薄膜材料与技术
薄膜材料的特点及其制备技术

薄膜材料的特点及其制备技术薄膜材料的特点及其制备技术厚度小于1微米的膜材料,称为薄膜材料。
下面是店铺给大家整理的薄膜材料的特点及其制备技术,希望能帮到大家!薄膜材料的特点与制备技术工业上有两大类塑料薄膜(厚度在0.005mm~0.250mm)生产方法——压延法和挤出法,其中挤出法中又分为挤出吹塑、挤出拉伸和挤出流延。
目前最广泛使用的生产工艺有挤出吹塑、挤出拉伸和挤出流延,尤其是聚烯烃薄膜,而压延法主要用于一些聚氯乙烯薄膜的生产。
在挤出吹塑、挤出拉伸和挤出流延中,由于挤出吹塑设备的整体制造技术的不断提高以及相对于拉伸和流延设备而言低得多的,本应用在不断增多。
不过在生产高质量的各种双向拉伸薄膜中仍然广泛使用挤出拉伸设备。
随着食品、蔬菜、水果等对塑料薄膜包装的要求越来越高以及农地膜、棚膜的高性能要求和工业薄膜的应用不断增加、计算机和自动化技术的应用,塑料薄膜设备生产商一直在不断创新,提高薄膜的生产质量。
薄膜材料的简介当固体或液体的一维线性尺度远远小于其他二维时,我们将这样的固体或液体称为膜。
通常,膜可分为两类,一类是厚度大于1微米的膜,称为厚膜;另一类则是厚度小于1微米的膜,称为薄膜。
半导体功能器件和光学镀膜是薄膜技术的主要应用。
一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。
当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。
相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结构。
在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。
薄膜技术有很广泛的应用。
长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。
陶瓷薄膜也有很广泛的应用。
由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。
薄膜材料与薄膜技术复习

薄膜材料与薄膜技术第一章1.真空度划分:粗真空:105-102Pa 接近大气状态热运动为主低真空:102-10-1Pa高真空:10-1-10-6Pa超高真空:<10-6Pa2.吸附与脱附物理吸附与化学吸附气体吸附:固体表面捕获气体分子的现象物理吸附:没有选择性、主要靠分子之间的吸引力、容易发生脱附、一般只在低温下发生化学吸附:在较高温度下发生、不容易脱附,只有气体和固体表面原子接触生成化合物才能产生吸附作用;气体脱附:是吸附的逆过程;3.旋片式机械真空泵用油来保持各运动部件之间的密封,并靠机械的办法,使该密封空间的容积周期性地增大,即抽气;缩小,即排气,从而达到连续抽气和排气的目的;4.分子泵牵引泵:结构简单、转速小、压缩比大效率低涡轮式分子泵:抽气能力高、压缩比小效率高5.低温泵深冷板装在第二级冷头上,温度为10-20k,板正面光滑的金属表面可以去除氮、氧等气体,反面的活性炭可以吸附氢、氦、氖等气体;通过两极冷头的作用,可以达到去除各种气体的目的,从而获得超高真空状态;6.真空的测量电阻真空计:压强越低,电阻越高 p↓→R↑测量范围105---10-2Pa热偶真空计:压强越低,电动势越高p↓→↑测量范围Pa电离真空计:三种BA型、热阴极、冷阴极A:灯丝发射极F:栅极加速极 G:收集极第二章1.薄膜制备的化学方法以发生一定化学反应为前提,由热效应引起或由离子的电致分离引起;热激活、离子激活2.热氧化生长在充气条件下,通过加热基片的方式可以获得大量的氧化物、氮化物和碳化物薄膜;3.化学气相沉积优缺点:优点记住四条:①成核密度高,均匀平滑的薄膜;②绕射性好,对于形状复杂的表面或工件的深孔、细孔等都能均匀覆膜;③不需要昂贵的真空设备;④残余应力小,附着力好,且膜致密,结晶良好;⑤可在大尺寸基片或多基片上进行;可一制备金属和非金属薄膜,成膜速率快,面积大;缺点:①反应温度太高,而许多基材难以承受这样的高温②反应气体可能与设备发生化学反应;三个过程:反应物输运、化学反应、去除附产物分类:常压式、低压式NPCVD、LPCVD 热壁>500℃、冷壁LTCVD发生的典型化学反应记住四条:分解反应、还原反应、氧化反应、氮化反应、碳化反应按照不同激活方式分类:①激光化学气相沉积LCVD定义:利用激光源产生出来的激光束实现化学气相沉积的一种方法激光加热非常局域化②光化学气相沉积PCVD定义:高能光子有选择性地激发表面吸附分子或气体分子而导致键断裂、产生自由化学粒子形成膜或在相邻的基片上形成化学物③等离子体增强化学气相沉积PECVD定义:在等离子体中电子平均能量足以使大多数气体电离或分解优点:比传统的化学气相沉积低得多的温度下获得单质或化合物薄膜材料缺点:由于等离子体轰击,使沉积膜表面产生缺陷,反应复杂,也使薄膜的质量有所下降;应用:用于沉积各种材料,包括SiO2、Si3N4,非晶Si:H、多晶Si、SiC等介电和半导体膜;分类:射频R-PECED、高压电源PECVD、微波m-PECVD、回旋电子加速微波mECR-PECVD辨析PCVD 、LCVD 、PECVD4.电镀定义:电流通过导电液中的流动而产生化学反应最终在阴极上电解沉积某一物质的过程;5.化学镀定义:不加任何电场、直接通过化学反应而实现薄膜沉积的方法6.阳极沉积反应定义:不需采用外部电流源,在待镀金属盐类的溶液中,靠化学置换的方法在基体上沉积出该金属的方法;依赖阳极反应7.辨析电镀、化学镀、阳极沉积反应:①化学镀、阳极沉积反应不可单独作为镀膜技术,一般作为前驱镀处理衬底或后续镀做保护层;电镀可单独作为镀膜技术;②阳极沉积反应与化学镀的区别在于无需在溶液中加入化学还原剂,因为基体本身就是还原剂;化学镀需添加还原剂;两者都不需要外加电场;技术定义:利用分子活性气体在气液界面上凝结成膜,将该膜逐次叠积在基片上形成分子层;应用:应用这一技术可以生长有序单原子层、高度有序多原子层,其介电强度较高; 过程:第三章与CVD相比优缺点:优点:化学气相沉积对于反应物和生成物的选择,且基片需要处在较高温度下,薄膜制备有一定的局限性;物理气相沉积对沉积材料和基片没有限制;缺点:速率慢、对真空度要求高三个过程:从源材料发射粒子、粒子输运到基片、粒子在基片上凝结、成核、长大、成膜;3.真空蒸发定义:将待成膜的物质置于真空中进行蒸发或升华,使之在工件或基片表面析出的过程;优点相对于其他物理制备:简单便利、操作容易、成膜速度快、效率高、广泛使用;缺点:薄膜与基片结合较差、工艺重复性不好;六种技术:①电阻加热法定义:将支撑加热材料做成适当形状,装上蒸镀材料,让电流通过蒸发源加热蒸镀材料,使其蒸发;②闪烁蒸发定义:把合金做成粉末或微细颗粒,在高温加热器或坩锅蒸发源中,使一个一个的颗粒瞬间完全蒸发;③激光蒸发定义:激光作为热源使蒸镀材料蒸发;④电子束蒸发定义:把被加热的物质放置在水冷坩锅中,利用电子束轰击其中很小一部分,使其熔化蒸发,而其余部分在坩锅的冷却作用下处于很低的温度;⑤电弧蒸发定义:属于物理气相沉积,有等离子体产生;⑥射频蒸发f>定义:通过射频线圈的适当安置,可以使待镀材料蒸发;优缺点:蒸发速度快,成本高,设备复杂;辨析电阻蒸发、电子束蒸发:①电子束蒸发可以直接对蒸发材料加热;可避免材料与容器的反应避免污染和容器材料的蒸发;可蒸发高熔点材料;电阻蒸发难加到高温度,需要蒸发源材料低熔点和高蒸气压;加热时容器如坩埚易产生污染;②电子束蒸发需要靶材导电,装置复杂,只适合于蒸发单质元素;残余气体分子和蒸发材料的蒸气会部分被电子束电离;电阻蒸发装置相对简单;4.溅射定义:溅射是指荷能粒子如正离子轰击靶材,使靶材表面原子或原子团逸出的现象;逸出的原子在工件表面形成与靶材表面成分相同的薄膜;溅射与蒸发的异同点同:在真空中进行异:蒸发制膜是将材料加热汽化溅射制膜是用离子轰击靶材,将其原子打出;优点和缺点参数控制较蒸发困难但不存在分馏,不需加热至高温等直流辉光放电伏安特性曲线:A-B:电流小,主要是游离状态的电子,离子导电;电子-原子碰撞为弹性碰撞;B-C: 增加电压,粒子能量增加,达到电离所需能量;碰撞产生更多的带电粒子;电源的输出阻抗限制电压类似稳压源;C-D: 起辉雪崩;离子轰击产生二次电子,电流迅速增大,极板间压降突然减小极板间电阻减小从而使分压下降;D-E: 电流与极板形状、面积、气体种类相关,与电压无关;随电流增大,离子轰击区域增大;极板间电压几乎不变;可在较低电压下维持放电;E-F: 异常辉光放电区;电流随电压增大而增大;电压与电流、气体压强相关可控制区域,溅射区域;F-G: 弧光放电过渡区;击穿或短路放电;比较DE、EF区正常辉光放电和异常辉光放电①辉光放电:真空度为10-1~10-2 Torr,两电极间加高压,产生辉光放电;电流电压之间不是线性关系,不服从欧姆定律;②DE段:电流增大电压不变;EF段:电压增大电流增大③DE段不可控,EF段可控辉光放电时明暗场分布:阿斯顿暗区:慢电子区域;阴极辉光:激发态气体发光;克鲁克斯暗区:气体原子电离区,电子离子浓度高;负辉光:电离;电子-离子复合;正离子浓度高阴极位降区基片所在位置;法拉第暗区:慢电子区域,压降低,电子不易加速;溅射六种装置:①辉光放电直流溅射②三级溅射③射频溅射:射频溅射是利用射频放电等离子体中的正离子轰击靶材、溅射出靶材原子从而沉积在接地的基板表面的技术;④磁控溅射⑤离子束溅射⑥交流溅射速度:射频>磁控>交流>三级>直流>离子束还有几种:对靶溅射反应溅射热溅射校准溅射磁控溅射:磁力线延伸到衬底,对衬底进行适当溅射,通过在靶表面引入磁场,利用磁场对带电粒子的约束来提高密度以增加率;优点:可在较低工作压强下得到较高的沉积率,可在较低基片温度下获得高质量薄膜;缺点:①靶材利用率低,表面不均匀溅射、非均匀腐蚀及内应力②不适用于强磁体磁控热反应溅射:加热衬底;到达衬底前靶材粒子与反应气体发生化学反应形成化合物;先解释溅射,再解释磁控溅射,再解释热反应溅射非平衡磁控溅射:①靶材非平衡使用②磁线外延到靶材时,少量外延到衬底,可以对衬底进行预清洗;靶材中毒:判断依据:溅射速率急速下降枪内真空度下降原因:化学反应没有发生在衬底上,发生在靶材上,使靶材钝化,产额下降;辨析直流、交流、三极溅射直流溅射:施加直流电压,使真空室内中性气体辉光放电,正离子打击靶材,使靶材表面中性原子溢出;交流溅射:施加交流电压;三极溅射:采用直流电源,将一个独立的电子源热阴极中的电子注入到放电系统中,而不是从靶阴极获得电子;5.离子镀定义:真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上;优点:结合蒸发与溅射两种薄膜沉积技术;膜与基片结合好,离子镀的粒子绕射性,沉积率高,对环境无污染;6.离子束沉积IBD在离子束溅射沉积过程中,高能离子束直接打向靶材,将后者溅射并沉积到相邻的基片上;离子助沉积IAD7.外延生长①分子束外延MBE定义:在超高真空条件下精确控制原材料的中性分子束强度,并使其在加热的基片上进行外延生长的一种技术;优点:超高真空、可以实现低温过程、原位监控、严格控制薄膜成分及掺杂浓度②液相外延生长LPE定义:从液相中生长膜,溶有待镀材料的溶剂是液相外延生长所必需的;③热壁外延生长HWE定义:一种真空沉积技术,在这一技术中外延膜几乎在接近热平衡条件下生长,通过加热源材料与基片材料间的容器壁实现的;④有机金属化学气相沉积MOCVD定义:采用加热方式将化合物分解而进行外延生长半导体化合物的方法;原料含有化合物半导体组分;特点:可对多种化合物半导体进行外延生长;优点相对于其他几种外延生长:①反应装置较为简单,生长温度较宽②可对化合物的组分进行精确控制,膜的均匀性和膜的电化学性质重复性好③原料气体不会对生长膜产生刻蚀作用;④只通过改变原材料即可以生长出各种成分的化合物缺点:所用的有机金属原料一般具有自燃性;原料气体具有剧毒;比较MBE、LPE、MOCVD温度/生长速率/膜纯度:液相外延生长LPE>有机金属化学气相沉积MOPVD>分子束外延MBE辨析溅射、蒸发、离子镀第四章1.薄膜形成:凝结过程、核形成与生长过程、岛形成与结合生长过程2.凝聚过程前提是形成原子对吸附原子结合成原子对及其以后的过程;必要条件是吸附原子在基体表面的扩散运动;吸附-扩散-凝结吸附过程:入射到基体表面的气象原子被固体表面的悬挂键吸引住的现象称为吸附①物理吸附:范德华力低温吸附高温解析②化学吸附:化学键选择性高温吸附3.辨析成核理论---毛细理论热力学界面能理论和原子理论:①相同之处:所依据的基本概念相同,所得到的成核速率公式形式也基本相同;②不同之处:两个使用的能量不同,所用模型不同;热力学界面能理论适合描述大尺寸临界核;因此,对于凝聚自由能较小的材料或者过饱和度较小情况下进行沉积的情况比较适合;原子理论适合小尺寸临界核;对于小尺寸临界核,这时必须过饱和度很高才能发生凝聚成核;③由于这两种理论所用模型的本质差别,热力学界面能理论所给出的有关公式预示,随着过饱和度的变化,临界核尺寸和成核速率连续变化;相反,原子理论则预示着它们不作连续变化;4.临界核形成:方程推导当原子或分子从气相中沉积到衬底的表面凝聚,成球状核或冠状核时总自由能和临界核尺寸的数学表达式分析温度、过饱和度、沉积速率对r 和ΔG 的影响;答:球状凝聚核总自由能数学表达式: 3243()4?v CV G r r G r ππσ∆=-∆+ 临界核尺寸数学表达式:22*ln(/)cvcvve VG kT P P r σσ∆==冠状凝聚核总自由能表达式:23103()4?)?)v G r r r G πφθσ∆=+∆临界核尺寸表达式:02*v G r σ∆=-;凝聚核总自由能由两部分构成,即体自由能与界面自由能,体自由能随着核心尺寸的增加而减小,界面自由能随着核心尺寸的增大而增大,所以总自由能随着核心尺寸的增加先增大后减小,存在一个临界核心尺寸和形核势垒温度影响:温度T ↑,过冷度T ∆↓,临界核半径*r 和形核势垒*G ∆都将↑,则新相核心形成困难;过饱和度影响:过饱和度S ↑,临界核半径*r 和形核势垒*G ∆都↓,所需克服的形核势垒也较低,新相核心较易形成;沉积速度影响:沉积速率R ↑时,临界核半径*r 和形核势垒*G ∆都↓,新相核心较易形成;5.根据毛细理论,简述形核率 dN/dt 的主要影响因素,并解释说明吸附气体原子的脱附激活能、扩散激活能和临界形核势垒对其影响规律和内在机制;答:形核率 dN/dt 的主要影响因素:温度,过饱和度和沉积速度;规律:吸附气体原子的脱附激活能越高,扩散激活能越低,形核率越大,临界形核势垒越低,形核率越大;内在机制:高的脱附激活能和低的扩散激活能都有利于气相原子在基体表面停留和运动,因而会提高形核率;临界形核势垒越低,新相核心越容易形成,形核率也就越大;6.根据毛细理论,简要说明为什么高温低速沉积往往获得粗大或单晶结构薄膜,而低温高速沉积则有利于获得细小多晶、微晶乃至非晶薄膜答:根据毛细理论知,在高温低速沉积速度条件下,临界核半径和形核势垒都较大,新相核心较大且不易形成,形核率低,形成薄膜组织往往粗大或者单晶薄膜;在低温高速沉积条件下,临界核半径和形核势垒都较小,新相核心较小且容易形成,形核率高,形成薄膜组织细密连续,则有利于获得细小多晶、微晶乃至非晶薄膜;7.在稳定核形成以后,岛状薄膜的形成过程一般分为几个阶段各阶段的主要现象如何答:稳定核形成之后,岛状薄膜的形成过程分为四个阶段,小岛阶段,结合阶段,沟道阶段,连续膜;小岛阶段:出现大小一致的核2-3nm,核进一步长大变成小岛,形状将又冠球形变成圆形最后变成多面体小岛;结合阶段:两个小岛将相互结合,结合后增大了高度,减小了在基片的所占的总表面积;结合时类液体特性导致新出现的基片面积上将会发生二次形核,结合后的复合岛若有足够时间,可形成晶体结构;沟道阶段:当岛的分布达到临界状态时便相互聚结成网状结构,种结构中不规则分布着宽度为50~200A 的沟渠,随着沉积继续,沟渠很快消失,薄膜变成小孔洞的连续状结构,在小孔洞处将发生二次成核或三次成核,整个薄膜连成一片;连续薄膜:随着沉积继续进行,在沟渠和孔洞消除,再入射到基体表面的气相原子便直接吸附在薄膜上,通过联并作用而形成不同结构的薄膜;8.利用烧结过程解释核心吞并机制及其驱动力;答:机制:当两个岛相互接触时,在接触点形成半径为R的瓶颈,将产生一驱动力2б/R,使岛的沉积原子通过体扩散和表面扩散迁移到瓶颈中,且表面扩散通量大于体扩散通量;驱动力由曲率半径R决定,为2б/R;9.简述薄膜的主要生长模式,及每类生长模式各自出现的条件及特点;答:岛状生长型,层生长型,层岛生长型;岛状生长型:特点:到达衬底上的沉积原子首先凝聚成核,后续飞来的沉积原子不断聚集在核附近,使核在三维方向上不断长大而最终形成薄膜;条件:在衬底晶格和沉积膜晶格不相匹配非共格时或当核与吸附原子间的结合能大于吸附原子与基体的吸附能时,大部分薄膜形成过程属于这种类型;层状生长型:特点:沉积原子在衬底的表面以单原子层的形式均匀地覆盖一层,然后再在三维方向上生长第二层、第三层······条件:一般在衬底原子与沉积原子之间的键能大于沉积原子相互之间键能的情况下共格发生这种生长方式的生长;层岛生长型:特点:生长机制介于岛生长型和层生长型的中间状态;条件:当衬底原子与沉积原子之间的键能大于沉积原子相互之间键能、随后出现干扰层状生长结合能特性单调减少因数的情况下准共格多发生这种生长方式的生长;第五章1.组分表征2.结构表征3.原子化学键合表征能量损失谱EELS:主峰---元素种类主峰化学位移---配位结构精细结构---键合情况扩展X射线吸收精细结构EXAFS:吸收线---元素种类精细结构---键合情况辨析红外吸收光谱与拉曼光谱①红外吸收光谱:构成薄膜样品分子振动的频率一般从红外延展到远红外,用红外线照射薄膜样品时,与样品分子振动频率相同的红外线就会被分子共振吸收;每个分子都有确定的振动频率,因此可用红外光谱标识薄膜中所含分子并确立分子间的键合特征;拉曼光谱:可见光或紫外线照射在样品上时,出来的散射光频率会有稍许改变,这种改变乃是由分子振动引起的;因此可用拉曼光谱测定这种频率的改变,从而分析和鉴别薄膜样品中的化学组成和化学键合;②都是测定薄膜样品中分子振动的;③对于具有对称中心的分子振动,红外不敏感,拉曼敏感;对于反对称中心的分子振动,则红外敏感拉曼不敏感;对于对称性高的分子,拉曼敏感;辨析红外吸收光谱与傅里叶变换红外光谱FTIR①二者原理一致②传统的红外吸收光谱依赖于红外光束通过格栅色散到单色元件中进行扫描; FTIR依赖于相干干涉仪。
薄膜材料及其制备技术

薄膜材料及其制备技术薄膜材料是指厚度在纳米级别到微米级别的材料,具有特殊的物理、化学和力学性质。
薄膜材料广泛应用于电子、光电、光学、化学、生物医学等领域。
下面将介绍薄膜材料的分类以及常用的制备技术。
薄膜材料的分类:1.无机薄膜材料:如氧化物薄膜、金属薄膜、半导体薄膜等。
2.有机薄膜材料:如聚合物薄膜、膜面活性剂薄膜等。
3.复合薄膜材料:由两种或以上的材料组成的。
如聚合物和无机材料复合薄膜、金属和无机材料复合薄膜等。
薄膜材料的制备技术:1.物理气相沉积技术:包括物理气相沉积(PVD)和物理气相淀积(PVD)两种方法。
PVD主要包括物理气相沉积和磁控溅射,通过将固态金属或合金加热,使其升华或蒸发,然后在基底表面形成薄膜。
PVD常用于制备金属薄膜、金属氧化物薄膜等。
2.化学气相沉积技术:包括化学气相沉积(CVD)和原子层沉积(ALD)两种方法。
CVD通过化学反应在基底表面形成薄膜。
ALD则是通过一系列的单原子层回旋沉积来生长薄膜。
这些方法可以制备无机薄膜、有机薄膜和复合薄膜。
3.溶液法制备技术:包括溶胶-凝胶法、旋涂法、浸渍法等。
溶胶-凝胶法通过溶胶和凝胶阶段的转化制备薄膜。
旋涂法将溶液倒在旋转基底上,通过离心力将溶液均匀分布并形成薄膜。
浸渍法将基底浸泡在溶液中,溶液中的材料通过表面张力进入基底并形成薄膜。
这些方法主要用于制备有机薄膜和复合薄膜。
4.物理沉积法和化学反应法相结合的制备技术:如离子束沉积法、激光沉积法等。
这些方法通过物理沉积或化学反应在基底表面形成薄膜,具有较高的沉积速率和较好的薄膜质量。
综上所述,薄膜材料及其制备技术涉及多个领域,各种薄膜材料的制备方法各有特点,可以选择合适的技术来制备特定性质的薄膜材料。
随着对薄膜材料的深入研究和制备技术的不断进步,薄膜材料在各个应用领域的潜力将会得到更大的发掘。
薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用薄膜材料是在基材上形成的一层薄膜状的材料,通常厚度在几纳米到几十微米之间。
它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子、光学、能源、医疗等领域。
薄膜材料制备的原理主要涉及物理蒸发、溅射、化学气相沉积等方法。
其中,物理蒸发是指将所需材料制成块状或颗粒状,利用高温或电子束加热,使材料从固态直接转变为蒸汽态,并在基材上沉积形成薄膜。
溅射是将材料制成靶材,用惰性气体或者稀释气体作为工作气体,在高电压的作用下进行放电,将靶材表面的原子或分子溅射到基材上形成薄膜。
化学气相沉积是指在一定条件下,将气态前体分子引入反应室,通过化学反应沉积到基材上,形成薄膜。
薄膜材料制备技术不仅包括上述原理所述的基本制备方法,还涉及到不同材料、薄膜厚度、表面质量等方面的特定要求。
例如,为了提高薄膜的品质和厚度均匀性,可采用多台蒸发源同时蒸发的方法,或者通过旋涂、喷涂等方法使得所需薄膜材料均匀地覆盖在基材上。
此外,为了实现特定功能,还可以通过控制制备条件、改变材料组成等手段来改变薄膜的特性。
薄膜材料具有多种应用领域。
在电子领域,薄膜材料可以用于制作集成电路的介质层、金属电极与基板之间的隔离层等。
在光学领域,薄膜材料可以用于制作光学滤波器、反射镜、透明导电膜等。
在能源领域,薄膜材料在太阳能电池、锂离子电池等器件中扮演重要角色。
在医疗领域,薄膜材料可以用于制作人工器官、医用伽马射线屏蔽材料等。
此外,薄膜材料还应用于防腐蚀涂料、食品包装、气体分离等领域。
虽然薄膜材料制备技术已经相对成熟,但是其制备过程中仍然存在一些挑战。
例如,薄膜厚度均匀性、结晶性能、粘附性能等方面的要求十分严格,制备过程中需要控制温度、压力、物质流动等多个参数的影响,以确保薄膜的质量。
此外,部分薄膜材料的制备成本相对较高,制约了其在大规模应用中的推广。
总的来说,薄膜材料制备原理、技术及其应用具有重要的实际意义。
通过不断改进制备技术,提高薄膜材料的制备效率和质量,将有助于推动薄膜材料在各个领域的更广泛应用。
薄膜材料与薄膜技术

薄膜材料与薄膜技术薄膜材料是一种在工业和科学领域中广泛应用的材料,其厚度通常在纳米至微米级别。
薄膜技术则是制备、处理和应用薄膜材料的技术,涉及物理、化学、材料科学等多个领域。
薄膜材料的研究和应用已经深入到电子、光学、能源、生物医学等各个领域,成为现代科技发展的重要组成部分。
一、薄膜材料的分类根据材料的性质和制备方法,薄膜材料可以分为多种类型。
常见的薄膜材料包括金属薄膜、半导体薄膜、聚合物薄膜等。
金属薄膜通常具有良好的导电性和热导性,常用于电子器件的制备;半导体薄膜则是制备光电器件的重要材料;而聚合物薄膜则具有良好的柔韧性和可塑性,被广泛应用于包装材料、传感器等领域。
二、薄膜技术的发展随着科学技术的不断进步,薄膜技术也在不断发展。
目前,常见的薄膜制备技术包括物理气相沉积、化学气相沉积、溅射、溶液法等。
这些技术各有特点,可以制备不同性质的薄膜材料,满足不同领域的需求。
同时,随着纳米技术的发展,越来越多的纳米薄膜材料被制备出来,开拓了新的应用领域。
三、薄膜材料的应用薄膜材料在电子、光学、能源、生物医学等领域都有着重要的应用。
在电子领域,薄膜材料被广泛应用于集成电路、平板显示器、太阳能电池等器件中,发挥着重要作用;在光学领域,薄膜材料被用于制备光学薄膜、反射镜等光学器件;在能源领域,薄膜太阳能电池、燃料电池等也在逐渐成为发展的热点;在生物医学领域,生物传感器、药物传递系统等也离不开薄膜材料的支持。
四、薄膜技术的未来发展随着科技的不断进步,薄膜技术也在不断创新。
未来,随着人工智能、大数据、物联网等新兴技术的发展,薄膜材料的应用领域将会更加广泛,薄膜技术也将迎来新的发展机遇。
同时,随着环境保护意识的增强,绿色环保的薄膜材料和技术也将得到更多关注和应用。
薄膜材料与薄膜技术作为现代科技的重要组成部分,对于推动科技进步、促进产业发展、改善人类生活质量都起着重要作用。
我们期待着薄膜材料与薄膜技术在未来能够取得更大的突破和发展,为人类社会的发展作出更大的贡献。
薄膜技术与薄膜材料

薄膜技术与薄膜材料从20世纪以来,薄膜技术及其应用技术已经快速发展,在制造、设备、电子、纳米、材料等领域得到广泛应用。
薄膜技术是建立在基于物质表面和界面特性的细致考虑和分析之上的一门学科,其内容可以分为两个部分,即薄膜材料技术和薄膜制备技术。
薄膜材料技术主要涉及材料的特性,包括薄膜的结构、形状、尺寸、厚度和物理性能;另一方面,薄膜制备技术是将薄膜材料进行加工和雕刻的技术,所得到的材料结构及性能变化会被检测、记录和应用,从而达到所需的功能和性能。
薄膜技术的发展离不开薄膜材料的发展。
从20世纪以来,先后出现了磁性薄膜、半导体薄膜、发光薄膜、激光薄膜、电磁解耦薄膜、微纳米复合薄膜等多种新型薄膜材料。
各种材料的发展给薄膜技术的应用提供了可能。
同时,薄膜材料的发展也受益于20世纪以来新兴的薄膜技术,如高真空技术、微纳技术、原子层技术、功能涂层技术、共振技术、多层异质技术,以及超精密喷射等新兴技术。
纳米级薄膜材料具有一系列优异的性能,特别是近年来,利用超精密喷射技术制备的纳米级薄膜材料,其功能和性能越来越突出,为多种科学技术应用和实现提供了有力的条件和保证。
由于超精密喷射技术的特殊优势,使超精密喷射薄膜材料在传感器、熔体沉积、光学、化学、生物技术、复合材料等多种新兴技术中有着广泛的应用,其中熔体沉积技术是最重要的一种新技术。
熔体沉积技术是一种将金属溶解在液态中,并将其蒸发到薄膜材料表面,使其实现原子级分子层层叠加的技术。
熔体沉积技术是用来制备半导体薄膜、磁性薄膜、发光薄膜等高性能材料的革命性技术,可以生产出任意厚度任意尺寸任意形状的薄膜材料,并将二维和三维的复杂结构实现为超薄薄膜材料,因而被称为“假想的薄膜技术”。
同时,熔体沉积技术是目前最发达的薄膜材料技术之一,它更加注重材料的形状和大小,并在制备许多微纳米复合薄膜材料时,能够解决材料凝固、形变、热变形等问题,实现了薄膜材料的节能和环保。
以上就是薄膜技术与薄膜材料的基本内容,无论是什么样的应用领域,薄膜技术和薄膜材料都可以说是至关重要的。
薄膜材料与薄膜技术

薄膜材料与薄膜技术薄膜材料与薄膜技术概述:薄膜材料是指厚度在几纳米到几微米之间的材料,它们具有特殊的物理、化学和电学性质。
而薄膜技术则是一种将这些材料制成具有特定形状和功能的工艺方法。
目前,随着科技的不断进步,人们对于薄膜材料和技术的需求也越来越高。
1. 薄膜材料的种类目前,市场上常见的薄膜材料主要包括以下几种:1)聚合物:如聚乙烯、聚丙烯、聚氨酯等。
2)金属:如铝、铜、钛等。
3)氧化物:如二氧化硅、氧化铝等。
4)碳基材料:如石墨烯、碳纤维等。
5)半导体:如硅、锗等。
2. 薄膜技术的应用领域由于其特殊性质,薄膜材料及其制备技术在众多领域中得到了广泛应用。
以下是其中一些典型的应用领域:1)光电子学:如太阳能电池、LED等。
2)微电子学:如半导体器件、集成电路等。
3)医疗保健:如药物传递系统、人工器官等。
4)能源存储:如锂离子电池、超级电容器等。
5)涂层材料:如防腐涂料、防刮涂料等。
3. 薄膜技术的制备方法目前,常见的薄膜制备方法主要包括以下几种:1)化学气相沉积法(CVD)2)物理气相沉积法(PVD)3)溅射法4)离子束沉积法(IBD)5)溶胶-凝胶法6)自组装技术4. 薄膜技术的发展趋势随着科技不断进步,薄膜技术也在不断发展。
未来,其发展趋势主要包括以下几个方面:1)高性能和多功能化:将会有更多新型材料和新工艺出现,使得薄膜材料在各个领域中具有更高的性能和更多的功能。
2)纳米化和微型化:薄膜材料及其制备技术将越来越向纳米和微米级别发展,以适应微型电子器件等领域的需求。
3)绿色环保:将会有更多的绿色环保型薄膜材料和制备工艺出现,以适应社会对于环境友好型产品的需求。
总之,随着社会的不断进步和科技的不断发展,薄膜材料及其制备技术将在更多领域中得到广泛应用,并为人类带来更多福利。
薄膜材料与技术

薄膜材料与技术引言薄膜材料是一种在厚度范围内具有特定性能和结构的材料,它在多个领域中发挥着重要作用。
薄膜技术是制备、改进和应用薄膜材料的一套方法和工艺。
本文将介绍薄膜材料的定义、制备方法、常见应用以及未来的发展趋势。
薄膜材料的定义薄膜材料是在纳米尺度至微米尺度范围内的一种特殊材料,其厚度通常在0.1nm到100μm之间。
相比于传统材料,薄膜材料具有较高的比表面积和特殊的物理、化学性质,使得其在光电、能源、生物医学等领域具有广泛的应用前景。
薄膜材料的制备方法薄膜材料的制备方法多种多样,常见的制备方法包括:1.物理气相沉积(PVD):通过热蒸发、电子束蒸发、激光蒸发等方法将材料蒸发在基底上,形成薄膜。
2.化学气相沉积(CVD):将气相前体分子引入反应室中,经过热分解或化学反应,在基底表面生成薄膜。
3.溶液法:将溶解了材料的溶液涂覆在基底上,通过溶剂蒸发或化学反应,将材料转变为薄膜。
常见的溶液法包括旋涂法、浸渍法等。
4.声波法:利用声波的能量使材料溶解或悬浮在溶剂中,然后将溶液通过超声波定向沉积在基底上。
5.离子束辅助沉积(IBAD):通过将离子束轰击基底表面,促使薄膜材料原子结晶或沉积在基底上。
薄膜材料的应用领域薄膜材料在多个领域中发挥着重要作用,以下是几个常见的应用领域:1.光学领域:薄膜材料在光学镀膜中广泛应用,用于改善光学元件的透射和反射特性。
例如,透明导电薄膜可用于制造触摸屏、光伏电池和显示器件。
2.电子领域:薄膜材料可用于制造半导体器件,如晶体管、薄膜电阻器和电容器。
此外,薄膜材料还可用于制造柔性电子产品和纳米电子元件。
3.能源领域:薄膜太阳能电池是一种高效能源转换设备,薄膜材料在其制备过程中起到关键作用。
此外,薄膜材料还可用于燃料电池、锂离子电池等能源存储和转换装置中。
4.生物医学领域:薄膜材料在生物医学传感器、生物芯片、医用导管等方面有广泛应用。
例如,聚合物薄膜可用于修复组织缺损,金属薄膜可用于制造仿生传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
考虑某种材料构成的非常薄的薄膜,在这种情 况下薄膜的两个表面彼此靠得非常近 ,因而 会对该材料内部的物理性质和过程带来决定性影 响,这些物理性质和过程绝然不同于块状材料。 薄膜两表面之间距离的减小及相互作用,会导致出 现种种全新的现象。 此外,当材料的一个尺度减至仅有几个原子层的量 级时,会形成一个介于宏观系统和分子系统之 间的一种中间系统 ,这样便提供了一种研究各 种物理过程微观物理性质的办法。 这就是为什么薄膜会引起许多物理学家的注意,而 产生了一个专门研究薄膜的物理学分支,并发展了 与此相关的一些工艺学分支的理由。
薄膜材料与技术
29
近半个世纪来,科学和生产发展的事实说 明,电子学的发展深刻地影响着当今社会 的各个领域。而在电子学的发展中,起重 要作用的是在理论研究的指导下,关键性 新器件和新材料的制造。例如①上世纪30 年代的电子管,②50年代的晶体管,③70 年代的集成电路,都给科学、技术和人类 社会以巨大的推动和影响。
薄膜材料与技术
28
小型电子设备发展的另一推动力是电子计算机的 发展,在电子计算机变得越来越复杂的同时,要 求元件有最高的可靠性和尽可能小的尺寸。 薄膜不仅可用来连接分立元件,而且其本身也可 作为有源元件和无源元件,由此开辟了新的超小 型化集成电路的可能途径。这种应用利用了如下 的事实,从宏观的观点来看元件中的一个尺度大 小几乎是零,元件的厚度只由薄膜淀积其上的基 片厚度决定。 目前已成功生产用半导体工艺制备的、将薄膜无 源元件和薄膜有源元件组合起来的混合电路,以 及带有场效应晶体管的纯薄膜的集成电路(IC) 也已出现。
电子学。Beetz用薄膜元件研究过磁现象, 从理论和实践观点来看,这项工作开辟了 一条大有希望的途径。
薄膜材料与技术
26
对液体表面张力
的研究已发展到对液体表面上有机物的单 分子层的研究;这对于各种生物化学和生 理学过程的研究都是重要的。
有机物薄膜表面力
的研究在磨擦力学中也起到一定的作用。
薄膜材料与技术
薄膜材料与技术
23
究竟 “ 薄 ” 至何等尺度方可以认为是薄膜这 一问题现在尚无法做出确切回答。 一般可以认为, 这一尺度取决于出现特定 异常现象时的厚度 ,但是它又会因不同的 物理现象而不同。 实际上薄膜物理和工艺只研究厚度在 十分 之几纳米到几个微米之间的薄膜。
薄膜材料与技术
24
第3节 薄膜的物理现象
中文期刊
中国科学 科学通报 功能材料 功能材料与器件学报 红外与毫米波学报 激光与红外 半导体学报 半导体光电 稀有金属材料与工程
薄膜材料与技术
3
英期刊
Thin Solid Films Surface Science Surface and Coatings Technology Applied Surface Science Advanced Materials Journal of Vacuum Science and Technology, B: Surface and films Journal of Electronic Materials Materials Chemistry and Physics Nature
薄膜材料与技术
17
第12章 薄膜材料及其特征 第13章 薄膜测试技术 第14章 薄膜技术应用
薄膜材料与技术
18
绪论
第1节 薄膜研究的历史
一千多年以前, → 制作陶瓷器皿表面的彩釉, 就是贵金属薄膜的制备和应用 17世纪后半叶,→ 观察薄膜产生的干涉颜色 18世纪中业, → 通过化学沉积、辉光放电沉积, 制备了固体薄膜 ◙当时引起人们兴趣的 → 另一种薄膜是漂浮在水 面上的油膜,这是一层极薄的有机分子膜。 Franklin 最早计算了一滴 2ml 油在水面上扩展的 面积可达到2000m2的一层油膜,这个膜的厚度约 为1nm,这是一个单分子层膜
薄膜材料与技术
6
第一章 绪论
薄膜材料与技术
7
第二章 真空技术基础
2.1 真空的基本知识 2.2 稀薄气体的基本性质 2.3 真空的获得 2.4 真空的测量 2.5 实用真空系统
薄膜材料与技术
8
第三章 气体放电和低温等离子体
3.1 低温等离子体 3.2 低气压气体放电 3.3 气体的激发和电离 3.4 气体放电的基本特点 3.5 辉光放电的特性 3.6 弧光放电的特性
薄膜材料与技术
25
薄膜干涉提供了精确测量薄膜厚度的一种手段, 并在光学和其它领域中得到了应用 。光学薄膜是
属于同一时期的还有Jamin和Magnus有关
蒸气和气体在固体材料表面上凝聚的研究 工作 ,这表明了 吸附膜 的重要性以及它与 化学表面过程(例如催化作用)的联系。覆盖 着氧化物薄膜的铝电极的整流效应也已发 现 (Pollak, Graetz) ,这表明薄膜可应用于
薄膜材料与技术
31
现代超大规模集成电路要求研究亚微米和 纳米的薄膜制备技术,和利用亚微米、纳 米结构的薄膜制造各种功能器件。这类薄 膜包括单晶薄膜,超微粒子薄膜,小晶粒 的多晶薄膜,非晶薄膜和有机分子膜。当 制备分子器件时,尺寸还要缩小。这些器 件的制造要求人们懂得物理、化学、电子 学和生物学等科学知识。这是科学技术发 展的趋势,因此我们必须适应这种发展形 势,扩展我们的知识领域,加强学科的横 向联系。
薄膜材料与技术
11
第六章 离子镀膜法
6.1 6.2 6.3 6.4 离子镀原理 离子镀的特点 离子轰击的作用 离子镀的类型
薄膜材料与技术
12
第七章 化学气相沉积
7.1 7.2 7.3 7.4 7.5 7.6 化学气相沉积的基本原理 化学气相沉积的特点 CVD方法简介 低压化学气相沉积 等离子体化学气相沉积 金属有机化学气相沉积
薄膜材料与技术
19
自上世纪七十年代,薄膜技术与薄膜材料 突飞猛进发展 → 成为当代真空科学与技术 和材料科学中最活跃研究领域 → 在高新技 术产业中具有举足轻重作用。 在近 20 年,薄膜科学迅速发展,在 制备技 术 、 分析方法 、 结构观察 和 形成机理 等方 面的研究都包含了极其丰富的内容。 努力做到 既能总结薄膜科学最基本的物理 知识 ,又能 反映当前这个学科领域生机勃 勃的发展现状 。为此在绪论中使大家对薄 膜科学有一个概略的了解。
薄膜材料与技术
13
第八章 分子束外延法
8.1 分子束外延生长的特点 8.2 分子束外延的装置 8.3 分子束外延的原理和方法
薄膜材料与技术
14
第九章 薄膜形成过程与生长模式
9.1 9.2 9.3 9.4 9.5 9.6 薄膜的凝结过程 核形成与生长 薄膜的形成过程和生长模式 溅射薄膜的形成过程 薄膜的外延生长 薄膜形成过程的计算机模拟
薄膜材料与技术
30
薄膜科学就是开发新材料和新器件非常重 要的领域。上世纪70年代迅速发展起来的 表面科学,也是物理学中的一个新兴重要 分支。表面科学所研究的范围通常是材料 表面几个至几十个原子层,这个范围内的 原子和电子结构与块体内部有较大差别。
十nm到几十µm。
若涉及到原子层数量更大一些,但表面和 界面特性仍起重要作用的范围,这就是薄 膜科学所研究的范围。这个范围通常是几
薄膜材料与技术
20
第2节 薄膜的物理概念
物体的 特征性质 常常是指 它的单位体积所
具有的性质,即假定这些物理性质与体积 无关 ,只要物体的大小 “ 正常 ” ,即大致处
于宏观范围内,那么上述假定就是合理 的; 但是,一旦一个尺度变得很小, 致使表面 与体积的比值大大增加,上述假定便不再 成立。
薄膜材料与技术
薄膜材料与技术
4
学习目的和基本要求
掌握真空及薄膜的物理基础,对真空、气体放 电、离子溅射、薄膜生长等有较深入的了解; 掌握真空蒸镀、磁控溅射、化学气相沉积、分 子束外延基本工艺,对薄膜技术有全面了解; 重点了解几种薄膜材料,对各种类型薄膜材料 的制备、结构、性能及应用有系统的了解。 能够使用薄膜材料的设备,分析多种类型薄膜 的性能,并具备制备新材料的能力。
3. 1 光学现象
与薄膜有关的最显而易见现象是光学现象,特别 是平常能观察到的干涉色现象。 例如:漂浮在水面或潮湿路面上的油膜的干涉颜 色。十七世纪后半叶,发现和解释Boyle, Hooke 和 Newton 等人。二百年后, Jamin , Fizeau 和 Quincke 等人的测量工作及 Drude 的理论研究推 动了薄膜光学的发展。 最早被深入研究的薄膜。随着光学透镜的发展, 各种 增透膜、减反射膜、滤光膜、分光膜等精确 地制备、监测和分析。
21
在 大块物体中 ,许多力作用在一给定的粒 子(原子、电子)上。在晶体中,力具有周期 性;但 在无定形材料 中,由于至多只存在 着短程有序性,力不再具有周期性;不过 在以上两种情况下,粒子在各个方向上都 受到力作用。 考虑表面区域,则这些力就会在表面中 断,作用在表面上的粒子上的力不同于作 用在体内的粒子上的力,主要的差别是前 者具有明显的 非对称性 。因此,表面的能 态与内部的能态迥然不同,所以我们就说 存在着表面能态。
薄膜材料与技术
15
第10章 薄膜的结构与缺陷
10.1 薄膜的结构 10.2 薄膜的缺陷 10.3 薄膜结构与组分的分析方法
薄膜材料与技术
16
第11章 薄膜的原子结构和电子结构
11.1 11.2 11.3 11.4 11.5 单晶表面的原子结构 单晶表面的电子结构 表面态和表面空间电荷层 表面位垒和电子亲和势 表面吸附对电子结构的影响
薄膜材料与技术
9
第四章 真空蒸发镀膜法
4.1 真空蒸发原理 4.2 蒸发源的蒸发特性及膜厚分布 4.3 蒸发源的类型 4.4 合金及化合物的蒸发 4.5 膜厚和淀积速率的测量与监控
薄膜材料与技术
10