砾石充填防砂工艺参数优化设计

合集下载

水平井裸眼砾石充填

水平井裸眼砾石充填

水平井裸眼砾石充填防砂工艺技术优化研究与应用刘树新杨喜柱等(大港油田公司采油工艺研究院滩海工艺室)摘要:本文通过对埕海一区储层、流体性质分析,基于理论分析、地层砂粒经分析试验,提出水平井裸眼砾石充填防砂工艺,优化了工艺设计参数,实施后已取得显著效果,该工艺的成功实施大大提高了我油田水平井防砂工艺技术水平,也将对环渤海类似储层的滩海油田开发具有良好的借鉴作用。

主题词:埕海一区裸眼水平井防砂工艺研究裸眼砾石充填防砂应用效果1 引言埕海油田位于渤海湾滩海- 浅海地区,由于储层为疏松砂岩,前期研究结果表明必须采取先期防砂才能投产,而本区采用人工岛开发,井型以水平井为主,且井底位移大,水平段长,在防砂工艺方面存在极大难度。

因此开展了水平井裸眼砾石充填防砂工艺技术优化研究与应用课题。

在国内,该项技术的研究工作起步较晚,仅在胜利油田进行了试验与应用,但对于超过700m长水平井段的防砂仍然存在很大技术难度。

1 地质概况埕海一区位于大港油田滩海区南部埕北断阶区,地理位置位于河北省黄骅市关家堡村以东的滩涂一海域水深4m的极浅海地区。

该区主要包括二个井区:庄海4X 1、庄海8断块。

自下而上发育Es、Ed、Ng Nm等四套含油层系。

其中,Ngl 1组为主力油组,有具有以下油藏特征:油藏埋藏较浅。

埋深为1240 - 1268m储层成岩作用弱,属于岩性-构造底水油藏。

油层胶结疏松,易出砂。

试采井存在出砂的现象。

储层呈现高孔、高渗的特征,根据庄海802井粘土矿物X衍射分析报告来看,储层粘土以伊蒙间层为主,平均含量达到62.5%,其中蒙脱石含量约为70%,伊/ 蒙混层是易水化膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。

原油性质具有三高、三低的特点。

即高密度、高胶质沥青含量、高初馏点、低凝固点、低含蜡、低含硫。

该地区地层水矿化度平均为10350mg/L,水型为NaHCOO型。

油藏属于正常的温度压力系统。

针对该区上述储层特点,储层极易出砂,同时,原油粘度较高对出砂影响较大,本区地处滩海,以水平井为主,防砂难度大,因此开展了该区水平井防砂工艺研究与应用。

砾石充填防砂粒径筛选和施工参数优选方法论文

砾石充填防砂粒径筛选和施工参数优选方法论文

砾石充填防砂粒径筛选和施工参数优选方法研究[摘要]:油井出砂会造成井下设备和工具的磨蚀及井眼的堵塞,使油井的产量降低甚至停产。

绕丝管砾石充填防砂是目前应用最广泛最主要的防砂工艺。

但对油层厚度大、油层多等油井防砂成功率不是很高。

本文通过对充填砾石规格和施工排量的研究,并就地层砂筛析曲线及砾石和施工排量的优选方法进行了阐述。

[关键词]:砾石充填砾石尺寸砂侵最小排量中图分类号:td872+.8 文献标识码:td 文章编号:1009-914x(2012)12- 0102 -011 防砂效果的影响因素1.1 防砂效果与砾石尺寸的关系砾石充填井中砾石层是主要的挡砂屏障。

由于地层砂较细,地层砂会不同程度侵入砾石层导致防砂失败。

地层砂侵入砾石层的程度取决于砂砾比gsr(砾石与地层砂中值之比):gsr15,地层砂可以自由通过砾石层,起不到防砂作用。

1.2 防砂效果与炮眼中砾石充填过程的关系砾石充填过程中,炮眼内流动的携砂液达到一定值后,固体颗粒开始呈砂堤状向前推移,流速继续增加颗粒的悬浮程度增加,颗粒完全悬浮后,混合物的流动阻力将随流速的增加而增加。

炮眼中的流速必须高于淤积流速,才能将砾石携带到炮眼以外地层,因此,淤积流速是砂浆的最低流速。

用清水或地层污水做携砂液时,因其携砂能力差,砾石问题首先沉积于炮眼入口处,若炮眼吸液速度高于淤积流速,砾石在液流携带下,沿着沉积下来的砂堤逐渐向炮眼深处蠕动,当砂堤推进到射孔孔眼端部地层亏空部位后,再反向充填平衡堤上部区域。

2 砾石充填施工参数的优化2.1 砾石尺寸的选择tausch和corly法:建立在半对数筛析曲线的基础上,它建议最小砾石应等于4d10,最大砾石应等于6d10,即dmin=4d10;dmax=6d10。

saucier法:建立在完全挡砂的机理上,d50=(5~6) d50,即砾石的粒度中值为地层砂粒度中值的5~6倍,此时砾石充填带的有效渗透率/地层渗透率最大。

挤压砾石充填防砂工艺

挤压砾石充填防砂工艺

辛 68 块 61.5 213 19.6 6.1 100 936 27.9 8.9
四、工艺管柱
一次管柱砾石充填防砂工艺管柱
一次管柱砾石充填防砂工艺
采用不同孔径炮眼压降与单孔产量关系
1
压降(MPa)
0.75
10mm
12mm
0.5
14mm
18mm
0.25
0
0
0.5
1
1.5
2
2.5
单孔产量(m 3 /d)
不同渗透率充填层的炮眼压降与产能关系
10
压降P(MPa)
8
120μm2
40μm2
6
15μm2
4
5μm2
2
0
0
1 单孔产量2Q(m 3 /d)3
解堵剂使用前后岩心渗透率变化
层号
S26 S27
使用前 (μm2)
1.14 1.65
使用后(μm2)
A
B
C
1.58
1.67
1.61
2.44
2.35
2.42
污染岩心经处理后渗透率恢复到80%以上
(二)炮眼充填层理论应用
1、炮眼压降数学模型
dp Q Q 2
dx
A
原油乳化 胶质沉淀
岩心渗透率变化比较结果
岩心
原始渗透率 (μm2)
测定渗透率 (μm2)
S26
2.047
1.14
S27
2.940
1.65
岩心污染后渗透率下降幅度较大,下降 率达40%-50%。
解堵剂配方
解堵剂 A B C
配方组成 污水+HCL+KBG+BG-02+柠檬酸+甲醛+D1112H 污水+HCL+HF+BG-02+柠檬酸+甲醛+D1112H 污水+BG-02+NH4CL+甲醛+D1112H

砾石充填防砂井砾石尺寸设计实例

砾石充填防砂井砾石尺寸设计实例

1 砾石充填防砂井砾石尺寸设计实例砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。

较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。

油气井防砂领域使用的标准砾石尺寸如表1所示。

目前国内外的主要砾石尺寸设计方法为三类:(1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型;(2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型;(3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。

上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。

我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。

表1 油气井防砂领域使用的标准砾石尺寸第一类设计方法的设计结果如表2所示。

使用DePriester方法进行砾石尺寸设计结果如图2所示。

设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。

图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。

使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。

水平井砾石充填防砂工艺研究

水平井砾石充填防砂工艺研究
新 疆 石 油 科 技
21 0 1年 第 2期 ( 2 卷 ) 第 1
・ 7・ 1
水 平 井砾石充填 防砂工 艺研究
王 子元① 顾 长亮 杨 小敏
中 国石 油 大学 ( 京 ) 油 工程 学 院 北 石 中 国石 油 大 学 ( 京 ) 石 力 学 实 验 室 ,0 2 9北 京 昌平 斯 伦 贝谢 中 国海 洋服 务公 司 完 井部 北 岩 1 24
3 杨喜柱 , 刘树 新 , 秀敏 等 . 平 井裸 眼 砾 石 充 填 防砂 工 艺技 薛 水
术研 究 与应 用[. 油钻 采 工 艺 ,0 93 ( :6 7 J石 ] 20 ,1 )  ̄ 8 37
4 J S u ir o sd rt n n GrvlP c sg .a ce .C n ieai s i a e a k Dein.S E 0 0 o P 43 .
该测 试 项 目现 场试 验 的成功 为 下一步 实现 大斜度 井 、 水平 井分 布式 温度和 单 点压 力监测 , 供依 据 。 提 同时解 决 了常规 电子传 感 器和光 纤压 力传 感器 受油 井下 高温 高压 干扰 而无 法正常 工作 的技 术 难题 。
裘 新农
7 余 克 让 . 石 充填 完 井作业 队储 层 的伤 害. 气井测 试 , 砾 油
】 9 :8 4 9 23 - 2
达 到含 格后 再泵 入井 内。即使 有漏 失存 在, 也易 在 生 产过程 中排 出。
3 应 用前 景 展 望
( ) 随着水 平井 砾石 充填 技术 研究 的深入 , 高 1 提
漏 失
参考文 献
1 王 鹏 , 和 清 . 砂 工 艺技 术 . 姚 防 北京 : 油 工 业 出版 社 ,9 9 石 19 :

浅论疏松砂岩长效防砂优化技术

浅论疏松砂岩长效防砂优化技术

浅论疏松砂岩长效防砂优化技术摘要:近年来加强油藏适应性及热采工艺技术配套,形成筛管砾石充填为主导工艺的防砂模式。

但近1/4井防砂后产量下降快,防砂周期短,现场解剖发现防砂管堵塞及出砂现象均存在,导致这种情况的原因是砾石设计不合理。

合理的砾石设计,应保证有好的防砂效果,必须使砾石层本身有高的渗流能力,以保证油井有高的产量。

影响砾石层渗流能力的因素包括砾石尺寸、砾石粒度均匀、圆度、球度以及地层中进入砾石层中的砂粒和粘土。

通过研究砾石直径、砾石层厚度、粘土含量对砾石层渗流能力的影响,筛选出具有好的防砂效果和高的渗流能力的防砂砾石显得尤为必要。

合理确定挡砂精度或选择防砂方式,对疏松砂岩油藏快速、高效的开发有广泛借鉴作用。

关键词:油田开发;疏松砂岩;挡砂精度;防砂方式;参数匹配油田位于构造是一比较完整背斜,稠油区位于背斜构造侧翼。

由于油层胶结疏松,开采过程中油井出砂严重,防砂是热采井生产需解决的最突出的矛盾之一。

疏松砂岩油层出砂程度加剧、治砂难度大,通过开展油水井后期长效防砂技术优化研究及应用。

主体工艺优选、油层保护、技术参数匹配和施工过程的实时监测等措施,实现了防砂有效期的延长和出砂井产能的稳定。

疏松砂岩油藏分布较广,在开采中占有重要地位,采用筛管完井防砂,往往由于泥质含量高而导致产能下降严重,一般认为,粘土含量小于5%时防砂筛管都不容易堵塞,高于10%时,致密过滤结构的筛管不适合使用。

1 目前所用的充填材料有复合陶粒砂、固结剂、包覆石英砂等,各类充填材料的渗透率及各出砂油田的地层渗透率见表1:曲线可以看出,当 Kg/Kf <100时PR随着 Kg/Kf 的增大而明显上升,当图1砾石与地层渗透率比值对产能比的影响>100后 PR 上升趋势变得缓慢,因此一般取Kg/Kf >100便可满足防砂后产能保持的需要。

1.2 工艺优选严重出砂油田的地层渗透率在1μm2左右,由以上图、表中数据对比可以看出,石英砂与地层的渗透率比值大于100最有利于防后产量的保持,因此充填材料优选石英砂砾石,同时为了炮眼充填的稳定和防止充填砂的回流,最终优选机械筛管(割缝管)+砾石充填工艺为油田防砂的主体技术。

高速水砾石充填参数优化及应用

115砾石充填防砂是一种防砂效果好、有效期长的防砂方法之一,渤海油田常用的砾石充填方式为高速水砾石充填。

高速水充填是使充填压力接近地层的破裂压力,但不压漏地层,所以选择合适的充填参数对防砂效果起决定性作用。

本文旨在研究套管内高速水砾石充填参数的优化方法,从而为高速水砾石充填参数的优化选择提供理论依据和手段,对提高套管井防砂效果,提高采收率具有实际意义。

1 砾石充填的机理砾石充填防砂的基本原理就是利用具有一定性质的携砂液,携带标准砾石充填到筛套环空内以及炮眼内,依靠筛管的阻挡,使流体通过筛管进入冲管,返出井口。

砾石被阻挡在筛套环空内,形成具有一定厚度、高孔隙、高渗透的砾石层,防止地层砂在生产过程中进入油井。

当地层流体流向井筒时,粒径较大的地层砂首先被砾石层遮挡,形成砂桥,阻止更细的砂子入井,从而形成了由粗到细的过滤器。

2 砾石尺寸的选择目前渤海常用的砾石尺寸的选择方法是Saucier 方法:Saucier 方法假设砾石为大小一致的球形颗粒。

重叠球体的剖面有两种情况,一种是矩形结构,一种是三角形结构(图 1)。

图1 重叠球体的剖面结构图中黑色球为充填砾石,它的直径为D 。

通过几何分析可计算出上面两种情况下砾石直径D 和内接圆直径d 之间的关系分别为:第一种情况:D =2(+1)d ≈ 5d ;第二种情况:D = (2+)d ≈ 6d。

分析可知,当最大充填砾石按第一种情况堆积时,所形成的孔隙是充填砾石层中的最大孔隙,而当最小充填砾石按第二种情况堆积时,所形成的孔隙是充填砾石层中的最小孔隙。

因此,建议最小砾石直径应 5 倍于允许出砂的最大砂粒直径,最大的砾石直径应 6 倍于允许出砂的最大砂粒直径。

根据Saucier方法,它选用砾石的粒度中值为地层砂粒度中值的5~6倍。

即D 50=(5~6)d 50。

根据给定的地层砂, 首先进行筛析分析, 然后根据筛析结果,利用上述Saucier方法进行砾石尺寸设计。

3 筛管精度的选择在砾石充填完井中,筛管主要是用来支撑砾石层,筛缝提供流体入井的通道。

绕丝筛管砾石充填防砂

绕丝筛管砾石充填防砂砾石充填(gravel pack)防砂是应用最早,也是应用最广泛的机械防砂方法。

常用的砾石充填方式有两种:一是用于裸眼完井的裸眼砾石充填;二是用于射孔完井的套管内砾石充填。

裸眼砾石充填的渗滤面积大,砾石层厚,防砂效果好,有效期长,对油层产能影响小。

常用于油井先期防砂,工艺较复杂,且对油层结构要求具有一定强度,对油层条件要求高(如厚度大、无气、水夹层的单一油层)。

其它情况则采用套管射孔完井后,再进行套管内砾石充填。

砾石充填防砂的施工设计应符合三条基本原则:一是注重防砂效果,正确选用防砂方法,合理设计工艺参数和工艺步骤,以达到阻止油层出砂的目的;二是采用先进的工艺技术,最大限度地减少其对油井产能的影响;三是注重综合经济效益,提高设计质量和施工成功率,降低成本。

防砂设计要形成一套完整的程序,有利于方案的系统化和规范化,从而提高施工设计的质量。

一般程序为:充填方式选择->地层预处理设计->砾石设计->防砂管柱设计->携砂液设计->施工工艺设计。

1) 充填方式选择根据防砂油层、油井的特点和设计原则,结合完井类型选择合适的砾石充填方式。

2)地层预处理设计根据油层砂样分析化验的结果和防砂井的具体情况,确定酸化解堵和粘土稳定处理等措施,同时考虑防乳化、防止新生沉淀等问题。

这一步对于提高施工成功率、保证油井产能有着重要的意义。

3)砾石设计砾石设计主要包括确定砾石尺寸、砾石质量控制和砾石用量。

(l)砾石尺寸选择通过筛析实验取得防砂井油层砂样粒度中值d50后,根据计算公式求得所需用的砾石尺寸,即砾石的粒度中值D50。

目前普遍采用Saucier公式D50=(5~6) d50该公式是在大量实验基础上得到的,实验测得的砾/砂粒径比与渗透率的关系曲线如图8-6所示。

图8-7为砾石挡砂机理示意图,图中(a)表示D50/d50<6时,砾石与油层砂界面清楚,砾石挡住了油层砂,油气井无砂生产;图中(b)表示6<D50/d50<14时,油层砂部分侵入砾石充填层,造成砾/砂互混,砾石区渗透率下降,尽管油气井不出砂,但产量下降;图中(c)表示D50/d50>14时,油层砂可以自由通过砾石充填层,防砂无效。

砾石充填防砂井砾石尺寸设计实例

1 砾石充填防砂井砾石尺寸设计实例砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。

较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。

油气井防砂领域使用的标准砾石尺寸如表1所示。

目前国内外的主要砾石尺寸设计方法为三类:(1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型;(2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型;(3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。

上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。

我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。

表1 油气井防砂领域使用的标准砾石尺寸第一类设计方法的设计结果如表2所示。

使用DePriester方法进行砾石尺寸设计结果如图2所示。

设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。

图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。

使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。

砾石充填防砂粒径筛选和施工参数优选方法论文

砾石充填防砂粒径筛选和施工参数优选方法研究[摘要]:油井出砂会造成井下设备和工具的磨蚀及井眼的堵塞,使油井的产量降低甚至停产。

绕丝管砾石充填防砂是目前应用最广泛最主要的防砂工艺。

但对油层厚度大、油层多等油井防砂成功率不是很高。

本文通过对充填砾石规格和施工排量的研究,并就地层砂筛析曲线及砾石和施工排量的优选方法进行了阐述。

[关键词]:砾石充填砾石尺寸砂侵最小排量中图分类号:td872+.8 文献标识码:td 文章编号:1009-914x(2012)12- 0102 -011 防砂效果的影响因素1.1 防砂效果与砾石尺寸的关系砾石充填井中砾石层是主要的挡砂屏障。

由于地层砂较细,地层砂会不同程度侵入砾石层导致防砂失败。

地层砂侵入砾石层的程度取决于砂砾比gsr(砾石与地层砂中值之比):gsr15,地层砂可以自由通过砾石层,起不到防砂作用。

1.2 防砂效果与炮眼中砾石充填过程的关系砾石充填过程中,炮眼内流动的携砂液达到一定值后,固体颗粒开始呈砂堤状向前推移,流速继续增加颗粒的悬浮程度增加,颗粒完全悬浮后,混合物的流动阻力将随流速的增加而增加。

炮眼中的流速必须高于淤积流速,才能将砾石携带到炮眼以外地层,因此,淤积流速是砂浆的最低流速。

用清水或地层污水做携砂液时,因其携砂能力差,砾石问题首先沉积于炮眼入口处,若炮眼吸液速度高于淤积流速,砾石在液流携带下,沿着沉积下来的砂堤逐渐向炮眼深处蠕动,当砂堤推进到射孔孔眼端部地层亏空部位后,再反向充填平衡堤上部区域。

2 砾石充填施工参数的优化2.1 砾石尺寸的选择tausch和corly法:建立在半对数筛析曲线的基础上,它建议最小砾石应等于4d10,最大砾石应等于6d10,即dmin=4d10;dmax=6d10。

saucier法:建立在完全挡砂的机理上,d50=(5~6) d50,即砾石的粒度中值为地层砂粒度中值的5~6倍,此时砾石充填带的有效渗透率/地层渗透率最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

砾石充填防砂工艺参数优化设计
砾石充填防砂工艺是一种常用的防止水土流失和保护土壤的措施。

通过充填砾石,可以提高土壤的稳定性,减少河流或河岸的冲刷和侵蚀,保护生态环境和人类安全。

为了进一步提高砾石充填防砂的效果,需要对工艺参数进行优化设计。

首先,要确定砾石的大小和种类。

砾石可以分为不同的等级和规格,一般有5-10cm、10-20cm、20-40cm等规格可供选择。

选择砾石的大小和种类应根据具体工程的需要和水文地质条件来确定。

一般来说,对于大型水利工程,可以选择大小规格较大的砾石,以增加充填层的坚固性和稳定性。

其次,要确定充填砾石的厚度和密度。

充填砾石的厚度决定了其对土壤的保护效果,过薄的砾石层容易被水流冲刷,过厚的砾石层则会增加工程的成本和施工难度。

一般来说,砾石充填层的厚度应在20-40cm之间。

充填砾石的密度决定了其对土壤的压实效果和稳定性,过松的砾石层易被水流冲刷,过紧的砾石层则可能导致土壤的排水性不佳。

因此,在充填砾石时,应根据土壤的类型和水文地质条件来确定合适的压实措施,例如辊压、振动等。

另外,要确定砾石充填层的倾斜度和边坡设计。

倾斜度是指充填砾石层的坡度,通常取45°-60°之间。

较大的坡度可以增加充填层的稳定性和抗冲刷能力,但也会增加工程的成本和土地的占用。

边坡设计是指充填层的边缘线形,一般可以选择直线形、斜线形、曲线形等。

边坡设计应根据充填层的厚度、坡度和土壤的稳定性来确定,以确保工程的安全性和稳定性。

最后,要进行充填砾石的施工技术和质量控制。

充填砾石的施工技术包括挖掘、运输、充填、压实等环节。

在施工过程中,要选择合理的施工设备和方法,并进行密实度测定和质量检测,以确保充填砾石的均匀性、稳定性和工程质量。

总之,砾石充填防砂工艺参数的优化设计是一项复杂而关键的工作。

只有合理选择砾石的大小和种类,确定充填层的厚度和密度,以及进行倾斜度和边坡设计,同时结合施工技术和质量控制,才能提高砾石充填防砂的效果,减少水土流失,保护土壤和生态环境。

相关文档
最新文档