:如图所示,l1⊥l2,直线l1与C交于点A,B,直线l2与C交于点D,E,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为:y=x﹣1,联立方程组,整理可得:y2﹣4y﹣4=0,设D(x1,y1),E(x2,y2),所以y1+y2=4,y1y2=﹣4,则|DE|==,所以|AB|+|DE|的最小值为2|DE|=16,故答案为:16.21.(2023•天山区校级模拟)已知抛物线C:y2=4x的焦点为F,其准线与x轴的交点为K,过点F的直线与抛物线C相交于A,B两点,若|AF|﹣|BF|=,则|= .【解答】解:由对称性,不妨设A在第一象限,设θ=∠AFx,由由角平分线定理.故答案为:2.22.(2023•龙岗区校级一模)已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,PF交C于M,N两点,且满足,则|NF|= .【解答】解:抛物线C:y2=4x,则,准线方程为x=﹣1,由于,所以F是MP的中点,设P(﹣1,t),而F(1,0),所以M(3,﹣t),将M点坐标代入抛物线方程得t2=12,不妨设,则.设,由于M,N,F三点共线,所以,整理得,解得舍去),所以,所以.故答案为:.23.(2023•江西模拟)用于加热水和食物的太阳灶应用了抛物线的光学性质:一束平行于抛物线对称轴的光线,经过抛物面(抛物线绕它的对称轴旋转所得到的曲而叫抛物面)的反射后,集中于它的焦点.用一过抛物线对称轴的平面截抛物面,将所截得的抛物线C放在平面直角坐标系中,对称轴与x轴重合,顶点与原点重合,如图,若抛物线C的方程为y2=8x,平行于x轴的光线从点M(12,2)射出,经过C 上的点A反射后,再从C上的另一点B射出,则|MB|=( )A.6B.8C.D.29【解答】解:由M(12,2),可得A的纵坐标为2,设A(m,2),则4=8m,解得,由题意反射光线经过抛物线y2=8x的焦点(2,0),所以直线AB的方程为,整理可得,由,消去y整理得2x2﹣17x+8=0,解得,x2=8,则,所以B(8,﹣8),所以.故选:C.24.(2023•平江县校级模拟)已知抛物线C:y2=4x,焦点为F,点M是抛物线C上的动点,过点F作直线(a﹣1)x+y﹣2a+1=0的垂线,垂足为P,则|MF|+|MP|的最小值为( )A.B.C.5D.3【解答】解:∵抛物线C的方程为y2=4x,∴F(1,0),抛物线C的准线方程为x=﹣1,∵方程(a﹣1)x+y﹣2a+1=0可化为y﹣1=(1﹣a)(x﹣2),∴(a﹣1)x+y﹣2a+1=0过定点B(2,1),设P(x,y),设F,B的中点为A,则,因为FP⊥BP,P为垂足,∴,所以,即点P的轨迹为以A为圆心,半径为的圆,过点M作准线x=﹣1的垂线,垂足为M1,则|MM1|=|MF|,∴|MF|+|MP|=|MM1|+|MP|,又,当且仅当M,P,A三点共线且P在M,A之间时等号成立,∴,过点A作准线x=﹣1的垂线,垂足为A1,则,当且仅当A1,M,A三点共线时等号成立,∴,当且仅当A1,M,P,A四点共线且P在M,A之间时等号成立,所以|MF|+|MP|的最小值为,故选:A.25.(2023•张家口三模)已知F为抛物线C:y2=3x的焦点,过F的直线l交抛物线C于A,B两点,若|AF|=λ|BF|=λ,则λ=( )A.1B.C.3D.4【解答】解:如图,过A作AA1准线于A1,过B作BB1准线于B1,由抛物线C:y2=3x的焦点,准线方程为,由抛物线的定义可得,所以,代入抛物线方程得,若,直线AB的斜率为,则直线AB方程为,即,联立,得16x2﹣40x+9=0,则,所以,则;若,直线AB的斜率为,则直线AB方程为,即,联立,得16x2﹣40x+9=0,则,所以,则;综上,λ=3.故选:C.26.(2023•商丘三模)已知抛物线C:y2=2px(p>0)的准线为l:x=﹣1,焦点为F,过点F的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,点P在l上的射影为P1,则下列结论错误的是( )A.若x1+x2=5,则|PQ|=7B.以PQ为直径的圆与准线l相切C.设M(0,1),则|PM|+|PP1|≥D.过点M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条【解答】解:因为抛物线C:y2=2px(p>0)的准线为l:x=﹣1,所以,即p=2,所以抛物线C的方程为y2=4x,焦点F(1,0),若直线的斜率存在,设y=k(x﹣1),由,消去y,整理得k2x2﹣(2k2+4)x+k2=0,所以,x1x2=1,对于A选项:若x1+x2=5,则|PQ|=x1+x2+2=7,故A选项正确;对于B选项:取PQ的中点N,N在l上的投影为N′,Q在l的投影为Q′,根据抛物线的性质|PP1|=|PF|,|QQ′|=|QF|,NN′为梯形的中位线,故,故B选项正确;对于C选项:M(0,1),,故C选项正确;对于D选项:过M(0,1)且与抛物线相切的直线有两条,过M(0,1)且与x轴平行的直线与抛物线相交有且有一个交点,所以至多有三条,故D选项错误.故选:D.27.(2023•徐汇区校级三模)已知抛物线C:x2=﹣2py(p>0)的焦点F与的一个焦点重合,过焦点F的直线与C交于A,B两不同点,抛物线C在A,B两点处的切线相交于点M,且M的横坐标为4,则弦长|AB|=( )A.16B.26C.14D.24【解答】解:由题意可得,F(0,﹣2),则p=4,抛物线C的方程为x2=﹣8y.设直线AB的方程为y=kx﹣2,A(x1,y1),B(x2,y2),其中y1=﹣,y2=﹣,由y=﹣,得y′=﹣.∴在点A处的切线方程为y﹣y1=﹣(x﹣x1),化简得y=﹣x+,①同理可得在点B处的切线为y=﹣x+,②联立①②得x M=,由M的横坐标为4,得x1+x2=8.将AB的方程代入抛物线方程,可得x2+8kx﹣16=0.∴x1+x2=﹣8k=8,得k=﹣1.∴y1+y2=k(x1+x2)﹣4=﹣1×8﹣4=﹣12.得|AB|=p﹣(y1+y2)=4﹣(﹣12)=16.故选:A.28.(2023•琼海校级模拟)已知抛物线y2=2px(p>0)上的点到其焦点的距离为4,则p=( )A.1B.2C.3D.4【解答】解:因为点在y2=2px(p>0)上,所以4p=2pm,得到m=2,又点到其焦点的距离为4,根据抛物线定义知,得到p=4,故选:D.29.(2023•沙坪坝区校级二模)已知抛物线y2=4x的准线过双曲线的左焦点,点P为双曲线的渐近线和抛物线的一个公共点,若P到抛物线焦点的距离为5,则双曲线的方程为( )A.B.C.x2﹣y2=2D.2x2﹣2y2=1【解答】解:由题意知,抛物线y2=4x的准线方程为x=﹣1,所以双曲线的左焦点坐标为(﹣1,0),所以双曲线的c=1.又因为点P为双曲线的渐近线和抛物线的一个公共点,若P到抛物线焦点的距离为5,所以x P+1=5,所以x P=4,代入抛物线方程即可得P(4,4).因为P(4,4)在双曲线的渐近线方程上,所以a=b,又因为双曲线中,c2=a2+b2,所以,所以双曲线的方程为:2x2﹣2y2=1.故选:D.30.(2023•浙江模拟)已知抛物线C:y2=4x的焦点为F,直线l过焦点F与C交于A,B两点,以AB为直径的圆与y轴交于D,E两点,且,则直线l的斜率为( )A.B.±1C.±2D.【解答】解:设|AB|=2r(2r≥4),AB的中点为M,MN⊥y轴于点N,过A,B作准线x=﹣1的垂线,垂足分别为A1,B1,如图所示.由抛物线的定义知2(|MN|+1)=|AA1|+|BB1|=|AF|+|BF|=|AB|=2r,则|MN|=r﹣1,所以,即16r2﹣50r+25=0,解得或(舍去),故M的横坐标为.设直线l:y=k(x﹣1),A(x1,y1),B(x2,y2),将y=k(x﹣1)代人y2=4x,得k2x2﹣(2k2+4)x+k2=0,则,解得k=±2.故选:C.31.(2023•香洲区校级模拟)首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ和一段圆弧组成,如图所示.假设圆弧所在圆的方程为C:(x+25)2+(y﹣2)2=162,若某运动员在起跳点M以倾斜角为45o且与圆C相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为( )A.y2=﹣32(x﹣1)B.C.x2=﹣32(y﹣1)D.x2=﹣36y+4【解答】解:∵某运动员在起跳点M以倾斜角为45o且与圆C相切的直线方向起跳,∴k CM=﹣1,∴直线CM所在的方程为:y﹣2=﹣(x+25),代入(x+25)2+(y﹣2)2=162,解得或(舍),∴点M的坐标为(﹣16,﹣7).设抛物线方程为:y=ax2+c,则y′=2ax|x=﹣16=﹣32a=1,∴,又,解得c=1,∴该抛物线的轨迹方程为.故选:C.32.(2023•武功县校级模拟)已知点F为抛物线C:y2=2px(p>0)的焦点,过点F且倾斜角为60°的直线交抛物线C于A,B两点,若|FA|•|FB|=3,则p= .【解答】解:由题意知F(,0),AB的方程为y=(x﹣),代入C的方程,得3x2﹣5px+=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=;因为|FA|=+x1,|FB|=+x2,且|FA|⋅|FB|=3,所以(+x1)(+x2)=3,整理得以+•(x1+x2)+x1x2=3,所以+•+=3,结合p>0,解得p=.故答案为:.33.(2023•招远市模拟)设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过点F的直线交C 于M,N两点,直线MD垂直x轴,|MF|=3,则|NF|= .【解答】解:由题意得,因为直线MD垂直于x轴,D(p,0),准线方程为,所以M点的横坐标为p,设M(x1,y1),N(x2,y2),根据抛物线的定义知,解得p=2,则C:y2=4x,则F(1,0),可设直线MN的方程为x﹣1=my,联立抛物线方程有可得y2﹣4my﹣4=0,Δ=16m2+16>0,y1y2=﹣4,则,则32x2=16,解得,则.故答案为:.34.(2023•武昌区校级模拟)已知直线l与抛物线C:y2=4x交于A,B两点(与坐标原点O均不重合),且OA⊥OB,抛物线的焦点为F,记△AOB、△AOF、△BOF的面积分别为S1,S2,S3,若满足S1=6S2+3S3,则直线l的方程为 .【解答】解:由已知可设直线OA方程为y=kx,又OA⊥OB,OB方程为,由,解得,由,解得B(4k2,﹣4k),,,令y=0,得x=4,∴直线l与x轴交点M(4,0),,.,∵S1=6S2+3S3,∴,解得,,∴直线l的方程,即或.35.(2023•保定三模)设O为坐标原点,点A(2,4),B在抛物线y2=2px(p>0)上,F为焦点,M是线段BF上的点,且,则当直线OM的斜率最大时,点F到OM的距离为( )A.B.C.D.【解答】解:∵A(2,4)在抛物线y2=2px(p>0)上,∴p=2,则抛物线方程为y2=8x,求得F(2,0),设M(x0,y0),当y0<0时,k OM<0,当y0>0时,k OM>0.则要求直线OM的斜率的最大值,有y0>0.设B(m,n),∵,∴(x0﹣m,y0﹣n)=2(2﹣x0,﹣y0),则,∵B在抛物线上,∴n2=8m,得9=8(3x0﹣4),即,∵y0>0,∴=,当且仅当,即时等号成立,故直线OM的斜率的最大值为,此时直线OM的方程为,则点F到OM的距离为.故选:D.36.(2023•湖北模拟)已知抛物线y2=2px(p>0)的焦点为F,过点F的直线与该抛物线交于A,B两点,的中点纵坐标为,则p= .【解答】解:设过抛物线y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,AB 的中点纵坐标为y0=,抛物线的焦点为F(,0),直线l的斜率不为零,可设直线l的方程:x=my+,由,得(y1﹣y2)(y1+y2)=2p(x1﹣x2),所以====,所以直线l的方程为x=y+,所以AB中点的横坐标为x0=×+=,所以|AB|=x1+x2+p=2x0+p=2×+p=5,2p2﹣5p+4=0,解得p=2或p=.故答案为:2或.37.(多选)(2023•道里区校级四模)已知A,B是抛物线C:y2=6x上的两动点,F是抛物线的焦点,下列说法正确的是( )A.直线AB过焦点F时,以AB为直径的圆与C的准线相切B.直线AB过焦点F时,|AB|的最小值为6C.若坐标原点为O,且OA⊥OB,则直线AB过定点(3,0)D.若直线AB过焦点F,AB中点为P,过P向抛物线的准线作垂线,垂足为Q,则直线AQ与抛物线相切【解答】解:∵抛物线C方程为:y2=6x,∴2p=6,∴p=3,∴=,∴焦点F(,P),准线l为:x=,对A,B,D选项,∵直线AB过焦点F,∴设直线AB方程为x=my+,设A(x1,y1),B(x2,y2),AB的中点P为(x0,y0),联立,可得y2﹣6my﹣9=0,∴,∴,∴|AB|=x1+x2+p=6m2+3+3=6(m2+1)≥6,(当且仅当m=0时取等),∴B选项正确;又P到准线l的距离d===3(m2+1)=|AB|,∴以AB为直径的圆与C的准线相切,∴A选项正确;若直线AB过焦点F,AB中点为P,过P向抛物线的准线作垂线,垂足为Q,则Q(,3m),∴=,又,∴3m=,∴=,对y2=6x两边关于x求导可得:2yy′=6,∴,抛物线C:y2=6x在A(x1,y1)处的切线斜率为=k AQ,∴直线AQ与抛物线相切,∴D选项正确;对C选项,设AB直线为x=my+t,(t≠0),联立,可得y2﹣6my﹣6t=0,设A(x1,y1),B(x2,y2),则,∴,又OA⊥OB,∴,即(x1,y1)•(x2,y2)=0,∴x1x2+y1y2=0,∴t2﹣6t=0,又t≠0,∴t=6,∴AB直线为x=my+6,∴直线AB过定点(6,0),∴C选项错误.故选:ABD.38.(2023•河南模拟)已知点P(1,a)(a>1)在抛物线C:y2=2px(p>0)上,过P作圆(x﹣1)2+y2=1的两条切线,分别交C于A,B两点,且直线AB的斜率为﹣1,若F为C的焦点,点M(x,y)为C上的动点,点N是C的准线与坐标轴的交点,则的最大值是( )A.B.2C.D.【解答】解:由题意可知,过P所作圆的两条切线关于直线x=1对称,所以k PA+k PB=0.设A(x1,y1),B(x2,y2),P(x P,y P),则,同理可得,,则,得,所以y1+y2=﹣2y P,由,得y P=p.将(1,p)代入抛物线C的方程,得p2=2p,解得p=2,故抛物线C的方程为y2=4x.设∠MNF=θ,作MM1垂直准线于M1,由抛物线的性质可得|MM1|=|MF|,所以,当cosθ最小时,的值最大,所以当直线MN与抛物线C相切时,θ最大,即cosθ最小.由题意可得N(﹣1,0),设切线MN的方程为x=my﹣1,联立方程组消去x,得y2﹣4my+4=0,由Δ=16m2﹣16=0,可得m=±1,将m=±1代入y2﹣4my+4=0,可得y=±2,所以x=1,即M的坐标为(1,±2),所以,|MM1|=1﹣(﹣1)=2,所以的最大值为.故选:A.39.(2023•达州模拟)点A(x0,y0)(x0>1,y0<0),B,C均在抛物线y2=4x上,若直线AB,AC分别经过两定点(﹣1,0),M(1,4),则BC经过定点N.直线BC,MN分别交x轴于D,E,O为原点,记|OD|=a,|DE|=b,则的最小值为( )A.B.C.D.【解答】解:如图,由题易知直线AB,AC斜率均存在,设直线AB方程为,由,消x得,即,由韦达定理得,所以,代入y2=4x,得到,所以,设直线方程为,由,消x得,即,由韦达定理得,所以,又因为,所以,代入y2=4x,得到,所以,所以直线BC的斜率为,所以BC的方程为,即所以,即,故直线BC过定点N(1,1),令y=0,得到,所以,所以,又因为x0>1,y0<0,所以,所以,又|OD|=a,|DE|=b,所以,又由柯西不等式知,当且仅当,即时,取等号,所以,即.故选:D.40.(2023•鲤城区校级模拟)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于A,B两点,以线段AB为直径的圆交y轴于M,N两点,设线段AB的中点为P,O为坐标原点,则sin∠PMN的最小值为 .【解答】解:由y2=4x得F(1,0),由题意知直线l的斜率不为0,所以设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),联立,消去x得y2﹣4my﹣4=0,则由韦达定理得,所以,所以|AB|=x1+x2+p=4m2+4,所以|PM|==2m2+2,又P点到y轴的距离d==2m2+1,所以sin∠PMN===1﹣,所以当m=0时,sin∠PMN取得最小值.故答案为:.三.直线与抛物线的综合(共20小题)41.(2023•遂宁模拟)已知定点D(2,0),直线l:y=k(x+2)(k>0)与抛物线y2=4x交于两点A,B,若∠ADB=90°,则|AB|=( )A.4B.6C.8D.10【解答】解:设A(x1,y1),B(x2,y2),联立,由题意得Δ>0,故,则,又,则x1x2﹣2(x1+x2)+y1y2+4=0,即,解得,则,则.故选:C.42.(2023•贵州模拟)已知抛物线C:y2=8x的焦点为F,过F的直线l与抛物线C交于A,B两点,若A (1,2),则|AB|=( )A.9B.7C.6D.5【解答】解:由题意直线l的斜率必存在,抛物线C:y2=8x的焦点为F(2,0),设直线l:y=k(x﹣2),则,得k2x2﹣(4k2+8)x+4k2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=4,又A(1,2),则x1=1,x24,k2=8,|AB|=•=3×3=9.故选:A.43.(2023•黄州区校级三模)抛物线C:y2=2px的准线与x轴交于点M,过C的焦点F作斜率为2的直线交C于A、B两点,则tan∠AMB=( )A.B.C.D.不存在【解答】解:抛物线C:y2=2px的焦点F(,0),M(﹣,0),可知AB方程y=2(x﹣),AB的方程与y2=2px联立,消去y可得4x2﹣6px+p2=0,可得x=或,∴A(,),B(,),∴k AM==,k BM=﹣,∴tan∠AMB===4.故选:C.44.(2023•深圳模拟)已知F为抛物线C:y2=4x的焦点,直线l:y=k(x+1)与C交于A,B两点(A 在B的左边),则4|AF|+|BF|的最小值是( )A.10B.9C.8D.5【解答】解:由题知C的焦点,F(1,0),准线为x=﹣1,如图,作AM⊥准线,BN⊥准线,l:y=k (x+1)过定点(﹣1,0),设A(x1,y1),B(x2,y2),联立,得k2(x2+2x+1)﹣4x=0,即k2x2+(2k2﹣4)x+k2=0,∴,又∵|AF|=|AM|=x1+1,|BF|=|BN|=x2+1,∴,当且仅当4x1=x2时取等,故选:B.45.(2023•万州区校级模拟)过抛物线C:y2=2px(p>0)的焦点F,作倾斜角为的直线l交C于A,B两点,交C的准线于点M,若(O为坐标原点),则线段AB的长度为( )A.8B.16C.24D.32【解答】解:抛物线C:y2=2px(p>0)的焦点F(,0),作倾斜角为的直线l:y=(x﹣),抛物线的准线方程为x=﹣,可得M(﹣,),又,可得=,解得p=4,,消去y可得x2﹣28x+4=0,设A(x1,y1),B(x2,y2),可得x1+x2=28,所以|AB|=x1+x2+p=28+4=32.故选:D.46.(2023•茂名二模)已知抛物线y2=6x的焦点为F,准线为l,过F的直线与抛物线交于点A、B,与直线l交于点D,若且,则λ= .【解答】解:设准线与x轴的交点为K,作AA1⊥l,BB1⊥l,垂足分别为A1,B1,则BB1∥FK∥AA1.根据抛物线定义知|BB1|=|BF|,|AA1|=|AF|,又若,且,因为BB1∥FK∥AA1,设|BF|=m,则,∴,又p=3,解得m=2,∴|AF|=λ|FB|=2λ,所以|BA|=2+2λ,因为BB1∥FK∥AA1,所以,∴,解得λ=3.故答案为:3.47.(2023•昆明一模)已知抛物线C:y2=4x的焦点为F,经过抛物线上一点P,作斜率为的直线交C 的准线于点Q,R为准线上异于Q的一点,当∠PQR=∠PQF时,|PF|= .【解答】解:不妨令R为过P点垂直于准线的垂足,又∠PQR=∠PQF,即QF为∠FQR角平分线,Q是斜率为的直线与抛物线准线的交点,则P在第一象限内,而PR⊥QR,且|PR|=|PF|,根据角平分线性质知:PF⊥QF,如上图示,令且m>0,则直线PQ为,令x=﹣1,则,由,整理可得3m3﹣8m2+12m﹣32=(m2+4)(3m﹣8)=0,则,故故答案为:.48.(2023•江西二模)2022北京冬奥会顺利召开,滑雪健将谷爱凌以2金1银的优秀成绩书写了自己的传奇,现在她从某斜坡上滑下,滑过一高度不计的滑板后落在另一斜坡上,若滑板与水平地面夹角的正切值为,斜坡与水平地面夹角的正切值为,那么她最后落在斜坡上速度与水平地面夹角的正切值为( )(不计空气阻力和摩擦力)A.3B.C.D.4。
高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.过抛物线的焦点作直线与此抛物线相交于、两点,是坐标原点,当时,直线的斜率的取值范围是()A.B.C.D.【答案】D【解析】由题可知,点的横坐标时,满足,此时,故直线(即直线)的斜率的取值范围是.故选D.【考点】抛物线的几何性质以及直线与抛物线的位置关系.2.抛物线y=2ax2(a≠0)的焦点是( )A.(,0)B.(,0)或(-,0)C.(0,)D.(0,)或(0,-)【答案】C【解析】将方程改写为,可知2p=,当a>0时,焦点为(0,),即(0,);当a<0时,焦点为(0,-),即(0,);综合得,焦点为(0,),选C考点:抛物线的基本概念3.设F(1,0),M点在x轴上,P点在y轴上,且=2,⊥,当点P在y轴上运动时,点N的轨迹方程为()A.y2=2x B.y2=4xC.y2=x D.y2=x【答案】B【解析】设M(x0,0),P(0,y),N(x,y),∵⊥,=(x0,-y),=(1,-y0),∴(x0,-y)·(1,-y)=0,∴x0+y2=0.由=2,得(x-x0,y)=2(-x,y),∴即∴-x+=0,即y2=4x.故所求的点N的轨迹方程是y2=4x.故选B.4.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.【答案】(1)x2-x+y2=4(2)存在,(1,-2)和(1,2)【解析】(1)连接CP、OP,由·=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|.由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9.设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得到x2-x+y2=4.(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x.由方程组,得x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).5.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【答案】D【解析】由题意可知:直线AB的方程为,代入抛物线的方程可得:,设A、B,则所求三角形的面积为=,故选D.【考点】本小题主要考查直线与抛物线的位置关系,考查两点间距离公式等基础知识,考查同学们分析问题与解决问题的能力.6.若,则称点在抛物线C:外.已知点在抛物线C:外,则直线与抛物线C的位置关系是()A.相交B.相切C.相离D.不能确定【答案】A【解析】因为点在抛物线C:外,所以由与联立方程组消得:因此,所以直线与抛物线相交.【考点】直线与抛物线位置关系7.已知直线:与抛物线:交于两点,与轴交于,若,则_______.[【答案】【解析】解方程组得或,由得:.【考点】1、直线与圆锥曲线的关系;2、向量的运算.8.过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为,则()A.B.C.D.【答案】D【解析】由抛物线的定义得,,,故,,故,,又,故,从而.【考点】抛物线定义.9.已知直线交抛物线于两点.若该抛物线上存在点,使得为直角,则的取值范围为________.【答案】【解析】根据题意不妨设,则⊥∴∵为直角,点C与点A不同,∴∴∵∴10.如图,设抛物线的顶点为A,与x 轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在AOB内的概率是( )A.B.C.D.【答案】C【解析】解:设抛物线与轴正半轴及轴的正半轴所围成的区域的面积为则设事件“随机往M内投一点P,则点P落在AOB内”则,故选:C.【考点】1、定积分;2、几何概型.11.已知抛物线C:,点A、B在抛物线C上.(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.【答案】(1);(2)过定点【解析】(1)当直线斜率不存在时方程为,与的交点分别为M,N ,弦长。
高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为__________.【答案】.【解析】抛物线的焦点坐标为(0,2),所以双曲线的焦点在y轴上且c=2,所以双曲线的方程为,即a2=n>0,b2=-m>0,所以a=,又e=,解得n=1,所以b2=c2-a2=4-1=3,即-m=3,m=-3,所以双曲线的方程为,故答案为:.【考点】1.抛物线的简单性质;2.双曲线的简单性质.2.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.【答案】(1)见解析; (2) ;(3)直线PQ过定点E(1,-4).【解析】(1)设点根据、M、A三点共线,得计算得到=5;(2)设∠POM=α,可得结合三角形面积公式可得tanα="1."根据角的范围,即得所求.(3)设点、B、Q三点共线,据此确定进一步确定的方程,化简为得出结论.试题解析:(1)设点、M、A三点共线,2分5分(2)设∠POM=α,则由此可得tanα=1. 8分又 10分(3)设点、B、Q三点共线,即 12分即 13分由(*)式,代入上式,得由此可知直线PQ过定点E(1,-4). 14分【考点】抛物线及其几何性质,直线方程,直线与抛物线的位置关系,转化与化归思想.3.已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____ 。
【答案】2【解析】由题意可得,抛物线的焦点为,准线为.,为AB的中点.直线方程为,由题意可得,故由中点公式可得,把点B的坐标代入抛物线可得,解得.【考点】直线与抛物线的位置关系4.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.【答案】(1)-y2=1(2)(-1,-)∪(,1)【解析】(1)设双曲线C的方程为-=1(a>0,b>0).由已知得a=,c=2,再由c2=a2+b2得b2=1,所以双曲线C的方程为-y2=1.(2)将y=kx+代入-y2=1中,整理得(1-3k2)x2-6kx-9=0,由题意得,故k2≠且k2<1①.设A(xA ,yA),B(xB,yB),则xA+xB=,xAxB=,由·>2得xA xB+yAyB>2,x A xB+yAyB=xAxB+(kxA+)(kxB+)=(k2+1)xAxB+k(xA+xB)+2=(k2+1)·+k·+2=,于是>2,即>0,解得<k2<3②.由①②得<k2<1,所以k的取值范围为(-1,-)∪(,1).5.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为( )A.B.C.D.【答案】A【解析】圆的方程为,则其直径长圆心为,设的方程为,代入抛物线方程得:设,有∴线段的长按此顺序构成一个等差数列,,即,解得,故选A.【考点】1.抛物线的几何性质;2.直线与抛物线相交问题.6.已知F是抛物线的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.B.1C.D.【答案】C【解析】过A,B及线段AB的中点C向抛物线的准线作垂线,垂足分别为M,N,Q,CQ交y轴于T,由抛物线的定义知|AM|+|BN|=|AF|+|BF|=3,因为CQ是直角梯形AMNB的中位线所以CQ|=(|AM|+|BN)=,所以|CT|=|CQ|-|TQ|=-=7.已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.【答案】(1)y2=4x;(2)点N坐标为或.【解析】本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.试题解析:(1)由已知得,C(2,0).设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分【考点】抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质.8.如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.(1)若直线PQ过定点,求点A的坐标;(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.【答案】(1),(2)一个【解析】(1)确定抛物线标准方程只需一个独立条件,本题条件为已知通径长所以抛物线的方程为.直线过定点问题,实际是一个等式恒成立问题.解决问题的核心是建立变量的一个等式.可以考虑将直线的斜率列为变量,为避开讨论,可设的方程为,与联立消得,则,设点坐标为,则有,代入化简得:因此,点坐标为,(2)若三角形APQ为等腰直角三角形,则的中点与点A连线垂直于.先求出的中点坐标为,再讨论方程解的个数,这就转化为研究函数增减性,并利用零点存在定理判断零点有且只有一个.试题解析:(1)设抛物线的方程为,依题意,,则所求抛物线的方程为. (2分)设直线的方程为,点、的坐标分别为.由,消得.由,得,,.∵,∴.设点坐标为,则有.,,∴或.∴或, ∵恒成立. ∴.又直线过定点,即,代入上式得注意到上式对任意都成立,故有,从而点坐标为. (8分)(2)假设存在以为底边的等腰直角三角形,由第(1)问可知,将用代换得直线的方程为.设,由消,得.∴,.∵的中点坐标为,即,∵,∴的中点坐标为.由已知得,即.设,则,在上是增函数.又,,在内有一个零点.函数在上有且只有一个零点,所以满足条件的等腰直角三角形有且只有一个. (12分)【考点】直线与抛物线关系,零点存在定理9.在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则()A.9B.C.D.【答案】A【解析】由题意得,且.令,,则,所以,且,由此可解得.由抛物线的方程知焦点为,因此设直线的方程为,代入抛物线方程,得,解得或,所以由题意知,.由图形特征根据三角形相似易知.【考点】1、直线的斜率;2、直线方程;3、直线与抛物线的位置关系.10.抛物线y2=-8x的准线方程是________.【答案】x=2【解析】∵2p=8,∴p=4,故所求准线方程为x=2.11.下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽________m.【答案】2【解析】设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,即x=±,所以水面宽为2.12.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y).若点M到该抛物线焦点的距离为3,则|OM|等于()A.2B.2C.4D.2【答案】B【解析】由题意设抛物线方程为y2=2px(p>0),则M到焦点的距离为xM+=2+=3,∴p=2,∴y2=4x. ∴=4×2,∴|OM|===2.故选B.13.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=.【答案】2【解析】设A(x0,y),由抛物线定义知x+1=2,∴x=1,则直线AB⊥x轴,∴|BF|=|AF|=2.14.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于()(A) (B) (C) (D)2【答案】D【解析】法一设直线方程为y=k(x-2),A(x1,y1)、B(x2,y2),由得k2x2-4(k2+2)x+4k2=0,∴x1+x2=,x 1x2=4,由·=0,得(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+[k(x1-2)-2][k(x2-2)-2]=0,代入整理得k2-4k+4=0,解得k=2.故选D.法二如图所示,设F为焦点,取AB中点P,过A、B分别作准线的垂线,垂足分别为G、H,连接MF,MP,由·=0,知MA⊥MB,则|MP|=|AB|=(|AG|+|BH|),所以MP为直角梯形BHGA的中位线,所以MP∥AG∥BH,所以∠GAM=∠AMP=∠MAP,又|AG|=|AF|,|AM|=|AM|,所以△AMG≌△AMF,所以∠AFM=∠AGM=90°,则MF⊥AB,所以k=-=2.15.已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是() A.3B.4C.5D.6【答案】B【解析】圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,∵|PF|≥|CF|-1,∴当P、C、F三点共线时,|PF|取到最小值,由y2=4x知F(1,0),∴|PF|min=-1=4.故选B.16.已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为.【答案】x-2y+4=0【解析】点A在抛物线上,所以16=4p,所以p=4,所以抛物线的焦点为F(1,0),准线方程为x=-1,垂足M(-1,4),由抛物线的定义得|AF|=|AM|,所以∠MAF的平分线所在的直线就是线段MF的垂直平分线,kMF==-2,所以∠MAF的平分线所在的直线方程为y-4=(x-4),即x-2y+4=0.17.设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞)B.(4,+∞) C.(0,2)D.(0,4)【答案】A【解析】∵(x0,y)为抛物线C:y2=8x上一点,∴x≥0,又∵以F为圆心,|FM|为半径的圆和抛物线C的准线相交,∴在水平方向上,点M应在点F的右侧,∴x>2.18.过抛物线y2=2px(p>0)上一定点P(x0,y)(y>0)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,的值为.【答案】-2【解析】设直线PA的斜率为kPA ,PB的斜率为kPB,由=2px1,=2px,得kPA==,同理kPB=,由于PA与PB的斜率存在且倾斜角互补,因此=-,即y1+y2=-2y(y>0),那么=-2.19.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=()A.B.1C.2D.3【答案】C【解析】由已知(,0)在圆x2+y2+2x-3=0上,所以有+2×-3=0,即p2+4p-12=0,解得p=2或p=-6(舍去).20.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】作出图形,可知点(0,1)在抛物线y2=4x外.因此,过该点可作抛物线y2=4x的切线有两条,还能作一条与抛物线y2=4x的对称轴平行的直线,因此共有三条直线与抛物线只有一个交点.21.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值.(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.【答案】(1) b=-1 (2) (x-2)2+(y-1)2=4【解析】(1)由得x2-4x-4b=0(*)因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.(2)由(1)可知b=-1,故方程(*)为x2-4x+4=0.解得x=2,代入x2=4y,得y=1,故点A(2,1).因为圆A与抛物线C的准线相切,所以圆A的半径r就等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2,所以圆A的方程为(x-2)2+(y-1)2=4.22.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.2【答案】C【解析】设直线的倾斜角为及,∵,∴点到准线的距离为,∴,则.∴的面积为.故选C.【考点】抛物线的几何性质,直线与抛物线的位置关系.23.如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.(1)求证:MA⊥MB;(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.【答案】(1)见解析(2)【解析】(1)证明:设直线AB的方程为y=kx,A(x1,y1),B(x2,y2),则x2-kx-1=0,所以x1+x2=k,x1x2=-1.又·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-k2-1+k2+1=0,∴MA⊥MB.(2)设直线MA的方程为y=k1x-1,MB的方程为y=k2x-1,k1k2=-1.解得或∴A(k1,-1),同理可得B(k2,-1),∴S1=|MA||MB|=|k1k2|.又解得或∴D ,同理可得E . ∴S 2=|MD||ME|=.=λ==≥.故λ的取值范围是.24. 已知抛物线C :y 2=2px(p>0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP|=|PB|,求△FAB 的面积. 【答案】(1) y 2=8x (2) 24【解析】解:(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p×8, ∴2p =8,∴抛物线方程为y 2=8x. (2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A(x 1,y 1),B(x 2,y 2),且直线l 2与x 轴的交点为M. 由得y 2-8y -8m =0,Δ=64+32m>0,∴m>-2. y 1+y 2=8,y 1y 2=-8m , ∴ x 1x 2==m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴l 2:x =y +8,M(8,0).故S △FAB =S △FMB +S △FMA =·|FM|·|y 1-y 2|=3=24.25. 已知抛物线方程为x 2=4y ,过点M (0,m )的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,且x 1x 2=-4,则m 的值为________. 【答案】1【解析】设直线方程为y =kx +m ,代入抛物线方程得x 2-4kx -4m =0,所以x 1x 2=-4m ,所以m =1.26. 抛物线的焦点坐标是( ) A .(2,0) B .(0,2) C .(l ,0) D .(0,1)【答案】D 【解析】因为,所以,因为焦点在的正半轴,所以焦点坐标为即。
高中数学抛物线经典例题(含解析)

抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题21 抛物线(解答题压轴题)1.(2021·全国高三模拟预测)在平面直角坐标系xOy 中,抛物线E :()220y px p =>上一点00(4,)(0)S y y >到焦点F 的距离5SF =.不经过点S 的直线l 与E 交于A ,B . (1)求抛物线E 的标准方程;(2)若直线AS ,BS 的斜率之和为2,证明:直线l 过定点. 【答案】(1)24y x =;(2)证明见解析. 【详解】(1)抛物线E :()220y px p =>的焦点,02p F ⎛⎫ ⎪⎝⎭,准线方程为2p x =-,因为抛物线上一点00(4,)(0)S y y >到焦点F 的距离5SF =, 由抛物线的定义得452p+=,所以2p =. 所以抛物线E 的标准方程是24y x =;(2)将4x =代入24y x =可得04y =或04y =-(舍),所以点S 坐标为(4,4), 因为直线l 的斜率不等于0,设直线l 的方程是x my n =+,()11,A x y ,()22,B x y ,联立24y x x my n⎧=⎨=+⎩,得2440y my n --=,因为直线l 与E 有两个交点,所以216160m n ∆=->,即20m n ->.由韦达定理得121244y y my y n +=⎧⎨=-⎩,因为直线AS ,BS 的斜率之和为2,所以121222121212444411444444444y y y y y y x x y y ⎛⎫----+=+=+ ⎪--++⎝⎭-- 1212124(8)24()16y y y y y y ++==+++,所以121224()0y y y y ++=,将121244y y m y y n+=⎧⎨=-⎩代入上式可得:8160n m -+=,即2n m =, 所以直线l 的方程是()2x my n m y =+=+,它过定点()0,2-.2.(2021·全国高三月考(理))已知直线l 过原点O ,且与圆A 交于M ,N 两点,4MN =,圆A 与直线2y =-相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C . (1)求C 的方程;(2)过直线1y =-上任一点P 作C 的两条切线,切点分别为1Q ,2Q ,证明: ①直线12Q Q 过定点; ②12PQ PQ ⊥.【答案】(1)24(0)x y y =≠;(2)①证明见解析;②证明见解析. 【详解】(1)解:如图,设(,)A x y ,因为圆A 与直线2y =-相切,所以圆A的半径为|2|y +.由圆的性质可得222||||||OA ON AN +=,即2224(2)x y y ++=+,化简得24x y =. 因为O 与A 不重合,所以0y ≠, 所以C 的方程为24(0)x y y =≠.(2)证明:①由题意可知1Q ,2Q 与O 不重合.如图,设(,1)P t -,()111,Q x y ,则2114x y =,因为2xy '=,所以切线1PQ 的斜率为12x , 故11112x y x t+=-,整理得11220tx y -+=. 设()222,Q x y ,同理可得22220tx y -+=. 所以直线12Q Q 的方程为220tx y -+=, 所以直线12Q Q 过定点(0,1).②因为直线12Q Q 的方程为220tx y -+=,由2220,4,tx y x y -+=⎧⎨=⎩消去y 得2240x tx --=, 所以122x x t +=,124x x =-.又()()()()12121211PQ PQ x t x t y y ⋅=--+++ ()2121212221122tx tx x x t x x t ++⎛⎫⎛⎫=-+++++ ⎪⎪⎝⎭⎝⎭()21212122222t t x x t x x t x x ⎛⎫⎛⎫=-+++++ ⎪⎪⎝⎭⎝⎭()()221212121244t x x t x x t x x t x x =-++++++2212144t x x t ⎛⎫=+++ ⎪⎝⎭0=,所以12PQ PQ .3.(2021·安徽高三开学考试(理))已知中心在坐标原点O ,焦点在xC 过点1)2.(1)求C 的标准方程;(2)是否存在不过原点O 的直线:l y kx m =+与C 交于,P Q 两点,使得直线OP 、PQ 、OQ 的斜率成等比数列、若存在,求k 的值及m 的取值范围;若不存在,请说明理由.【答案】(1)2214x y +=;(2)存在,12k =±,m的取值范围为(1)(1,0)(0,1)-⋃-⋃⋃.【详解】(1)设C 的标准方程为22221x y a b +=(a >b >0),由题意得,222223114a b cc e a a b ⎧=+⎪⎪⎪==⎨⎪⎪+=⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴C 的标准方程为2214x y +=(2)联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得222(14)84(1)0k x kmx m +++-=(m ≠0), 设1122(,),(,)P x y Q x y ,则122841km x x k +=-+,21224(1)41m x x k -=+∴2212121212()()()y y kx m kx m k x x mk x x m =++=+++∵OP ,PQ ,OQ 的斜率成等比数列,∴2OP OQ PQ k k k ⋅=,∴21212y y k x x ⋅=, ∴21212y y k x x =,∴12()0k x x m ++=,∴228041k mm k -+=+,解得12k =± ∵22222(8)4(41)4(1)16(41)0km k m k m ∆=-+⨯-=-+>, ∴2224120k m m -+=->,解得m <, ∵120x x ≠,∴210m -≠,解得1m ≠±.综上,12k =±,m的取值范围为(1)(1,0)(0,1)-⋃-⋃⋃.4.(2021·全国高三专题练习)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F右侧的点,点A 为抛物线C 在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(12)16. 【详解】 (1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-,进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444M N M N A M A M AM MN A M N M A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴=(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t t t+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---=所以点N 到直线AM 的距离为()()()222221211t t d tt t++===+, ()332331122216AMNtS t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16.5.(2021·全国高三月考(理))已知抛物线()220x py p =>上一点()02,P y 到其焦点F 的距离为2,过点(),0T t ()0t >作两条斜率为1k ,2k 的直线1l ,2l 分别与该抛物线交于A ,B 与C ,D 两点,且120k k +=,FAB FCD S S =△△.(Ⅰ)求抛物线的方程; (Ⅱ)求实数t 的取值范围. 【答案】(Ⅰ)24x y =;(Ⅱ)()()0,11,2【详解】(Ⅰ)由抛物线()220x py p =>上一点()02,P y 到其焦点F 的距离为2,所以004222py py =⎧⎪⎨+=⎪⎩,解得2p =, 故抛物线的方程为24x y =;(Ⅱ)设直线()11:l y k x t =-,与抛物线24x y =联立,可得211440x k x k t -+=,设()11,A x y ,()22,B x y , 则1214x x k +=,1214x x k t =,所以12AB x =-== 点F 到直线1l的距离为1d =,所以111122FABSAB d k t =⋅=⨯=+,同理可得2FCDSk t =+,因为120k k +=,且FAB FCD S S =△△所以12k t k t+=+,整理可得:()22121k t -=,即21212k t=-,所以22t <,所以0t <<由211122221644016440k k t k k t ⎧∆=-⨯>⎨∆=-⨯>⎩可得221k t >, 即2212t t >-,即()2210t ->,所以1t ≠, 综上所述,t 的取值范围为()()0,11,2.6.(2021·浙江瑞安中学高三模拟预测)已知抛物线()21:20C y px p =>和右焦点为F 的椭圆222:143x y C +=.如图,过椭圆2C 左顶点T 的直线交抛物线1C 于,A B 两点,且2AB TA =.连接AF 交2C 于两点,M N ,交1C 于另一点C ,连BC ,Q 为BC 的中点,TQ 交AC 于D .(1)证明:点A 的横坐标为定值;(2)记CDT ∆,QMN ∆的面积分别为1S ,2S,若12S S = 【答案】(1)证明见解析;(2)2124y x =. 【详解】(1)证明:由题意知,()2,0T -,直线TA 的斜率存在设为k ,()()1122,,,A x y B x y ,不妨设直线TA 的方程为()()20y k x k =+>,与抛物线方程联立得()222y k x y px ⎧=+⎨=⎩,整理得,()22224240k x k p x k +-+=,则21212224,4p k x x x x k -+==,因为2AB TA =, 所以1213y y =,则21122219x y x y ==,设()10x a a =>,则29x a =,则21294x x a==,则23a =或23-(舍去),所以123x =,即点A 的横坐标为定值.(2)由(1)知,()28,,6,833A k B k ⎛⎫⎪⎝⎭,()1,0F ,则直线AF 的方程为()81y k x =-- ,与椭圆联立得()2214381x y y k x ⎧+=⎪⎨⎪=--⎩,整理得()22223256512256120k x k x k +-+-=,设()()3344,,,M x y N x y ,则2234342251225612,32563256k k x x x x k k -+==++, 则()22121643256k MN k++,直线AF 与抛物线联立得()2281y px y k x ⎧=⎪⎨=--⎪⎩,整理得,()2222641282640k x k p x k -++=,设()55,C x y ,则5213x ⋅=,所以532x =,即3,42C k ⎛⎫- ⎪⎝⎭,则15,24Q k ⎛⎫ ⎪⎝⎭, 所以直线TQ 的方程为()8223k y x =+,与直线AF 联立得()()822381k y x y k x ⎧=+⎪⎨⎪=--⎩, 解得2124x y k⎧=⎪⎨⎪=⎩,则21,24D k ⎛⎫ ⎪⎝⎭,即CD ==T 到AF的距离1d ==,Q 到AF的距离2d =,则1112S CD d =,2212S MN d =,所以12CD S S MN =2121643256k k =++,整理得,24252563584190k k ⨯+-=,解得21256k =,则116k =, 所以21,36A ⎛⎫ ⎪⎝⎭,又21,36A ⎛⎫ ⎪⎝⎭在抛物线上,则212263p ⎛⎫=⋅ ⎪⎝⎭,解得148p =.则抛物线的方程为2124y x =. 7.(2021·全国高三专题练习(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB ∆面积的最大值. 【答案】(1)2p =;(2)【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=8.(2021·浙江省杭州第二中学高三模拟预测)已知抛物线()2:20C y px p=>经过点(2,,P 是圆()22:11M x y ++=上一点,PA 、PB 都是C 的切线.(1)求抛物线C 的方程及其准线方程; (2)求PAB ∆的面积的最大值.【答案】(1)抛物线C 的方程为24y x =,准线方程为1x =-;(2)【详解】(1)将点(2,的坐标代入抛物线C 的方程为228p ⨯=,解得2p =, 所以,抛物线C 的方程为24y x =,该抛物线的准线方程为1x =-;(2)先证明抛物线C 在其上一点()00,Q x y 处的切线方程为00220x y y x -+=.证明如下:由于点()00,Q x y 在抛物线C 上,则2004y x =,联立2004220y x x y y x ⎧=⎨-+=⎩,可得200202y y y x -+=,即220020y y y y -+=,则2200440y y ∆=-=,所以,抛物线C 在其上一点()00,Q x y 处的切线方程为00220x y y x -+=. 设点()11,A x y 、()22,B x y 、()33,P x y ,则直线PA 的方程为11220x y y x -+=,直线PB 的方程为22220x y y x -+=,因为点P 在直线PA 、PB 上,所以,31313232220220x y y x x y y x -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程33220x y y x -+=,由于两点确定一条直线,故直线AB 的方程为33220x y y x -+=,联立2334220y x x y y x ⎧=⎨-+=⎩,消去x 可得233240y y y x -+=,由韦达定理可得1232y y y +=,1234y y x =,所以,12AB y y -=点P 到直线AB的距离为d =所以,()3223311422PABS AB d y x =⋅==-△, 另一方面,()22233333342439y x x x x x -=---=-++,其中320x -≤≤, 所以,当32x =-时,2334y x -取得最大值8,因此,()3322233114822PABS y x =-≤⨯=△9.(2021·广东汕头·高三三模)已知圆()22:21C x y +-=与定直线:1l y =-,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线1:2l y =-上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B . ①求证:直线AB 过定点; ②求证:PCA PCB ∠=∠.【答案】(1)28x y =;(2)①证明见解析;②证明见解析. 【详解】(1)依题意知:M 到()0,2C 的距离等于M 到直线2y =-的距离,∴动点M 的轨迹是以C 为焦点,直线2y =-为准线的抛物线,设抛物线方程为()220x py p =>,则22p=,则4p =,即抛物线的方程为28x y =, 故:动圆圆心M 的轨迹E 的方程为:28x y =;(2)①由28x y =得:218y x =,14y x '∴=,设2111,8A x x ⎛⎫ ⎪⎝⎭、2221,8B x x ⎛⎫⎪⎝⎭,(),2P t -,其中12x x ≠,则切线PA 的方程为()2111184x y x x x -=-,即2111148y x x x =-,同理,切线PB 的方程为2221148y x x x =-, 由21122211481148y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121228x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,1212228x x t x x +⎧=⎪⎪∴⎨⎪-=⎪⎩,即1212216x x t x x +=⎧⎨=-⎩,2111,8A x x ⎛⎫ ⎪⎝⎭、()222121,8B x x x x ⎛⎫≠ ⎪⎝⎭,∴直线AB 的方程为()222121121111888x x y x x x x x --=--,化简得121288x x x x y x +=-, 即24ty x =+, 故直线AB 过定点()0,2; ②由①知:直线AB 的斜率为4AB t k =, (i )当直线PC 的斜率不存在时,直线AB 的方程为2y =,PC AB ∴⊥,PCA PCB ∴∠=∠; (ii )当直线PC 的斜率存在时,(),2P t -、()0,2C ,∴直线PC 的斜率2240PC k t t --==--,414AB PC t k k t-∴⋅=⨯=-, PC AB ∴⊥,PCA PCB ∴∠=∠.综上所述:PCA PCB ∠=∠得证.10.(2021·河南郑州·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于,A B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率; (2)若02y ≥,求PAB ∆面积的最小值. 【答案】(1)3±;(2)最小值为2. 【详解】(1)由题意,可设切线PB 的方程为y kx m =+,代入抛物线的方程得2440x kx m --=, 由相切的条件得:216160k m ∆=+=,即20k m +=,由直线与圆相切可得圆心到直线距离1d ==,即222k m m =+,∴230m m +=,可得3m =-或0m =,∵当0m =时,有PB 的方程为0y =,此时(0,0)P 与圆E 的有且仅有一条切线, ∴3m =-,舍去0m =,故23k =,即3k =±.(2)设切线方程为00()y y k x x -=-,即000kx y y kx -+-=,圆心到直线距离1d ==,整理得222000000(1)(22)20k x x y x k y y --+++=,而220004(2)0x y y ∆=++>(02y ≥),设PA ,PB 斜率分别为12,k k ,则20000012122200222+,,11x y x y y k k k k x x ++=⋅=-- 令y =0,得000012,A B y yx x x x k k =-=-,0000120000121212000|||()()|||||y y y y k k AB x x y y k k k k k k -=---=-=⋅==00011||22PABSAB y y =⋅== 令222(6)(),2(2)y y y f y y y +=≥+,2232(4+18()0(2)y y y f y y +'=>+),则()f y 在[2,)+∞上单调递增,即min ()(2) 4.f y f ==∴PABS的最小值为2.11.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程; (2)求点A 到直线l 的距离的最小值.【答案】(1)焦点坐标()0,1,准线方程1y =-;(2. 【详解】(1)抛物线的标准方程为24x y =,所以其焦点坐标()0,1,准线方程1y =-;(2)已知204x y =,则点A 处的切线方程:20024x x y x =-,因为过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线所以()202222004124x t x t x x x t t t ⎧-⎪⋅=-⎪⎪-⎨⎪⎛⎫⎪-+-= ⎪⎪⎝⎭⎩,化简得:224200030216x t t x x +--=.由0t >得:)200202x t y t -==-+> 设()11,E x y ,()22,F x y ,则由120k k +=得:1020044x x x x +++=,即0122x x x -=+, 所以021212EF x y y k x x -==--,由8OM NO =得0,8t N ⎛⎫- ⎪⎝⎭, 所以,直线l :028x t y x =--,则023y d =23[)01,y ∈+∞上单调递增所以,当01y =时,min d =此时,直线l 与抛物线相交.12.(2021·四川泸州·高三三模(理))从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P .(1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由. 【答案】(1)曲线P 的方程为2y x =,曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线;(2)存在;圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【详解】(1)设抛物线2y x =上的任意点为()00,S x y ,垂线段的中点为(),x y ,故002x x y y =⎧⎪⎨=⎪⎩,则002x x y y =⎧⎨=⎩,代入2004y x =得()224y x =,得曲线P 的方程为2y x =, 所以曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线;(2)若直线l 与x 轴重合,则直线l 与曲线P 只有一个交点,不合乎题意.设直线l 的方程为2x ty =+,根据题意知0t ≠,设()11,A x y 、()22,B x y ,联立22y x x ty ⎧=⎨=+⎩,得220y ty --=,280t ∆=+>,则12y y t +=,122y y ⋅=-,则12A y y B =-=且线段AB 中点的纵坐标为1222y y t +=,即2121222222x x y y t t ++=⋅+=+, 所以线段AB 中点为22,22t t M ⎛⎫+ ⎪⎝⎭,因为直线CD 为线段AB 的垂直平分线,可设直线CD 的方程为1x y m t =-+,则21222t t m t ⎛⎫+=-⨯+ ⎪⎝⎭,故252t m +=, 联立22152y x t x y t ⎧=⎪⎨+=-+⎪⎩,得()222250ty y t t +-+=,设()33,C x y 、()44,D x y ,则341y y t +=-,()234152y y t ⋅=-+,故34y CD =-线段CD 中点为22151,222t N tt ⎛⎫++- ⎪⎝⎭, 假设A 、B 、C 、D 四点共圆,则弦AB 的中垂线与弦CD 中垂线的交点必为圆心, 因为CD 为线段AB 的中垂线,则可知弦CD 的中点N 必为圆心,则12AN CD =, 在Rt AMN △中,222AN AM MN =+,所以22212CD AM MN ⎛⎫=+ ⎪⎝⎭,则()()222222221111111121018442222t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫+++=++++++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故4228810t t t +--=,即()()24264222198880t t t t t t t t -+++--==, 解得21t =,即1t =±,所以存在直线l ,使A 、B 、C 、D 四点共圆,且圆心为弦CD 的中点N , 圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.13.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y 相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值; (2)求DO DB的取值范围.【答案】(1)2;(2)40,17⎛⎫⎪⎝⎭.【详解】 (1)对函数2yx 求导得2y x '=,所以抛物线1C 在点A 处的切线方程为()1112y y x x x -=-,即2112y x x x =-,联立21122212y x x x x y ⎧=-⎪⎨+=⎪⎩,得()2234111188220x x x x x +-+-=, 所以()()62411164418220x x x ∆=-+->,解得2104x <<所以直线AB 的方程为2111122y x x x =-++, 联立21121122y x x x x y⎧=-++⎪⎨⎪=⎩,得23111220x x x x x +--=,所以12112x x x +=-,所以12111222x x x x -=+≥=,当且仅当112x =时取等号, 所以12x x -的最小值为2;(2)记点O 、B 到直线l 的距离分别为1d 、2d ,所以21d =,211211214124x x x x d ⎫++=⎪⎭,所以()4112222121441414DOd x DB d x x ===⎛⎫++ ⎪⎝⎭,因为2104x <<2114x +,所以222440,1714DODBx ⎛⎫=∈ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以DO DB 的取值范围为40,17⎛⎫⎪⎝⎭.14.(2021·河北沧州·高三二模)已知(2,0)M -,(2,0)N ,动点P 满足:直线PM 与直线PN 的斜率之积为常数14-,设动点P 的轨迹为曲线1C .抛物线22:2(0)C x py p =>与1C 在第一象限的交点为A ,过点A 作直线l 交曲线1C 于点B 交抛物线2C 于点E (点,B E 不同于点A ). (1)求曲线1C 的方程.(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.【答案】(1)221(2)4x y x +=≠±;(2)存在,p【详解】解:(1)设动点()(),2P x y x ≠±,则2PM yk x =+,2PN y k x =-. 14PM PN k k =-,1224y y x x ∴⋅=-+-,即22144y x =--, 即221(2)4x y x +=≠±, ∴曲线C 1的方程为221(2)4x y x +=≠±. (2)设()1111,(0,0)A x y x y >>,()22,B x y ,()00,E x y ,显然直线l 存在斜率, 设:(0,0)l y kx m k m =+≠≠,()2222244,148440,x y k x kmx m y kx m ⎧+=⇒+++-=⎨=+⎩, 122814km x x k -∴+=+,02414kmx k -=+. 又2222,2()220,x py x p kx m x pkx pm y kx m ⎧=⇒=+⇒--=⎨=+⎩,102x x pm ∴=-,21124142142km k x pm x p k k ⎛⎫-+∴=-⇒=⎪+⎝⎭,因此有0k >,2422221,442,x x y x p x py ⎧+=⎪⇒+=⎨⎪=⎩,42422221421442k p k k p k p ⎛⎫+ ⎪⎛⎫+⎝⎭∴+= ⎪⎝⎭, 224224141422p k k k k ∴=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,设222214112224222k k t k k k ⎛⎛⎫+⎛⎫=+=⋅ ⎪⎪ ⎝⎭⎝⎭⎝=, 当且仅当122k k =时取等号,即当12k =时取等号, 则2224411()24p t t t ==++-,当4t ≥时,211()2024t +-≥,当12k =,即4t =时,2p 取得最大值,最大值为15,即p =此时A ⎝⎭,直线l 不过点M ,N . 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p . 15.(2021·湖南长沙·高三模拟预测)已知抛物线()2:20C x py p =>的焦点为F ,点(),1m 在抛物线C 上,该点到原点的距离与到C 的准线的距离相等. (1)求抛物线C 的方程;(2)过焦点F 的直线l 与抛物线C 交于A ,B 两点,且与以焦点F 为圆心2为半径的圆交于M ,N 两点,点B ,N 在y 轴右侧.①证明:当直线l 与x 轴不平行时,AM BN ≠②过点A ,B 分别作抛物线C 的切线1l ,2l ,1l 与2l 相交于点D ,求DAM △与DBN 的面积之积的取值范围.【答案】(1)28x y =;(2)①证明见解析;②[)16,+∞. 【详解】(1)由题意可得2212m pp ⎧==+,解得4p =, 所以抛物线C 的方程为28x y =.(2)由(1)知,圆F 方程为:()2221x y +-=, 由已知可设:2l y kx =+,且()11,A x y ,()22,B x y ,由228y kx x y=+⎧⎨=⎩得28160x kx --=,设()00,Q x y 是抛物线C 上任一点,则2QF ==,故抛物线与圆相离.①证明:当直线l 与x 轴不平行时,有0k ≠, 由抛物线定义知,12AF y =+,22BF y =+. 所以()()22AM BN AF BF -=---()()121222AF BF y y kx kx =-=-=+-+12k x x =-=80k =>,所以AM BN ≠②由(1)知抛物线方程为218y x =.所以14y x '=.所以过点A 的切线()2111111:84l y x x x x -=-,即2111148y x x x =-.同理可得,过点B 的切线2l 为2221148y x x x =-. 由1l ,2l 方程联立,得222112211188x y x y x x x x -=-+,解之,得12128D y x x ==-,又得()()22212111048x x x x x ---=,所以1242D x xx k +==.()4,2D k -到:2l y kx =+的距离d =()()22AM BN AF BF ⋅=--()()122222y y =+-+-⎡⎤⎡⎤⎣⎦⎣⎦()222121212148864x x y y x x ==⨯==,从而1122QAM QBN S S AM d BN d ⋅=⋅△△()22214161164d d k =⨯==+≥. 16.(2021·浙江高三专题练习)已知椭圆22:14x T y +=,抛物线2:2M y px =的焦点是F ,且动点()1,G t -在其准线上.(1)当点G 在椭圆T 上时,求GF 的值;(2)如图,过点G 的直线1l 与椭圆T 交于,P Q 两点,与抛物线M 交于,A B 两点,且G 是线段PQ 的中点,过点F 的直线2l 交抛物线M 于,C D 两点.若//AC BD ,求2l 的斜率k 的取值范围.【答案】(1)GF =2)k >k <【详解】 解:(1)由已知12p=,2p =,则()1,0F , 因为G 在椭圆T 上,所以2114t +=,所以234t =,所以GF =; (2)设()1:1l x m y t +=-,2:1l x ny =+,()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为G 是PQ 的中点,所以114t m -⋅=-,且2114t +<, 所以4m t =①,且234t <②, 由()241y x x m y t ⎧=⎪⎨+=-⎪⎩消去x 得24440y my mt -++=,则()21610m mt ∆=-->③,且12y y -=由241y x x ny ⎧=⎨=+⎩消去x 得2440y ny --=,所以34y y -=因为//AC BD ,所以132444y y y y =++,即1234y y y y -=-, 所以2222122n m mt t =--=-④, 由①②③解得213124t <<, 由④得207n <<,即217k >,所以k >k <17.(2021·河南高三月考(理))已知抛物线()2:20C x py p =>的焦点为F ,且点F 与圆()22:41M x y ++=1. (1)求p ;(2)已知直线:4l y kx =+与C 相交于A ,B 两点,过点B 作平行于y 轴的直线BD 交直线:4l y '=-于点D .问:直线AD 是否过y 轴上的一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由. 【答案】(1)2p =;(2)直线AD 恒过定点()0,0. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,FM F ∴与圆M11,解得2p =.(2)设()11,A x y ,()22,B x y ,则()2,4D x -,由24,4,x y y kx ⎧=⎨=+⎩得24160x kx --=, 0∴∆>,且124x x k +=,1216x x =-,()12124kx x x x ∴=-+, 又直线AD 的方程为()121244y y x x x x ++=--, 令0x =,得()212144x y y x x ++=-,114y kx =+,()()21122212184844x kx x x x y x x x x +-++∴+===--,0y ∴=,故直线AD 恒过定点()0,0.18.(2021·上海市实验学校高三月考)已知直线2y x =与抛物线:Γ()220y px p =>交于1G ,2G 两点,且12G G ,过椭圆221:143x y C +=的右顶点Q 的直线l 交于抛物线Γ于A ,B 两点.(1)求抛物线Γ的方程;(2)若射线OA ,OB 分别与椭圆1C 交于点D ,E ,点O 为原点,ODE ,OAB 的面积分别为1S ,2S ,问是否存在直线l 使213S S =?若存在求出直线l 的方程,若不存在,请说明理由;(3)若P 为2x =-上一点,PA ,PB 与x 轴相交于M ,N 两点,问M ,N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.【答案】(1)24y x =(2)不存在,理由见解析;(3)M N x x ⋅是定值,且定值为4,理由见解析. 【详解】(1)设()111,G x y ,()222,G x y ,由222y xy px =⎧⎨=⎩可得2420x px -=,所以10x =,22p x =,所以()10,0G ,2,2G p p ⎛⎫ ⎪⎝⎭,所以12G G =0p >,所以2p =,所以抛物线Γ的方程为24y x =;(2)椭圆的右顶点为()2,0Q ,设直线:l 2x my =+,()33,A x y ,()44,B x y , 将:l 2x my =+代入24y x =可得:2480y my --=, 所以344y y m +=,348y y =-, 假设存在,设()55,D x y ,()66,E x y , 射线OA :33233344y y y x x xy x y === ,由3224143y x y x y ⎧=⎪⎪⎨⎪+=⎪⎩ 可得:2523643364y y ⨯=+,同理可得2624643364y y ⨯=+, 11sin 2S OD OE DOC =∠,21sin 2S OA OB AOB =∠, 所以342156OA OB y y S S OD OE y y ==⋅ , 所以()()()2234222156********64643643364364y y S S y y y y y y ⎛⎫=== ⎪⨯⨯⎝⎭⨯++()()()22222343496436464931616644812164999y y y y m m +⨯++⨯++++===⨯, 所以211133S S ≥>,所以不存在直线l ,使213S S =; (3)设()02,P y -,则()3003:22y y PA y y x x --=++, 令0y =可得:()030332M y y x y x y -=+①, 同理可得:()040442N y y x y x y -=+②,两式相乘可得()()()()030404403322M N y y y y x x y x y y x y --=++()2222223434034034433400433424244444y y y y y x x y x y x y y y y y y y y y ⎛⎫⋅=+++=+⋅+⋅+ ⎪⨯⎝⎭()()2342234003434003434244164y y y y y y y y y y y y y y y y +⎛⎫⎡⎤=++=-++ ⎪⎣⎦⎝⎭即()()()203040034344M N y y y y x x y y y y y y ⎡⎤--=-++⎣⎦,所以()()220034340034344M N y y y y y y x x y y y y y y ⎡⎤⎡⎤-++=-++⎣⎦⎣⎦, 即()()22000048448M N y my x x y my --=--,当点P 不在直线AB 上时,200480y my --≠,所以4M N x x =,当点P 在直线AB 上时,2M N Q x x x ===,所以4M N x x =, 综上所述:M N x x ⋅是定值,且定值为4.19.(2021·全国高三专题练习)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦. (1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4. 【详解】(1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-, (2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y =+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-,即2440b b -+=,解得:2b = 所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0, 设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y , 则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-, 所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k +用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMNSFM FN =====224≥⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.20.(2021·浙江高三模拟预测)已知点F 为抛物线C :214y x =的焦点,点()0,4D ,点A 为抛物线C 上的动点,直线l :y t =截以AD 为直径的圆所得的弦长为定值.(1)求t 的值;(2)如图,直线l 交y 轴于点E ,抛物线C 上的点B 满足AB 的中垂线过点D 且直线AB 不与x 轴平行,求ABE 的面积的最大值.【答案】(1)3t =;(2【详解】解:(1)()0,4D ,设200,4x A x ⎛⎫ ⎪⎝⎭,AD 的中点为20044,22x x C ⎛⎫+ ⎪ ⎪ ⎪ ⎪⎝⎭,2r =设截得的弦为GH ,圆心C 到弦的距离为d .则2222200022244414442x x x GH r d t ⎛⎫⎛⎫+- ⎪+ ⎪⎝⎭=-=-- ⎪ ⎪⎪⎝⎭,()222011242444t GH x t -⎛⎫=-++-- ⎪⎝⎭与0x 无关3t ⇒=. (2)由上题可得()0,3E ,设()11,A x y ,()22,B x y , 线段AB 中点为G ,直线AB 的斜率存在且不等于0, 设直线AB :y kx m =+,联立直线与抛物线方程得:224404y kx mx kx m x y =+⎧⇒--=⎨=⎩, 由2016160k m ∆>⇒+>,由韦达定理可得:124x x k +=,124x x m =-, 21242y y k m +=+,则AB 的中点为()22,2G k k m +则AB 的中垂线为()()2122y k m x k k-+=--, 代入()0,4D ,得222m k =-则124AB x x =-=E AB d -=则(21142322122S AB d m k =⋅⋅=⋅=-=+=记2t k =,()()()2212f t t t =-+,()()()7612f t t t '=-+,70,6t ⎛⎫∈ ⎪⎝⎭时,()f t 单调递增,7,26t ⎛⎫∈ ⎪⎝⎭时,()f t 单调递减,76t =,即276k k =⇒=时,ABES 此时13m =-满足0∆>,所以ABES。