等差数列的性质

合集下载

初中一年级数学等差数列的概念和性质

初中一年级数学等差数列的概念和性质

初中一年级数学等差数列的概念和性质等差数列是初中一年级数学中的一个基础概念,它的性质在数学学习中也有着重要的应用。

本文将详细介绍等差数列的概念和性质。

一、等差数列的概念等差数列是指具有相同公差的数列,公差指的是相邻两项之间的差值。

用数学符号表示,等差数列的通项公式为an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差,n表示项数。

例如,以下数列都是等差数列:2, 5, 8, 11, 14...3, 6, 9, 12, 15...-4, -1, 2, 5, 8...二、等差数列的性质等差数列有很多有趣的性质,下面将介绍其中几个重要的性质。

1. 公差性质等差数列的相邻两项之间的差值始终相等,这个差值就是公差。

公差可以是正数、负数或零。

如果一个数列的相邻两项之间的差值不相等,那么这个数列就不是等差数列。

2. 通项公式等差数列的通项公式为an = a1 + (n-1)d。

通过这个公式,我们可以根据首项、公差和项数来求解数列的任意一项。

3. 首项与末项的关系在等差数列中,首项a1和末项an之间存在着如下关系:an = a1 + (n-1)d。

4. 求和公式等差数列的前n项和可以用求和公式来计算,公式为Sn = (n/2)(a1+ an)。

5. 通项之和等差数列的任意几项之和也可以通过通项公式来计算。

假设等差数列的前n项之和为Sn,那么有Sn = n(a1 + an)/2。

6. 等差中项如果一个等差数列有奇数项,那么它的中项就是第(n+1)/2项。

如果一个等差数列有偶数项,那么它的中项就是第n/2项和第(n/2)+1项的平均值。

三、例题分析下面通过几个例题来进一步理解等差数列的概念和性质。

例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。

解析:根据等差数列的求和公式,可以直接求解。

将a1 = 2, d = 3, n = 5代入公式Sn = (n/2)(a1 + an),可以得到Sn = (5/2)(2 + a5)。

等差数列的性质与公式

等差数列的性质与公式

等差数列的性质与公式等差数列是数列中相邻两项之间的差值保持恒定的数列。

在数学中,等差数列是一种常见的数学模型,具有许多重要的性质和应用。

本文将介绍等差数列的性质与公式,并探讨其在代数、几何等领域中的应用。

一、等差数列的定义等差数列可以用下列形式表示:a,a + d,a + 2d,a + 3d,...其中,a是首项,d是公差。

首项代表数列中的第一个数,公差代表相邻两项之间的差值。

二、等差数列的性质1. 通项公式等差数列的第n项可以用通项公式表示:an = a + (n-1)d其中,an代表等差数列的第n项,a是首项,d是公差。

2. 求和公式等差数列的前n项和可以用求和公式表示:Sn = (n/2)(a + an)其中,Sn代表等差数列的前n项和,a是首项,an是第n项,n代表项数。

3. 公差与项数的关系对于等差数列,项数与公差的关系可以表示为:n = (an - a)/d + 1其中,n代表项数,a是首项,an是第n项,d是公差。

4. 等差中项等差数列中的中项可以表示为:a + (n-1)(d/2)其中,a是首项,n代表项数,d是公差。

5. 等差数列的性质等差数列具有以下性质:(1) 等差数列的任意三项成等差数列;(2) 等差数列对任意项数取整后仍为等差数列;(3) 等差数列的倒序也为等差数列;(4) 等差数列的前n项和等于后n项和。

三、等差数列的应用等差数列在数学中具有广泛的应用,特别是在代数和几何领域中。

1. 代数应用(1) 等差数列可用于解决各种代数问题,如数列的推导、求和等问题。

(2) 等差数列可用于建立各种代数方程,进而解决实际问题。

2. 几何应用(1) 等差数列可用于几何问题,如等差中项问题、等差数列构成的图形问题等。

(2) 等差数列可用于建立几何方程,求解各种几何问题。

3. 统计应用(1) 等差数列可用于统计学中的各种模型建立与应用。

(2) 等差数列可用于数理统计、经济学等领域的数据分析。

等差数列的性质

等差数列的性质

教学内容【知识结构】1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差2.等差数列的通项公式:d n a a n )1(1-+=[或=n a d m n a m )(-+]等差数列定义是由一数列相邻两项之间关系而得{}n a 的首项是1a ,公差是d ,则据其定义可得:d a a =-12即:d a a +=12d a a =-23即:d a d a a 2123+=+=d a a =-34即:d a d a a 3134+=+=……由此归纳等差数列的通项公式可得:d n a a n )1(1-+= 由上述关系还可得:d m a a m )1(1-+= 即:d m a a m )1(1--=则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即的第二通项公式 =n a d m n a m )(-+ ∴ d=nm a a nm --3.有几种方法可以计算公差d ① d=n a -1-n a ② d=11--n a a n ③ d=mn a a mn --4.等差中项:定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项性质:在等差数列中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N ) 但通常 ①由q p n m a a a a +=+ 推不出m+n=p+q ,②n m n m a a a +=+【例题精讲】例1 ⑴求等差数列8,5,2…的第20项⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解:⑴由35285,81-=-=-==d a n=20,得49)3()120(820-=-⨯-+=a ⑵由4)5(9,51-=---=-=d a 得数列通项公式为:)1(45---=n a n由题意可知,本题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项例2 在等差数列{}n a 中,已知105=a ,3112=a ,求1a ,d ,n a a ,20 解法一:∵105=a ,3112=a ,则⎩⎨⎧=+=+311110411d a d a ⇒⎩⎨⎧=-=321d a∴53)1(1-=-+=n d n a a n5519120=+=d a a解法二:∵3710317512=⇒+=⇒+=d d d a a∴5581220=+=d a a 3)12(12-=-+=n d n a a n小结:第二通项公式 d m n a a m n )(-+=例3设S n 是数列{a n }的前n 项和,且S n =n 2,判断数列{a n }是否是等差数列? 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N ) 又a n +1-a n =2为常数∴{a n }是等差数列解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。

等差数列常用性质

等差数列常用性质

合作探究:问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件?由定义得A-a =b -A ,即:2ba A +=反之,若2ba A +=,则A-a =b -A 由此可可得:,,2b a ba A ⇔+=成等差数列 也就是说,A =2ba +是a ,A ,b 成等差数列的充要条件 问题2:在直角坐标系中,画出通项公式为53-=n a n的数列的图象,这个图象有什么特点?(2)在同一直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说说等差数列q pn a n +=的图象与一次函数y=px+q 的图象之间有什么关系?定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+即 m+n=p+q ⇒q p n ma a a a +=+ (m, n, p, q ∈N )例1在等差数列{na }中,若1a +6a =9, 4a =7, 求3a , 9a . 分析:要求一个数列的某项,通常情况下是先求其通项公式,而要求通项公式,必须知道这个数列中的至少一项和公差,或者知道这个数列的任意两项(知道任意两项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手……例2 等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a分析:要求通项,仍然是先求公差和其中至少一项的问题而已知两个条件均是三项复合关系式,欲求某项必须消元(项)或再弄一个等式出来例3已知数列{n a }的通项公式为q pn a n+=,其中p,q 为常数,那么这个数列一定是等差数列吗?分析:判定{n a }是不是等差数列,可以利用等差数列的定义,也就是看)1(1>--n a a n n是不是一个与n 无关的常数。

等差数列的概念与性质

等差数列的概念与性质

等差数列的概念与性质等差数列是数学中常见且重要的数列之一。

它是由一系列数字按照相同公差递增或递减而形成的。

本文将介绍等差数列的概念、性质及其在数学和实际生活中的应用。

一、概念等差数列指的是一个数列,其每一项与前一项之差都相等。

公差(d)是其中相邻两项之差。

如果一个等差数列的首项为a₁,公差为d,则数列的通项公式可表示为:aₙ = a₁ + (n-1) * d其中,aₙ为第n项。

二、性质1. 公差与项数的关系:对于等差数列,任意相邻两项之差都等于公差。

所以,如果已知等差数列的首项和末项,以及项数,则可以求得公差的值。

公差(d)可以表示为:d = (aₙ - a₁) / (n - 1)2. 求和公式:等差数列的前n项和可以通过求和公式来计算。

对于一个等差数列的前n项和(Sₙ),其计算公式为:Sₙ = (n/2) * (a₁ + aₙ)3. 通项公式的推导:根据等差数列的性质,可以通过推导得出通项公式。

首先,我们知道第n项与首项之间的差距是(n-1)倍的公差,即aₙ = a₁ + (n-1) * d。

经过整理后,可以得到通项公式。

三、应用等差数列在数学和实际生活中有广泛的应用。

1. 数学中的应用:等差数列是数学中重要的概念,并在其他数学领域中得到应用。

例如,在数列和级数中,等差数列的求和公式能够准确计算出前n项的和。

此外,在微积分中,等差数列和等差级数的概念与计算也起到重要的作用。

2. 实际生活中的应用:等差数列在实际生活中的应用较为广泛。

例如,通过分析连续几年的销售数据,可以判断某个产品的销售趋势是否呈现等差数列的规律。

通过识别这样的规律,商家可以对产品定价、库存管理等方面做出更准确的决策。

此外,等差数列还可以应用于金融领域,例如利率的计算、投资回报预测等。

总结:等差数列是数学中的重要概念,其性质包括公差与项数的关系、求和公式以及通项公式的推导。

在数学中,等差数列的应用涉及到数列与级数、微积分等方面。

等差数列的性质2

等差数列的性质2

(3) 已知 a4+a5+a6+a7=56,a4a7=187,求a14及公差d.
a4+a7=28 ①
解 ①、 ② 得 又 a4a7=187 ② ,
解: a4+a5+a6+a7=56
a4= 17
a7= 11

a4= 11 a7= 17
∴d= _2或2, 从而a14= _3或31
练习
1.等差数列{an}的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( B ) A . -1 B. 1 C .-2 D. 2
{an+bn},{an-bn},仍是等差数列,且公差分别为: d1+d2,d1-d2
等差数列的其它性质:
(2)若{an}、{bn}分别是公差为 d1、d2 的等差数列,则下 列{pan+qbn}(p、q 是常数)是公差为 pd1+qd2 的等差数列. 3. {an}的公差为 d, 则 d>0⇔{an}为 递增 数列; d<0⇔{an} 为 递减 数列;d=0⇔{an}为 常 数列.
【方法总结】
等差数列性质较多,利用数列性质
解题,方法灵活,计算简化,应多加思考,培养学生的 发散思维能力.
a2 变式练习 4 数列{an}满足 a1= 2a, an+ 1= 2a- (n an 1 ∈ N ),其中 a 是不为零的常数,令 bn= . an - a
*
(1)数列{bn}构成什么数列?并证明你的结论; (2)求数列{an}的通项公式.
[解析] a3+ a6+ a9+ „+ a99= (a1+ 2d)+ (a4+ 2d)+ (a7+ 2d) + „„+ (a97+2d)=(a1+a4+a7+„+a97)+2d×33=50+(-4)×33=-82.

等差数列的判定和性质

等差数列的判定和性质

f (x)
f ( y)
f
x y 1 xy
(3)若an
1 1
2n 2n
(n
N ),证明数列f
(an )是等差数列;
(4)
若f
(
1 3
)
1,

求f
(a1
)
f (a2 )
f (a100)的值。
(1) f ( x)是奇函数
证明:令x y 0,则f (0) f (0) f (0), f (0) 0

(2) 求an的 表 达 式 ;
(3)若bn 2(1 n)an(n 2),
求证:b22 b32 bn2 1
例2 定义域为-1,1的函数f ( x)满足:对于任意
x、y -1,1都有f ( x)
f ( y)
f
x y 1 xy
(1)判定f ( x)的奇偶性并证明你的结论;
(2)证明:
等差数列的判定 和性质
一、等差数列的判定方法
1、定义法:an-an-1=d(常数)
2、数列{an}是等差数列的充要条件是: ①{pan+q}成等差数列(p、q是常数) ②2an+1=an+an+2(n∈N*) ③前n项和Sn=An2+Bn(A、B是常数)
证明:必要性 若{an}是等差数列,则{an}前n项
四、等比数列{an}
记A=a1+a2+…+an,,B=an+1+an+2+…+…+a2n,, C=a2n+1+a2n+2+…+a3n则A、B、C成等比数列,公比 为qn (其中q为{an}的公比)

等差数列性质公式总结

等差数列性质公式总结

等差数列性质公式总结等差数列,是指数列中的每一项都与它的前一项之差保持相等的数列。

等差数列具有许多性质和公式,本文将对这些性质和公式进行总结。

以下是对等差数列性质公式的详细总结:一、基本概念与公式1. 等差数列:数列中的每一项都与它的前一项之差相等,这个差值称为公差d。

记作a1, a2, a3, ...,其中a1为首项,d为公差,则等差数列的通项公式为an = a1 + (n-1)d。

2. 前n项和公式:等差数列的前n项和Sn = (a1 + an) * n / 2 或Sn = (2a1 + (n-1)d) * n / 2。

3. 首项与末项的关系:an = a1 + (n-1)d。

4. 公差与项数的关系:d = (an - a1) / (n-1)。

5. 首项与末项的平均值:(a1 + an) / 2 = a[(n+1) / 2],其中a是中项的下标。

6. 首项与末项的乘积:a1 * an = a[m + (n-m)/2] * a[m - (n-m)/2],其中m为项数之和。

7. 通项求和:已知a1,an和n,求等差数列的每一项之和Sn。

Sn = (a1 + an) * n / 2。

二、相邻项间的关系8. 任意两项的平均值:(an + a(n+1)) / 2 = a[(n+2) / 2]。

9. 任意三项的关系:a(n-1) + a(n+1) = 2an。

10. 任意四项的关系:a(n-2) + a(n-1) + a(n+1) + a(n+2) = 2(an + an+1)。

11. 连续奇(偶)数项之和:an + a(n-2) + ... + a3 + a1 =(n+1)a[(n+1)/2]。

12. 连续奇(偶)数项之和:an + a(n-2) + ... + a4 + a2 = na[n/2]。

13. 间隔和公式:a1 + a3 + a5 + ... + a(2n-1) = n^2。

14. 间隔和公式:a2 + a4 + a6 + ... + a(2n) = n(n+1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式为S n =na 1+n (n ﹣1)d 或者S n =
性质:①若项数为()
*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1
n n S a
S a +=奇偶. ②若项数为()
*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,
1
S n
S n =
-奇偶(其中n S na =奇,()1n S n a =-偶).
【例题精讲】
例1、若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )
A .公差为3的等差数列
B .公差为4的等差数列
C .公差为6的等差数列
D .公差为9的等差数列
例2、等差数列{a n }前n 项和为S n ,且﹣
=3,则数列{a n }的公差为( )
A .1
B .2
C .3
D .4
例3、设S n 是等差数列{a n }的前n 项和,若,则
=( )
A .1
B .2
C .3
D .4
例4、在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( ) A .4 B.-4 C .5 D.-5
【课堂练习】
1、若等差数列{a n}和{b n}的公差均为d(d≠0),则下列数列中不为等差数列的是()
A.{λa n}(λ为常数)B.{a n+b n}C.{a n2﹣b n2}D.{{a n•b n}}
2、已知数列{a n}的前n项和S n=n2﹣9n(n∈N*),则a9的值为()
A.9 B.8 C.7 D.6
3、已知数列{a n}为等差数列,若,且它们的前n项和S n有最大值,则使得S n>0的n的最大值为
()
A.11 B.19 C.20 D.21
4、若两个等差数列{a n}和{b n}的前n项和分别是S n和T n,已知,则=()
A.7 B.C. D.所有
5、若等差数列{a n}和{b n}的公差均为d(d≠0),则下列数列中不为等差数列的是()
A.{λa n}(λ为常数)B.{a n+b n} C.{a n2﹣b n2} D.{{a n•b n}}
1、若公差为d 的等差数列{a n }n ∈N*,满足a 3a 4+1=0,则公差d 的取值范围是 .
2、已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则的值
为( ) A .2 B .3 C .﹣2 D .﹣3
3、已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.
4. 已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2
2
=1,则数列{a n }的公差是( )
A.12
B.1 C .2 D.3
5、等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.
课后巩固
1、已知等差数列{a n}的前n项和为S n,若S17>0,S18<0,则S n取最大值的n的值是.
2、已知数列{a n}的前n项和是S n,则下列四个命题中,错误的是()
A.若数列{a n}是公差为d的等差数列,则数列{}的公差为的等差数列
B.若数列{}是公差为d的等差数列,则数列{a n}是公差为2d的等差数列
C.若数列{a n}是等差数列,则数列的奇数项,偶数项分别构成等差数列
D.若数列{a n}的奇数项,偶数项分别构成公差相等的等差数列,则{a n}是等差数列
3、等差数列{a n}中,是一个与n无关的常数,则该常数的可能值的集合为()
A.1 B.C.D.
4、已知首项为正数的等差数列{a n}满足:a2019+a2020>0,a2019•a2020<0,则使前项S n>0成立的最大自然数n 是()A.4037 B.4038 C.4039 D.4040。

相关文档
最新文档