两角和与差正弦余弦公式PPT课件

合集下载

两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)

两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.





练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin




两角和与差的正弦、余弦和正切公式及二倍角公式PPT

两角和与差的正弦、余弦和正切公式及二倍角公式PPT

1 cos 2α
2
;
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
教材研读 栏目索引
教材研读 栏目索引
1.sin 20°cos 10°-cos 160°sin 10°= ( D )
A.- 3 B. 3 C.- 1 D. 1
2
2
2
2
2.化简cos 18°cos 42°-cos 72°sin 42°的值为 ( B )
0,
2
,tan
α=2,则cos
α
4
=
.
(3)设sin
2α=-sin
α,α∈
2
,
,则tan
2α的值是
.
栏目索引
考点突破
栏目索引
答案 (1)A (2) 3 10 (3) 3
10
解析
(1)∵sin
6
α
=cos
6
α
,
∴ 1 cos α- 3 sin α= 3 cos α- 1 sin α.
2
5
故sin
4
α
=sin
4
cos
α+cos
4
sin
α
=
2 2
×
2
5 5
+2
2
×5
5
=-10
10
.
(2)由(1)知sin 2α=2sin αcos α=2× 5
5
×
2
5 5
=4-
5
,
考点突破
栏目索引
cos 2α=1-2sin2α=1-2×
5 2

5.5.1两角和与差的正弦、余弦和正切公式1PPT课件(人教版)

5.5.1两角和与差的正弦、余弦和正切公式1PPT课件(人教版)
第五章 三角函数
5.5.1两角和与差的正弦、余弦和正切公式
第一课时 两角差的余弦公式
学习目标: 1.掌握两角差的余弦公式; 2.明确公式的推导过程; 3.能利用公式进行相关计算.
教学重点: 掌握两角差的余弦公式. 教学难点: 公式的推导过程.
根据两点间的 距离公式
思考 两角差的余弦公式有无巧记的方法呢?
跟踪训练1 化简下列各式: (1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
解 原式=cos[θ+21°-(θ-24°)] =cos 45°= 22.
(2)-sin 167°·sin 223°+sin 257°·sin 313°.
解 原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)
55×3 1010=
2 2.
又 sin α<sin β,∴0<α<β<π2,
∴-π2<α-β<0.故 α-β=-π4.
反 已知三角函数值求角的解题步骤

感 (1)界定角的范围,根据条件确定所求角的范围. 悟 (2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三
角函数.
(3)结合三角函数值及角的范围求角.
1-172=4
7
3 .
∵β=α-(α-β)∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=12.
∵0<β<π2,∴β=π3.
随堂练习
1.cos 47°cos 137°+sin 47°sin 137°的值等于

两角和与差的正弦、余弦、正切公式 课件

两角和与差的正弦、余弦、正切公式 课件

即 tan(α-β)=________,这就是两角差的正切公式.
练习 5:1t+an4ta5n°4-5°ttaann1155°°=________________.
tan α-tan β 1+tan αtan β
练习:5.
3 3
思考应用
3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 kπ+π2(k∈Z);可以是数、字母和代数式.从公式推导过程进 行说理:cos(α+β)≠0,则 α+β≠kπ+π2;同除 cos α、cos β, 得 cos α≠0,cos β≠0,则 α≠kπ+π2,cos β≠kπ+π2.cos x≠0, 保证了 tan x 有意义.
∵cos(α-β)=1134,∴sin(α-β)=3143, 由 β=α-(α-β),得
cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=7×4914=12, ∵0<β<π2,所以 β=π3.
点评: 解答此类问题分三步:第一步,求角的某 一个三角函数值;第二步,确定角所在的范围;第三 步,根据角的范围写出所求的角.特别注意选取角的 某一个三角函数值,是取正弦?还是取余弦?应先缩 小所求角的取值范围,最好把角的范围缩小在某一三 角函数值的一个单调区间内.
sin αcos β+cos αsin β
以-β 代替公式 sin(α+β)=sin αcos β+cos αsin β
中的 β,得到 sin[α+(-β)]=sin αcos(-β)+
cos αsin(-β)=sin αcos β-cos αsin β,

高中数学两角和与差的正弦、余弦、正切公式课件

高中数学两角和与差的正弦、余弦、正切公式课件

Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五

( − ) = ,


( − ) = .

公式六

( + ) = ,
2

( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.


2
;

1
④ cos

两角和与差的正弦、余弦、正切公式ppt

两角和与差的正弦、余弦、正切公式ppt


ห้องสมุดไป่ตู้
例题讲解
例7
sin(2a + b ) sin b (1)求证: - 2 cos(a + b ) = sin a sin a
(2)在△ABC中,求证: tanA+tanB+tanC=tanAtanBtanC
小结作业
1.明确各公式的内在联系,掌握公式的
形成过程. C 2.公式 S ( a + b ) 与 S ( a - b ) , ( a + b ) C 与 T ( a + b ) 与 T ( a - b ) 的结构相同,但运算 符号不同,必须准确记忆,防止混淆.
问题探究
怎样用任意角、的正弦、余弦值表示? cos( ) ? sin( ) ? sin( ) ? tan( ) ? tan( ) ?
公式变式
公式 S ( a + b ) ,C ( a + b ) ,T ( a + b ) 称为和角公式, 公式 S ( a - b ) , C a - b , T ( a - b ) 称为差角公式.
例题讲解
例5、 3 4 (1)sin sin , cos cos , 5 5 求 cos( ). (2)sin cos a, cos sin b 求 sin( )
例题讲解
3 12 例6、已知 ,cos( ) 2 4 13 3 sin( ) , 求 sin 2的值. 5
3.公式都是有灵性的,应用时不能生搬 硬套,要注意整体代换和适当变形.
小结作业
P137: (1)6、7、8、10、13、(1)-—(5); (2)《学海导航》第二课时

课件9:3.1.2 两角和与差的正弦、余弦、正切公式

课件9:3.1.2 两角和与差的正弦、余弦、正切公式

类型 1 灵活应用和、差角公式化简三角函数式
例1
(1)
sin
47°-sin 17°cos cos 17°
30°=(
)
A.-
3 2
B.-12
C.12
D.
3 2
【解析】sin
47°-sin 17°cos cos 17°
30°
=sin(17°+30c°o)s -17s°in 17°cos 30°
=sin
∴sin α=sin[(α-β)+β]
=sin(α-β)cos β+cos(α-β)sin β
=45×7102+35×-102=
2 2.
又 α∈0,π2,∴α=π4.
探究点 辅助角公式的应用 探究 1 函数 y=sin x+cos x(x∈Z)的最大值为 2 对吗?
为什么?
【提示】 不对.因为 sin x+cos x
3.1.2 两角和与差的正弦、余弦、正切公式
学习目标 1.能根据两角差的余弦公式推导出两角和与差的正弦、 余弦公式,并灵活运用.(重点) 2.能利用两角和与差的正弦、余弦公式推导出两角 与差的正切公式.(难点) 3.掌握两角和与差的正切公式及变形应用.(难点、 易错点)
基础·初探
教材整理 1 两角和与差的余弦公式
【解析】 逆用两角和的余弦公式可得 cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)= cos 90°=0. 【答案】 0
教材整理 2 两角和与差的正弦公式
1.公式
名称
简记 符号
公式
两角和的正弦
S(α+β)
sin(α+β)=
_s_i_n_α_c_o_s__β_+__c_o_s_α_s_i_n_β_

《两角和与差的正弦、余弦、正切公式》三角函数PPT

《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习




三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习




3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证tan=3tan(+)
证明:由题设:
即:
∴ ∴
tan=3tan(+)
练习:①已知

, 求sin2的值 (

)
②已知

③ 求证:
的值。
(4)利用和角公式计算; (5)已知, 求角 (1)求 的值 ; (6)若锐角满足,
(2)求
1.(7)
的值;
中 , , ;(2)求 , 的值;
求(1)
练习题选
1.已知: ,
求证:
2.求值: 3.求 4.已知, 求; 的值;
5.若锐角

满足 ,求
ቤተ መጻሕፍቲ ባይዱ
, 的值;
6.已知
7.已知, 求证:
8.求证:
9.已知一元二次方程
的两个根为 10.已知一元二次方程 为 ,求 ,求 的值; 的两个根 的值; 11.已知 是 12.求 的值; 是锐角,证明: ; 的充要条件
(1)关于辅助角问题 例1、化简 解:原式= 例2、 已知,
求函数
,
的值域。
解: 又 ∵


∴函数y的值域是 。
例3、求函数
的值域。
分析:若设
,则
于是原函数可变为: 又
所以原问题可转化为二次函数在给定范围上 的最值问题。
(2)关于角变换
例4、已知 求 解:∵ 即: ∵ 又: ∴ 的值 , ,

例5、 已知
相关文档
最新文档