两角和与差的正弦公式与余弦公式(课堂PPT)

合集下载

5.5.1 第2课时 两角和与差的正弦、余弦、正切公式(课件)

5.5.1 第2课时 两角和与差的正弦、余弦、正切公式(课件)

返回导航
第五章 三角函数
解 (1)原式=sin 13°cos 17 °+sin(90°-13°)·cos(90°-17°) =sin 13°cos 17°+cos 13°sin 17° =sin(13°+17°) =sin 30°=12. (2)原式=212sin1π2- 23cos1π2 =2sin1π2cosπ3-cos1π2sinπ3 =2sin1π2-π3 =-2sinπ4=- 2.
解 ∵0<α<π4<β<34π, ∴34π<34π+α<π,-π2<π4-β<0. 又∵sin34π+α=153,cosπ4-β=35, ∴cos34π+α=-1123,sinπ4-β=-45.
数学 必修 第一册 A
返回导航
第五章 三角函数
∴cos(α+β)=sinπ2+α+β =sin34π+α-π4-β =sin34π+αcosπ4-β-cos34π+αsinπ4-β =153×35--1123×-45=-3635.
答案 (1)× (2)√ (3)√
数学 必修 第一册 A
返回导航
第五章 三角函数
2.sin(30°+45°)=________.
解析 sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°
=12× 22+ 23× 22=
2+ 4
6 .
答案
2+ 6 4
数学 必修 第一册 A
∴cos
α=2
5
5,sin
β=3
10 10 .
∴cos(α-β)=cos
αcos
β+sin
αsin
β=2 5 5×
1100+
55×3 1010=

两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)

两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.





练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin




两角和与差的正弦、余弦和正切公式及二倍角公式PPT

两角和与差的正弦、余弦和正切公式及二倍角公式PPT

1 cos 2α
2
;
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
教材研读 栏目索引
教材研读 栏目索引
1.sin 20°cos 10°-cos 160°sin 10°= ( D )
A.- 3 B. 3 C.- 1 D. 1
2
2
2
2
2.化简cos 18°cos 42°-cos 72°sin 42°的值为 ( B )
0,
2
,tan
α=2,则cos
α
4
=
.
(3)设sin
2α=-sin
α,α∈
2
,
,则tan
2α的值是
.
栏目索引
考点突破
栏目索引
答案 (1)A (2) 3 10 (3) 3
10
解析
(1)∵sin
6
α
=cos
6
α
,
∴ 1 cos α- 3 sin α= 3 cos α- 1 sin α.
2
5
故sin
4
α
=sin
4
cos
α+cos
4
sin
α
=
2 2
×
2
5 5
+2
2
×5
5
=-10
10
.
(2)由(1)知sin 2α=2sin αcos α=2× 5
5
×
2
5 5
=4-
5
,
考点突破
栏目索引
cos 2α=1-2sin2α=1-2×
5 2

两角和与差的正弦、余弦、正切公式 课件

两角和与差的正弦、余弦、正切公式 课件

即 tan(α-β)=________,这就是两角差的正切公式.
练习 5:1t+an4ta5n°4-5°ttaann1155°°=________________.
tan α-tan β 1+tan αtan β
练习:5.
3 3
思考应用
3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 kπ+π2(k∈Z);可以是数、字母和代数式.从公式推导过程进 行说理:cos(α+β)≠0,则 α+β≠kπ+π2;同除 cos α、cos β, 得 cos α≠0,cos β≠0,则 α≠kπ+π2,cos β≠kπ+π2.cos x≠0, 保证了 tan x 有意义.
∵cos(α-β)=1134,∴sin(α-β)=3143, 由 β=α-(α-β),得
cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=7×4914=12, ∵0<β<π2,所以 β=π3.
点评: 解答此类问题分三步:第一步,求角的某 一个三角函数值;第二步,确定角所在的范围;第三 步,根据角的范围写出所求的角.特别注意选取角的 某一个三角函数值,是取正弦?还是取余弦?应先缩 小所求角的取值范围,最好把角的范围缩小在某一三 角函数值的一个单调区间内.
sin αcos β+cos αsin β
以-β 代替公式 sin(α+β)=sin αcos β+cos αsin β
中的 β,得到 sin[α+(-β)]=sin αcos(-β)+
cos αsin(-β)=sin αcos β-cos αsin β,

课件7:3.1.2 两角和与差的正弦、余弦、正切公式

课件7:3.1.2 两角和与差的正弦、余弦、正切公式

例 2 求下列各式的值:
1+tan (1)1-tan
75°; 75°
(2)tan 17°+tan 28°+tan 17°tan 28°;
(3)tan 70°-tan 10°- 3tan 70°tan 10°
解:(1)方法 1:原式=1t- ant4a5n°4+5°ttaann7755°°=
tan(45°+75°)=tan 120°=- 3.
A.- 3
B. 3
C.-
3 3
3 D. 3
【解析】tanta2n02°t0a°n-(-ta5n05°0)-° 1=ttaann2500°°t-ant5a0n°2+0°1=tan130°
= 3.故选 B.
3.(2014 年贵州模拟)tan 20°+tan 40°+ 3tan 20°·tan 40° =________.
得csoins((αα+-ββ))=scions ααccooss
β+cos β+sin
αsin αsin
ββ=1t+antαan+αttaannββ=1-3 3
=-23.
规律总结
1.公式 Tα ± β 中 α≠kπ+π2,β≠kπ+π2,α±β≠kπ+π2(k∈Z). 2.两角和的正切公式 tan(α+β)=1t-antαan+αttaannββ的常用变形: (1)1t-antαan+αttaannββ=tan(α+β); (2)1-tan αtan β=tatnanα(+α+taβn)β;
(3)tan α+tan β=tan(α+β)(1-tan αtan β); (4)tan αtan βtan(α+β)=tan(α+β)-tan α-tan β.

()
1
1
A.5

高中数学两角和与差的正弦、余弦、正切公式课件

高中数学两角和与差的正弦、余弦、正切公式课件

Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五

( − ) = ,


( − ) = .

公式六

( + ) = ,
2

( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.


2
;

1
④ cos

《两角和与差的正弦、余弦、正切公式》三角函数PPT

《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习




三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习




3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(

两角和与差的正弦、余弦、正切公式 课件

两角和与差的正弦、余弦、正切公式   课件

2 2.
(2)(tan 10°-
Hale Waihona Puke cos 3) sin5100°°=(tan
10°-tan
cos 60°) sin
10° 50°
=csoins
1100°°-csoins
60°cos 60° sin
5100°°=cossin10-°c5o0s°60°·csoins
10° 50°
=-cos160°=-2.
例 3 已知 sin(2α+β)=3sin β,求证:tan(α+β)=2tan α.
证明 sin(2α+β)=3sin β ⇒sin[(α+β)+α]=3sin[(α+β)-α] ⇒sin(α+β)cos α+cos(α+β)sin α =3sin(α+β)cos α-3cos(α+β)sin α ⇒2sin(α+β)cos α=4cos(α+β)sin α ⇒tan(α+β)=2tan α. 小结 证明三角恒等式一般采用“由繁到简”、“等价转化”、 “往中间凑”等办法,注意等式两边角的差异、函数名称的差异、 结构形式的差异.
解 原式=sinπ4-3xcos3π-3x-sinπ3-3xcos4π-3x
=sinπ4-3x-3π-3x=sinπ4-π3=sin
π 4cos
π3-cos
π 4sin
π 3
= 22×12- 22× 23=
2- 4
6 .
【典型例题】
例 1 化简求值: (1)sin(x+27°)cos(18°-x)-sin(63°-x)sin(x-18°);
探究点一 由公式 C(α-β)推导公式 C(α+β) 由于公式 C(α-β)对于任意 α,β 都成立,那么把其中的+β 换成 -β 后,也一定成立.请你根据这种联系,从两角差的余弦公 式出发,推导出用任意角 α,β 的正弦、余弦值表示 cos(α+β) 的公式.试一试写出推导过程. 答 ∵α+β=α-(-β),cos(-β)=cos β,sin(-β)=-sin β,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 三角公式及应用
1.1 两角和与差的正弦公式与余弦公式
创设情境 兴趣导入
1 两角和的余弦公式内容是什么?
co s( ) co s co s sin sin .
2 两角和的正弦公式内容是什么?
sin ( ) sin co s co s sin .
2
动脑思考 探索新知
由同角三角函数关系,知
ta n ( ) c s o in s ( ( ) ) s c io n s c c o o s s c s o in s s s i in n ,
当 coscos0时,得到
tan()1tantantatann (1.5)
利用诱导公式可以得到
tan()1tantantatann (1.6)
22 3 3 9
由于 ( π , π )
4 42
,且
cos21cos21(13)1
42
23
所以 cos 3 .
43
11
巩固知识 典型例题
例11
求证 tan 1cos. 2 sin
证明
右边=
cos2
2
2sin cos
cos
2
2sin
tan
2
=右边.
22
2
12
运用知识 强化练习
1.已知 s in 5 ,且 为第一象限的角,求 sin2、 cos2.
因为 sin2cos21,所以公式(1.8)又可以变形为
cos22cos21

cos212sin2.
还可以变形为
sin21cos2 或 cos21cos2.
2
2
7
动脑思考 探索新知
在公式(1.5)中,令 ,可以得到二倍角的正切公式
tan212ttaann2
(1.9)
公式(1.7)、(1.8)、(1.9)及其变形形式,反映出具 有二倍关系的角的三角函数之间的关系.在三角的计算中有着 广泛的应用.
注意 在两角
和与差的正切 公式中, α,β 的取值应使式 子的左右两端 都有意义.
3
巩固知识 典型例题
例7 求 tan75的值.
解 tan7 5 tan (4 5 3 0)
1tanta3n0o30ottaann4455oo
3 1 3
1 3 3
3 3 3 3
2 3.
分析 可利用公式将
75°角看作45°角 与30°角之和.
8
巩固知识 典型例题
例9
已知 s i n 3 ,且 5
为第二象限的角,求 sin2、 cos2的值.
解 因为 为第二象限的角,所以
cos1sin21(3)24,
55

sin22sincos24,
25
cos212sin27.
25
9
巩固知识 典型例题
例10 已知 cos 1 ,且 (π,2π),求sin 、cos 的值.
6
动脑思考 探索新知
在公式(1.3)中,令 ,可以得到二倍角的正弦公式 s i n 2 s i n c o s c o s s i n 2 s i n c o s
即 sin2 2 sin c o s (1.7)
同理,在公式(1.1)中,令 ,可以得到二倍角的余
弦公式
cos2cos2sin2(1.8)
1.
16
继续探索 活动探究
读书部分:阅读教材相关章节 书面作业:教材习题1.1(必做) 学习指导1.1(选做) 实践调查:用两角和与差的正切 公式印证一组诱导公式
17
18
2 二倍角公式内容是什么?
二倍角的正弦公式 sin22sincos; 二倍角的余弦公式 cos2cos2sin2; 二倍角的正切公式 tan2 2tan .
1tan2
14
自我反思 目标检测
学习方法
学习行为
学习效果
15
自我反思 目标检测
求 2 tan 22.5o 的值. 1 tan2 22.5o
23
4
分析
与 , 与 之
2
24
间都是具有二倍关系
的角.
10
巩固知识 典型例题
例10 已知 cos 1 ,且 (π,2π),求sin 、cos 的值.
23
4
解 由 (π,2π) 知 ( π , π ),所以
22
sin1cos21122
2
2 93
故 sin 2 sinc o s 2 22 ( 1 ) 42
13
sin2120 cos2119.
169
169
2.已知 c o s 2 4 ,且2[π,2π]求 sin .
5
10 . 10
13
理论升华 整体建构
1 两角和与差的正切公式内容是什么?
tan( ) tan tan ; 1 tan tan
tan( ) tan tan . 1 tan tan
4
巩固知识 典型例题
例8 求下列各式的值
(1)
tan25o tan35o ; 1 tan25o tan35o
(2)1 1
tan 15o . tan 15o
解 (1) 1 t a n ta 2 n 5 o 2 5 o tta a n n 3 3 5 5 o o= ta n (2 5 o 3 5 o ) ta n 6 0 o3 ;
(2)
1tan15otan45otan15o 1tan15o 1tan45otan15o
tan(45o15o)
tan 60o
3.
分析 (1)题可以逆用公
式(1.3);(2)题可 以利用 tan45o 1 进行 转换.
5ቤተ መጻሕፍቲ ባይዱ
运用知识 强化练习
1.求 tan15o 的值. 2.求tan105 的值.
2 3. 2 3.
相关文档
最新文档