人大附中初一数学统一练习(一)

合集下载

北京市人大附中2025届七年级数学第一学期期末检测试题含解析

北京市人大附中2025届七年级数学第一学期期末检测试题含解析

北京市人大附中2025届七年级数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.16-的相反数是( ). A .﹣6 B .6 C .16-- D .162.下列各数:﹣12,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有( )个. A .1 B .2 C .3 D .43.如图所示的是一副特制的三角板,用它们可以画出-一些特殊角.在下列选项中,不能用这副三角板画出的角度是( )A .18B .108C .82D .1174.-3的绝对值等于( )A .3±B .13- C .-3 D .35.化简 -(-3)等于 ( )A .-3B .3C .13- D .136.下列四个数中,最小的是( )A .4-B .14-C .0D .47.某商店为了迎接“双十二”抢购活动,以每件99元的价格卖出两件衣服,其中一件盈利10%,另一件亏损10%,这家商店( )A .盈利了B .亏损了C .不赢不亏D .无法确定8.已知1 31m x x -+- 是关于x 的三次三项式,那么m 的值为( )A .3B .4C .5D .69.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( )A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯10.下列计算正确的是( )A .B .C .D . 11.在公元前4世纪的印度巴克沙利手稿中记载着一题:甲乙丙丁四人各持金,乙为甲的二倍,丙为乙的三倍,丁为丙的四倍,并知四人持金的总数为132卢比,则乙的持金数为( )A .4卢比B .8卢比C .12卢比D .16卢比12.下列各式中运算正确的是( )A .43m m -=B .220a b ab -=C .33323a a a -=D .2xy xy xy -=-二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知线段AB=6cm ,AB 所在直线上有一点C ,若AC=2BC ,则线段AC 的长为 cm .14.2019--的倒数的相反数是______.15.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是_____.16.请写出一个比5-大的负有理数:_____.(写出一个即可)17.将正整数按如下方式进行有规律的排列,第2 行最后一个数是 4,第 3 行最后一个数是7,第 4 行最后一个数是10…,依此类推,第______行最后一个数是1.12 3 43 4 5 6 74 5 6 7 8 9 105 6 7 8 9 10 11 12 13三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)解方程:(1)2(x+8)=3x ﹣3; (2)121224x x +--=-19.(5分)先化简,再求值.4xy ﹣[(x 1+5xy ﹣y 1)﹣1(x 1+3xy ﹣12y 1)],其中:x =﹣1,y =1. 20.(8分)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?21.(10分)将连续的奇数1,3,5,7,9⋅⋅⋅排列成如图数表.(1)十字框框出5个数的和与框子正中间的数25有什么关系?(2)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a ,用含a 的代数式分别表示十字框住的其他4个数以及这5个数的和;(3)十字框中的五个数轴之和能等于2020吗?能等于2025吗?22.(10分)已知:A =x 2﹣2xy+y 2, B =x 2+2xy+y 2(1)求A+B ;(2)如果2A ﹣3B+C =0,那么C 的表达式是什么?23.(12分)如图,DG BC ⊥,AC BC ⊥,EF AB ⊥,12∠=∠,试判断CD 与AB 的位置关系,并说明理由.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、D【解析】试题分析:用相反数数的意义直接确定即可.16-的相反数是16.故选D.考点:相反数;绝对值.2、C【分析】根据分数的定义,进行分类.【详解】下列各数:-12,-0.7,-9,25,π,0,-7.3中,分数有:-12,-0.7,-7.3,共3个,故选C.【点睛】本题考查了实数的知识,注意掌握分数的定义.3、C【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【详解】A、18︒=90︒−72︒,则18︒角能画出;B、108︒=72︒+36︒,则108︒可以画出;C、82︒不能写成36︒、72︒、45︒、90︒的和或差的形式,不能画出;D、117︒=72︒+45︒,则117︒角能画出.故选:C.【点睛】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.4、D【分析】根据绝对值的定义判断即可.【详解】|-3|=3.故选D.【点睛】本题考查绝对值的概念,关键在于熟记相关基础知识.5、B【分析】根据相反数的计算法则进行计算即可得到答案.【详解】-(-3)=3,故选择B.【点睛】本题考查相反数,解题的关键是掌握相反数的计算.6、A【分析】根据“正数大于0,0大于负数;两个负数,绝对值大的反而小”进行比较即可判断.【详解】解:A 和B 选项是负数,C 选项是0,D 选项是正数,又∵|-4|=4,|14-|=14, 而4>14, ∴-4<14-. 故选A .【点睛】本题考查了实数的大小比较.实数的大小比较法则为:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.7、B【分析】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,根据题意列出方程,分别求出这两件衣服的进价并求和,然后和两件衣服的总售价比较即可.【详解】解:设第一件衣服的进价为x 元,第二件衣服的进价为y 元由题意可知: x (1+10%)=99, y (1-10%)=99解得:x=90,y=110∴这两件衣服的总进价为90+110=200元总售价为99×2=198元∵198<200∴亏损了故选B .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.8、B【分析】式子要想是三次三项式,则1m x -的次数必须为3,可得m 的值.【详解】∵1 31m x x -+- 是关于x 的三次三项式∴1m x -的次数为3,即m-1=3解得:m=4故选:B .【点睛】本题考查多项式的概念,注意,多项式的次数指的是组成多项式的所有单项式中次数最高的那个单项式的次数. 9、C【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】将324000用科学记数法表示为:53.2410⨯.故选:C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10、D【解析】根据有理数的减法和乘方的运算法则及同类项的定义、去括号法则逐一判断可得.【详解】解:A 、-2-2=-2+(-2)=-4,故A 错误;B 、8a 4与-6a 2不是同类项,不能合并,故B 错误;C 、3(b-2a)=3b-6a ,故C 错误;D. −32=−9,故D 正确.故选D.【点睛】本题考查了去括号与添括号,有理数的混合运算,合并同类项.11、B【分析】设甲持金数为x ,则可表示出乙、丙、丁的持金数,然后根据持金总数列方程求解即可.【详解】设甲持金数为x ,则乙为2x ,丙为6x ,丁为24x ,由题意得:x+2x+6x+24x=132,解得:x=4,∴2x=8,即乙的持金数为8卢比,故选:B.【点睛】本题考查了一元一次方程的应用,正确理解题意得到列方程所需的等量关系是解题关键.12、D【分析】根据合并同类项得到4m-m=3m ,2a 3-3a 3=-a 3,xy-2xy=-xy ,于是可对A 、C 、D 进行判断;由于a 2b 与ab 2不是同类项,不能合并,则可对B 进行判断.【详解】解:A 、4m-m=3m ,所以A 选项错误;B 、a 2b 与ab 2不能合并,所以B 选项错误;C 、2a 3-3a 3=-a 3,所以C 选项错误;D 、xy-2xy=-xy ,所以D 选项正确.故选:D .【点睛】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、4或1.【解析】试题分析:有两种情况:当C 在AB 的延长线上时,当C 在线段AB 上时,根据已知求出即可. 解:如图,有两种情况:当C 在AB 的延长线上时,如图①,∵AB=6cm ,AC=2BC ,∴AB=BC=6cm ,∴AC=1cm ;当C 在线段AB 上时,如图②∵AB=6cm ,AC=2BC ,∴AC=4cm ;故答案为4或1.考点:两点间的距离.14、12019【分析】先根据绝对值的定义化简,再求倒数,然后求倒数的相反数. 【详解】∴2019--=-2019, ∴2019--的倒数是12019-,∴2019--的倒数的相反数是12019. 故答案为:12019. 【点睛】 本题考查了绝对值、倒数、相反数的定义,熟练掌握定义是解答本题的关键.15、梦.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16、4-(答案不唯一).【分析】根据负有理数比较大小的规则,绝对值大的反而小写一个数即可. 【详解】解:54->-,54∴-<-,∴比5-大的负有理数为4-.故答案为:4-(答案不唯一).【点睛】本题考查了有理数大小比较,比较简单.17、674【分析】根据图中前几行的数字,可以发现数字的变化特点,从而可以写出第n 行的数字个数和开始数字,从而可以得到第20行第2个数是几和第多少行的最后一个数字是1.【详解】解:由图可知,第一行1个数,开始数字是1,第二行3个数,开始数字是2,第三行5个数,开始数字是3,第四行7个数,开始数字是4,…则第n行(2n-1)个数,开始数字是n,∴1-(n-1)=2n-1,解得:n=674,故答案为:674.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出相应的数字所在的位置.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1) x=19;(2)x=4.【详解】试题分析:(1)去括号,移项,合并同类项,系数化1.(2)去分母,去括号,移项,合并同类项,系数化1.试题解析:(1)2(x+8)=3x﹣3;2x+16=3x-3,-x=-19,x=19.(2)121224 x x+--=-2(x+1)-4=8-(x-2),2x+2-4=8-x+2,3x=12,x=4.19、-2.【解析】分析:首先根据乘法分配原则进行乘法运算,再去掉小括号、合并同类项,然后去掉中括号、合并同类项,对整式进行化简,最后把x、y的值代入计算求值即可.详解:原式=4xy﹣[x1+5xy﹣y1﹣1x1﹣6xy+y1]=4xy﹣[﹣x1﹣xy]=x1+5xy,当x=﹣1,y=1时,原式=(﹣1)1+5×(﹣1)×1=﹣2.点睛:本题主要考查整式的化简求值,合并同类项法则,去括号法则,关键在于正确的对整式进行化简.20、见解析【分析】把x=3代入代数式5(x−1)−2(x−2)−4,求出“2y−12=12y-■”的y,再代入该式子求出■.【详解】解:5(x-1)-2(x-2)-4=3x-5,当x=2时,3x-5=3×2-5=1,∴y=1.把y=1代入2y-12=12y-■中,得2×1-12=12×1-■,∴■=-1.即这个常数为-1.【点睛】根据题意先求出y,将■看作未知数,把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.21、(1)十字框框出的1个数的和是框子正中间的数21的1倍;(2)这1个数的和是1a;(3)十字框中的五数之和不能等于2020,能等于2021【分析】(1)可算出1个数的和比较和21的关系;(2)上下相邻的数相差10,左右相邻的数相差2,所以可用a表示,再相加即可求出着1个数的和;(3)根据题意,分别列方程分析求解.【详解】(1)11+23+21+27+31=121,121÷21=1.即十字框框出的1个数的和是框子正中间的数21的1倍;(2)设中间的数是a,则a上面的一个数为a﹣10,下面的一个数为a+10,前一个数为a﹣2,后一个数为a+2,则a﹣10+a+a+10+a﹣2+a+2=1a.即这1个数的和是1a;(3)设中间的数是a.1a=2020,a=404,404是偶数,不合题意舍去;1a=2021,a=401,符合题意.即十字框中的五数之和不能等于2020,能等于2021【点睛】本题考查了观察和归纳总结的问题,掌握规律并列出关系式是解题的关键.22、(1)2x 2+2y 2;(2)x 2+10xy+y 2【解析】(1)根据题意列出算式,再去括号、合并同类项可得;(2)由2A ﹣3B+C=0可得C=3B ﹣2A=3(x 2+2xy+y 2)﹣2(x 2﹣2xy+y 2),再去括号、合并同类项可得.【详解】解:(1)A+B=(x 2﹣2xy+y 2)+(x 2+2xy+y 2)=x 2﹣2xy+y 2+x 2+2xy+y 2=2x 2+2y 2;(2)因为2A ﹣3B+C=0,所以C=3B ﹣2A=3(x 2+2xy+y 2)﹣2(x 2﹣2xy+y 2)=3x 2+6xy+3y 2﹣2x 2+4xy ﹣2y 2=x 2+10xy+y 2【点睛】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.23、CD ⊥AB ,理由见解析【分析】根据互余关系,列出等量关系,通过角度运算得出∠ADC=90°即可.【详解】解:CD ⊥AB ,理由如下:∵DG BC ⊥,AC BC ⊥∴∠2+∠DCB=90°,∠ACD+∠DCB=90°,∴∠2=∠ACD ,又∵EF ⊥AB ,∴∠1+∠A=90°,∵∠1=∠2,∠2=∠ACD∴∠1=∠ACD ,∴∠ACD+∠A=90°,∴∠ADC=90°,即CD ⊥AB .【点睛】本题主要考查了互余关系,解题的关键是灵活运用题中给出的垂直条件,列出等量关系,找出互余关系.。

2020-2021学年北京人大附中七年级(上)限时练习数学试卷(1)(附答案详解)

2020-2021学年北京人大附中七年级(上)限时练习数学试卷(1)(附答案详解)

2020-2021学年北京人大附中七年级(上)限时练习数学试卷(1)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么−80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2.在−2020,2.3,0,π,−41五个数中,非负的有理数共有()3A. 1个B. 2个C. 3个D. 4个3.−5的绝对值是()D. ±5A. 5B. −5C. 154.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A. −1B. 1C. −2D. 25.下列说法正确的是()A. 互为相反数的两个数的绝对值相等B. 绝对值等于本身的数只有正数C. 不相等的两个数绝对值也不相等D. 绝对值相等的两数一定相等6.a为有理数,下列说法正确的是()A. −a为负数B. a一定有倒数C. |a+2|为正数D. |−a|+2为正数7.在数轴上,一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A. 7B. 3C. −3D. −28.在下列式子中,正确的是()A. −2020>0B. −π>−3C. |−3|=|3|D. 0>|−3|9.若|x|=2,|y|=3.且xy异号,则|x+y|的值为()A. 5B. 5或1C. 1D. 1或−110.a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有( )个.①|a +b|=|a|−|b|;②−b <a <−a <b ;③a +b >0;④|−b|<|−a|.A. 1B. 2C. 3D. 4 11. −114的相反数是______.12. 比较大小:−3______−2.1,−(−2)______−|−2|(填>”,“<”或“=”).13. 请写出一个比−3大的非负整数:______.14. 相反数等于它本身的数是______ ,绝对值等于它本身的数是______ ,15. 已知|a|=4>a ,|b|=6,则a +b 的值是______.16. 已知a >0,b <0,|b|>|a|,比较a ,−a ,b ,−b 四个数的大小关系,用“<”把它们连接起来______.17. 若a 是最大的负整数,b 是绝对值最小的有理数,数c 在数轴上对应的点与原点的距离为1,则a +b 2+|c|=______.18. 已知点O 为数轴的原点,点A ,B 在数轴上若AO =8,AB =2,且点A 表示的数比点B 表示的数小,则点B 表示的数是______.19. 若有理数a ,b ,c 在数轴上的位置如图所示,则|a −c|−|b +c|可化简为______.20. 已知x ,y 均为整数,且|x −y|+|x −3|=1,则x +y 的值为______.21. 计算(1)(−6)+(−13).(2)(−45)+34.22. 画数轴,并在数轴上表示下列数:−3,113,2,−2.5,−12,再将这些数用“<”连接.23.若|x−2|+|2y−5|=0,求x+y的值.24.已知数轴上三点A,O,B对应的数分别为−3,0,2,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)若点P到点A,点B,点O的距离之和最小,则此距离之和最小为______.25.|a|=4,|b|=6,则|a+b|−|a−b|=______.26.当a,b为何值时,对于任意的实数x、y,均有|ax+by|+|bx+ay|=|x|+|y|.27.我们将不大于2020的正整数随机分为两组,第一组按照升序排列得到a1<a2<⋯<a1010,第二组按照降序排列得到b1>b2>⋯>b1010.求|a1−b1|+|a2−b2|+⋯+|a1010−b1010|的所有可能值.答案和解析1.【答案】C【解析】【分析】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量。

北京人大附中2019-2020学年第一学期七年级(上)第一次月考数学试卷 含解析

北京人大附中2019-2020学年第一学期七年级(上)第一次月考数学试卷  含解析

2019-2020学年七年级(上)第一次月考数学一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.在﹣5,﹣2.3,0,0.89,﹣4五个数中,负数共有()A.2个B.3个C.4个D.5个2.﹣5的绝对值是()A.5 B.﹣5 C.D.±53.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣1 B.1 C.﹣2 D.24.下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数5.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a﹣2|为正数D.|a|+2为正数6.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣27.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大8.已知a,b是有理数,|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b.用数轴上的点来表示a,b下列正确的是()A.B.C.D.二、填空题(每小题4分,本大题共32分)9.﹣1的相反数是.10.比较大小:﹣3 ﹣2.1,﹣(﹣2)﹣|﹣2|(填>”,“<”或“=”).11.请写出一个比﹣3大的非负整数:.12.数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.13.如果a为有理数,且|a|=﹣a,那么a的取值范围是.14.已知a>0,b<0,|b|>|a|,比较a,﹣a,b,﹣b四个数的大小关系,用“<”把它们连接起来.15.已知点O为数轴的原点,点A,B在数轴上若AO=8,AB=2,且点A表示的数比点B 表示的数小,则点B表示的数是.16.已知x,y均为整数,且|x﹣y|+|x﹣3|=1,则x+y的值为.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.计算(1)(﹣6)+(﹣13).(2)(﹣)+.18.画数轴,并在数轴上表示下列数:﹣3、﹣2.7、﹣、1、2,再将这些数用“<”连接.19.已知|a|=3,|b|=3,a、b异号,求a+b的值.20.若|x﹣2|+|2y﹣5|=0,求x+y的值.21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,然后又向东走了14千米,又向西走了11千米,又向东走了10千米,最后向西走了8千米.(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小,则最小距离为.四.【附加】23.在某种特制的计算器中有一个按键,它代表运算.例如:上述操作即是求的值,运算结果为1.回答下面的问题:(1)小敏的输入顺序为﹣6,,﹣8,,运算结果是;(2)小杰的输入顺序为1,,,,,﹣2,,,,,3,,运算结果是;(3)若在,,,,,,,,0,,,,,,,,这些数中,任意选取两个作为a、b的值,进行运算,则所有的运算结果中最大的值是.参考答案与试题解析一.选择题(共8小题)1.在﹣5,﹣2.3,0,0.89,﹣4五个数中,负数共有()A.2个B.3个C.4个D.5个【分析】根据小于零的数是负数,可得答案.【解答】解:在﹣5,﹣2.3,0,0.89,﹣4五个数中,负数有﹣5,﹣2.3,﹣4,共有3个.故选:B.2.﹣5的绝对值是()A.5 B.﹣5 C.D.±5【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=5.故选:A.3.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣1 B.1 C.﹣2 D.2【分析】利用数形结合的思想,数轴上A、B表示的数互为相反数,说明A,B到原点的距离相等,并且点A在点B的右边,可以确定这两个点的位置,即它们所表示的数.【解答】解:数轴上A、B表示的数互为相反数,则两个点到原点的距离相等,所以它们到原点的距离都为2,又因为点A在点B的右边,所以点B表示的数﹣2,故选:C.4.下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数【分析】按照有理数的分类做出判断.【解答】解:A、有理数分为正有理数、负有理数和0,故错误;B、整数和分数统称为有理数,故正确;C、0是有理数,故错误;D、负有理数就是负整数和负分数,故错误;故选:B.5.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a﹣2|为正数D.|a|+2为正数【分析】根据绝对值进行判断即可.【解答】解:因为a为有理数,A、当a<0时,﹣a>0,错误;B、当a=0时,a没有倒数,错误;C、当a=2时,|a﹣2|=0,不是正数,错误;D、无论a取任何数,|a|+2>0,是正数,正确;故选:D.6.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣2【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.7.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,或一正一负,且负数的绝对值大,∵a,b异号,∴a、b异号,且负数的绝对值较大.故选:D.8.已知a,b是有理数,|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b.用数轴上的点来表示a,b 下列正确的是()A.B.C.D.【分析】根据题中的两个等式,分别得到a与b异号,a为负数,b为正数,且a的绝对值大于b的绝对值,采用特值法即可得到满足题意的图形.【解答】解:∵|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b,∴|a|>|b|,且a<0在原点左侧,b>0在原点右侧,得到满足题意的图形为选项C.故选:C.二.填空题(共8小题)9.﹣1的相反数是1.【分析】根据相反数的定义分别填空即可.【解答】解:﹣1的相反数是1.故答案为:1.10.比较大小:﹣3 <﹣2.1,﹣(﹣2)>﹣|﹣2|(填>”,“<”或“=”).【分析】第一个根据两个负数比大小,其绝对值大的反而小比较即可,第二个根据正数都大于一切负数比较即可.【解答】解:∵|﹣3|=3,|﹣2.1|=2.1,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴﹣3<﹣2.1,﹣(﹣2)>﹣|﹣2|,故答案为:<,>.11.请写出一个比﹣3大的非负整数:0 .【分析】此题答案不唯一,写出一个符合的即可.【解答】解:比﹣3大的非负整数有0,1,2…,故答案为:0.12.数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是1或﹣5 .【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点﹣2的左侧或右侧.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或1.故答案为:﹣5或1.13.如果a为有理数,且|a|=﹣a,那么a的取值范围是a≤0 .【分析】根据绝对值的性质解答即可.【解答】解:当a≤0时,|a|=﹣a,故答案为:a≤014.已知a>0,b<0,|b|>|a|,比较a,﹣a,b,﹣b四个数的大小关系,用“<”把它们连接起来b<﹣a<a<﹣b.【分析】先在数轴上标出a、b、﹣a、﹣b的位置,再比较即可.【解答】解:∵a>0,b<0,|b|>|a|,∴b<﹣a<a<﹣b,故答案为:b<﹣a<a<﹣b.15.已知点O为数轴的原点,点A,B在数轴上若AO=8,AB=2,且点A表示的数比点B 表示的数小,则点B表示的数是﹣10,﹣6,6或10..【分析】根据AO=8,先得出点A表示的数,再根据AB=2,分类讨论即可得出点B表示的数.【解答】解:∵AO=8∴点A表示的数为﹣8或8∵AB=2∴当点A表示的数为﹣8时点B表示的数为﹣10或﹣6;当点A表示的数为8时点B表示的数为6或10.故答案为:﹣10,﹣6,6或10.16.已知x,y均为整数,且|x﹣y|+|x﹣3|=1,则x+y的值为5或8或4..【分析】根据x﹣y=±1,x﹣3=0,或x﹣3=±1,x﹣y=0四种情况解答即可.【解答】解:因为x,y均为整数,|x﹣y|+|x﹣3|=1,可得:x﹣y=±1,x﹣3=0,或x﹣3=±1,x﹣y=0,当x﹣y=1,x﹣3=0,可得:x=3,y=2,则x+y=5;当x﹣y=0,x﹣3=1,可得:x=4,y=4,则x+y=8;当x﹣y=0,x﹣3=﹣1,可得:x=2,y=2,则x+y=4,故答案为:5或8或4.三.解答题(共7小题)17.计算(1)(﹣6)+(﹣13).(2)(﹣)+.【分析】(1)根据有理数的加法法则可以解答本题;(2)先通分,后加减即可解答.【解答】解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.18.画数轴,并在数轴上表示下列数:﹣3、﹣2.7、﹣、1、2,再将这些数用“<”连接.【分析】先在数轴上表示出各个数,再比较即可.【解答】解:﹣3<﹣2.7<﹣<1<2.19.已知|a|=3,|b|=3,a、b异号,求a+b的值.【分析】根据|a|=3,|b|=3,a、b异号,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|a|=3,|b|=3,a、b异号,∴a=3,b=﹣3或a=﹣3,b=3,当a=3,b=﹣3时,a+b=3+(﹣3)=0,当a=﹣3,b=3时,a+b=(﹣3)+3=0,由上可得,a+b的值是0.20.若|x﹣2|+|2y﹣5|=0,求x+y的值.【分析】根据“|x﹣2|+|2y﹣5|=0”,结合绝对值的定义,分别得到关于a和关于b的一元一次方程,解之,代入x+y,计算求值即可.【解答】解:根据题意得:x﹣2=0,解得:x=2,2y﹣5=0,解得:y=,则x+y=2+=,即x+y的值为.21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,然后又向东走了14千米,又向西走了11千米,又向东走了10千米,最后向西走了8千米.(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?【分析】(1)向东为正,则向西为负,再根据距离,即可用正数、负数表示,(2)计算(1)中的数的和,即可得出答案,(3)分别计算出将每一位顾客送到目的地时,距离出发点的距离,比较得出答案,(4)计算出行驶的总路程,即(1)中的各个数的绝对值的和,再根据单价、数量,进而求出总价即可.【解答】解:(1)用正负数表示小张向东或向西运动的路程(单位:千米)为:+15,﹣13,+14,﹣11,+10,﹣8,(2)(+15)+(﹣13)+14+(﹣11)+10+(﹣8)=7千米,答:将最后一名乘客送到目的地时,小张在下午出车点东7千米的地方,(3)将每一位顾客送到目的地,离出发点的距离为,15千米,2千米,16千米,5千米,15千米,7千米,因此最远为16千米,答:离开下午出发点最远时是16千米.(4)0.06×4.5×(15+13+14+11+10+8)=19.17元,答:这天下午共需支付19.17元的油钱.22.已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1 ;(2)当x=﹣4或2 时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1 ;(4)若点P到点A,点B,点O的距离之和最小,则最小距离为 4 .【分析】(1)点P位于点A和点B中间时,点P到点A和点B的距离相等;(2)根据点A、点B的距离之和为4,将点P从点A向左移动1个单位或向右移动1个单位,则点P到点A和点B的距离之和为6,据此可解;(3)点P位于点A和点B之间时,点P到点A,点B的距离之和最小,据此可解;(4)点P位于点O时,点P到点A,点B,点O的距离之和最小,据此可解.【解答】解:(1)∵A、B对应的数分别为﹣3,1,如果点P到点A,点B的距离相等,则x=﹣1故答案为:﹣1;(2)∵点A、点B的距离之和为4∴若要使得点P到点A、点B的距离之和是6则点P位于点A左侧一个单位或点P位于点B右侧1个单位,即:x=﹣4或x=2时,点P到点A、点B的距离之和是6;(3)∵点P位于点A和点B之间时,点P到点A,点B的距离之和最小,此时x的取值范围是﹣3≤x≤1故答案为:﹣3≤x≤1.(4)若点P位于点O时,点P到点A,点B,点O的距离之和最小最小值为线段AB的长,即4.故答案为:4.23.在某种特制的计算器中有一个按键,它代表运算.例如:上述操作即是求的值,运算结果为1.回答下面的问题:(1)小敏的输入顺序为﹣6,,﹣8,,运算结果是﹣8 ;(2)小杰的输入顺序为1,,,,,﹣2,,,,,3,,运算结果是﹣2 ;(3)若在,,,,,,,,0,,,,,,,,这些数中,任意选取两个作为a、b的值,进行运算,则所有的运算结果中最大的值是【分析】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.【解答】解:根据题意,分析运算可得其计算的是a,b中的最小值,故答案为:(1)根据题意有结果为﹣6与﹣8中的较小的数,即﹣8.(2)根据题意由运算的结果为﹣,﹣2,﹣2,﹣2;运算结果是﹣2.(3)找这一列数中,绝对值相差最小,且最大的两个数即,;按运算法则计算可得结果是.(由于本份试卷有些题目的解法不唯一,因此请老师们依据评分酌情给分.)。

历年人大附中新初一分班考试数学部分真题

历年人大附中新初一分班考试数学部分真题

人大附中新初一分班考试真题之2001一:计算1.计算:102 19 1211 7 1 22 13225 13 5 632.计算: 1994 19931994 1993 1994199412 1111 1150%4 533.计算:1111 131 150%13 5150% 213 3454.计算: 11 13 11345112395.计算:1 2 12 23 1 2 34 1 22001 23 2 34 2 3 20016.计算: 8.01× 1.25+8.02 × 1.24+8.03 ×1.23+8.04 × 1.22+8.05 × 1.21 的整数部分。

二:应用题7.小李计算从 1 开始的若干个连续自然数的和, 结果不当心把 1 当作 10 来计算,获得错误的结果恰巧是 100。

那么小李计算的这些数中,最大的一个是多少?8.从 1 开始,按 1, 2, 3,4,5 ,⋯ ,的 序在黑板上写到某数 止,把此中一个数擦掉后,剩下的数的均匀数是590,擦掉的数是多少?179.一个各位数字互不同样的四位数,它的百位数字最大,比十位数字大 2 ,比个位数字大 1。

知道 个四位数的 4 个数字和 27,那么 个四位数是多少?10.有一个等差数列, 此中 3 a, b, c 能构成一个等比数列; 有 3 d, e, f 也能构成一个等比数列,假如 6 个数互不同样,那么 个等差数列起码有几 ?11.在乘法算式 ABCB D × ABCB D=CCCBCCBBCB 中,同样的字母代表同样的数字,不一样的字母代表不一样的数字,假如 D=9,那么 A+B+C 的 是多少?12. 以下 ,在方框里填数,使得算式建立,那么所有方框内数的和是多少? 1 9 8 8 × 口 口——————————口7口口口口5 口口口口 ——————————— 口口口口口口 13. 假如 66能整除 22 2 ,那么自然数 n 的最小 是多少?1 2 31 2 3100个 6n 个 214. 已知: 999999999 能整除222 1 ,那么自然数n的最小是多少?14243n个 215.12223292除以3的余数是多少?16.50 个互不同样的非零自然数的和 101101,那么它的最大公数的最大是多少?17.自然数n 是 48 的倍数,但不是28 的倍数,并且n 恰巧有48 个数(包含 1 和它本身),那么n 的最小是多少?18.某正整数被63 除商 31,余数 42,那么个正整数所有因数的和是多少?19.我能够找到 n 个自然数,用它的和乘以它的,果恰巧等于2001,那么 n 的最小是多少?20.算式 1×4× 7× 10×⋯× 100 的算果,末端有多少个的0?21. 一群林场工人与学生一同在昨年冬季挖好的坑中植树,均匀 1 名林场工人 1 小时可植树 15 棵, 1 名学生 1 小时可植树11 颗。

2019-2020学年北京人大附中七年级上学期第一次月考数学试卷及答案解析

2019-2020学年北京人大附中七年级上学期第一次月考数学试卷及答案解析

2019-2020学年北京人大附中七年级上学期第一次月考数学试卷一、选择题(共8小题,每小题3分,满分24分)
1.如果m是一个有理数,那么﹣m是()
A.负有理数B.非零有理数C.非正有理数D.有理数
2.m与﹣|﹣|互为相反数,则m的值为()
A .
B .﹣
C .
D .﹣
3.实数m,n在数轴上对应的点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是()
A.点A B.点B C.点C D.点D
4.若|a|+a=0,则a是()
A.正数B.负数C.正数或0D.负数或0
5.在﹣|﹣1|,﹣|0|,π,﹣(﹣3)中,负数共有()
A.4个B.3个C.2个D.1个
6.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了60米,此时小明的位置为()
A.文具店B.玩具店
C.文具店西40米处D.玩具店西60米处
7.计算5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了()
A.加法交换律B.加法交换律和结合律
C.乘法分配律D.乘法结合律
8.下列说法:①一个有理数不是整数就是分数;②有理数是正数和小数的统称;③到原点距离相等的点所示的数相等;④相反数、绝对值都等于它本身的数只有0;⑤数轴上的点离原点越远,表示的数越大;⑥有最小的正整数但没有最小的正有理数.其中正确的个数有()
A.2个B.3个C.4个D.5个
二、填空题(每题3分共24分)
第1页(共15页)。

人大附中历年新初一分班考试数学真题答案

人大附中历年新初一分班考试数学真题答案

4.一个分数的分子与分母之和为 25,将它化为小数后形如 0.38„,则这个分数的分母是( )。
5 已知 382 =1444,像 1444 这样能表示为某个自然数的平方,并且抹 3 位数字为不等于 0 的相同数字,我们就定义
为“好数”。
(1)请再找出一个“好数”。
(2)讨论所有“好数”的个位数字可能是多少?
7.一个班有五十多名同学,上体育课时大家排成一行,先从左至右 1234、1234 报数,再从右至左 123、123 报数, 后来统计了一下,两次报到同一个数的同学有 15 名,那么这个班一共有( )名同学。
6 / 18
8.用 3 种颜色把一个 3×3 的方格表染色,要求相同行和相同列的 3 个格所染的颜色互不相同,一共有( )种不 同的染色法。
人大附中历年新初一分班考试数学真题(一)
一:计算
1.计算: 10 2 19 1 2 11 7 1 22
13 22 5 13 5 63
2.计算:199419931994 199319941994
3.计算:
1 3Biblioteka 2 1131 4
11 5
150%
5
1 3
1
11 150% 3
1 3
150%
9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大 2 ,比个位数字大 1。还知道这个四位数 的 4 个数字和为 27,那么这个四位数是多少?
1 / 18
10.有一个等差数列,其中 3 项 a, b, c 能构成一个等比数列;还有 3 项 d, e, f 也能构成一个等比数列,如果这 6 个数互不相同,那么这个等差数列至少有几项?
36.小明家在颐和园,如果骑车到人大附中,每隔 3 分钟就能见到一辆 332 路公共汽车迎面开来;如果步行到人大 附中,每隔 4 分钟能见到一辆 332 路公共汽车迎面开来。已知任意两辆 332 路汽车的发车间隔都是一样的,并且 小明骑车速度是小明步行速度的 3 倍,那么如果小明 332 路汽车到人大附中的话,每隔几分钟能见到一辆 332 路 公共汽车迎面开来。

北京市人大附中2019-2020年度第二学期七年级数学下册期末复习综合练习1(PDF版,无答案)

北京市人大附中2019-2020年度第二学期七年级数学下册期末复习综合练习1(PDF版,无答案)

右四个方向中的任意一个方向平移一次,平移距离小于或者等于 1 个单位长度,平移后
的图形记为 G',若点 P 在图形 G'上,则称点 P 为图形 G 的稳定点.例如,当图形 G 为
点(―2,3)时,点 M(―1,3),N(―2,3.5)都是图形 G 的稳定点.
(1)已知点 A(―1,0),B(2,0).
第 24-27 题,每小题 6 分)解答应写出文字说明、演算步骤或证明过程.
19.如图,方格纸中每个小正方形的边长都为 1.A 点坐标为(2, 0),C 点坐标为(6, 2),在方格
B B'
纸内将△ABC 平移后得到△A′B′C′,图中点 B′
为点 B 的对应点. (1)画出△A′B′C ′,A′的坐标为__________; (2)△A′B′C′的面积为______.
26.对 x,y 定义一种新运算 T,规定:T (x,y) = (mx + ny)(x + 2y) (其中 m,n 均为非零
常数).例如:T (1,1) = 3m + 3n .
(1)已知T (1,−1) = 0,T (0,2) = 8.
① 求 m,n 的值;

若关于 p 的不等式组
T T
(2 (4
p,2 p,3
B.旅客上飞机前的安检,采用抽样调查方式
C.调查某种品牌笔芯的使用寿命,采用全面调查方式
D. 调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式
5.已知 a b ,下列不等式变形不.正确的是
A. a + 2 b + 2
B. 3a 3b
C. 2a −1 2b −1
D. − a − b 22
名录. 图 1 是孙悟空的皮影造型,在下面右侧的四个图中,能由图 1 经过平移得到的是

北京市人大附中七年级数学上册第一章《有理数》测试题(含答案解析)

北京市人大附中七年级数学上册第一章《有理数》测试题(含答案解析)

1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A【分析】逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.4.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.5.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 6.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 7.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.9.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .13C 解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .10.计算-3-1的结果是( )A.2 B.-2 C.4 D.-4D 解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.11.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.12.把实数36.1210-⨯用小数表示为()A.0.0612 B.6120 C.0.00612 D.612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.14.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D .【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.15.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.3.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.4.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.5.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.6.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.7.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.8.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】 ∵3276 6.7544--=-=-,()6.25 6.25--=, 由于 6.75 6.25-<, ∴36( 6.25)4--<--, 故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.9.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b =(1﹣2)2015=-1. 故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.11.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 1.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M 所对应的数为24或-6.【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.2.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯ ⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.4.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人大附中初一数学统一练习(一)
班级__________姓名_____________学号____________成绩___________
一、基本题
1、口算(每小题1分,共20分)
(1)25+37= (6)21.7÷7 = (11)35
512
⨯=(16)25×
4
5
=
(2)70-34= (7)12.3+1.23= (12)11
45
-=(17)
7
11
22
⨯=
(3)1.3+27 (8)1.05÷0.5= (13)
3
6
8
÷=(18)
4
2
9
÷=
(4)45-0.5= (9)84
99
-=(14)
21
52
+=(19)
21
32
+=
(5)25×0.4= (10)23
77
+=(15)
1
42
6
⨯=(20)
77
1013
÷=
2、填空(每空1分,共10分)
①四千五百万零七百写作()改写成以“万”为单位的数是()万
② 1.5时=( )分,450毫升=()升。

③把72分解质因数是(72= )。

④在5
8
、0.606、66%这三个数中,最大的数是(),最小的数是()。

⑤把
2
1.6:1
5
化成最简整数比是(),这个比的比值是()。

⑥《大百科全书》原价每套500元,现实行八五折优惠后,每套()元。

3、判断下面各题,正确的在括号里画“√”,错误画“×”。

(没空1分,共4分)
① 工作总量一定,工作效率和工作时间成反比例。

………………………………………………( ) ② 用100克要分和1千克水配制成的药水浓度时10%.……………………………………………( ) ③ 一个长方形的长和宽都增加6米,面积就增加36平方米。

……………………………………( ) ④ 如果45a b =,(a 、b 都不等于0),那么5
4
b a =。

………………………………………………( )
4、计算下面各题,能简算的要简算(每小题2分,共6分)
①4050630042-÷ ②5.04 6.5 2.76⨯- ③37
1751751010
⨯+⨯
5、列式计算(每小题3分,共6分)
①1.8除以2减1.6的差,商是多少? ②x 的4
5
比39多21,求x 。

6、解答下面各题(列方程)(每小题5分,共15分) ①学校共有2100名学生,其中男生占总人数的8
15
,女生有多少人?
②学校买回315棵树苗,计划按3:4分给五、六年级种植,两个年级各分到树苗多少颗?
③某电脑公司计划用9天时间组装电脑630台,实际只用6天就完成了任务,实际每天比计划多组装多少台?
二、技能题:
7、填空(没空1分,共3分)
①用一张长6厘米、宽4厘米的长方形纸片剪一个最大的圆,需要剪掉的纸片面积是()平方厘米。

②一桶油2千克,第一次倒出油的1
5
,第二次倒出
1
5
千克,桶内还剩油()千克。

③在一个减法算式中,差与减数的比是3;5,减数是被减数的()%。

l
8、把正确答案前的字母填在括号内(每题1分,共2分)
①一个三角形最小的内角是50°,按角分这是一个( )三角形。

A.钝角
B.直角
C.锐角
②已知一条直线l 和直线外的A 、B 两点,以A 、B 两点和直线上某一点作为三角形的三个顶点,就能画出一个等腰三角形,如图中的等腰三角形ABC ,除此之外还能画出符合条件的( )个等腰三角形。

A.1;
B.2;
C.4.
9、计算下面各题(每小题3分,共6分) ①15313()464÷+⨯ ②5571
[()]18693
⨯÷-
10.(本小题4分)
下面的平行四边形中,空白部分的面积是10平方分米,求涂色 部分的面积。

(单位:分米)
11.解答下面各题(每小题4分,共12分) ①根据统计图中的数据回答下列问题。

A .第( )季度销售量最高,是( )台; B.全年平均每季度的销售( );
C.第四季度比第一季度的销售量提高了( )%。

②师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,完成任务时徒弟正好生产了450个,这批零件共多少个?
③运送一批抗“非典”物资,由大、小卡车同时运送,6小时运完,若果用大卡车单独运,10小时可以运完。

单位:台
160
210
250
220
如果用小卡车单独运,需要及小时运完?
三.能力题;(每小题4分,共12分)
12.用一张边长20厘米的正方形纸,裁剪粘贴成一个无盖的长方体纸盒(不考虑损耗及接缝),要是他的容积大于550cm³。

请你画出裁剪草图、表明主要数据,并回答下列问题:
(1)你设计的纸盒长是( )厘米,宽是()厘米,高是()厘米。

(2)在下面计算出纸盒的容积是多少立方厘米?
13.一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2。

现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?
14.小明和小两个有一些玻璃球,小明说:“你有球的个数比我少1
4
!”小亮说:“你要是能个我你的
1
6
,我
就比你多2个!”。

小明原油布偶里求多少个?。

相关文档
最新文档