高中数学函数的零点

合集下载

人教A版高中数学必修一课件 《函数的零点与方程的解》指数函数与对数函数

人教A版高中数学必修一课件 《函数的零点与方程的解》指数函数与对数函数

探究一
探究二
探究三
思想方法 随堂演练
课堂篇 探究学习
解析:(1)令f(x)=log3x+x-3,则f(1)=log31+1-3=-
2<0,f(2)=log32+2-3=log3<0,f(3)=log33+3-3=1>0,f(4)=log34+43=log312>0,则函数f(x)的零点所在的区间为(2,3),所以方程 log3x+x=3的实数解所在的区间为(2,3).
(2)记f(x)=ex-x-2,则该函数的零点就是方程ex-x-2=0的实数解. 由题表可知f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.394>0,f(3)=20.09-5>0.由零点存在定理可得f(1)f(2)<0,故函数的零点 所在的区间为(1,2).所以k=1.
探究一
探究二
探究三
思想方法 随堂演练
变式训练本例已知条件不变,求a为何值时: (1)方程有唯一实数解; (2)方程的一个解大于1,一个解小于1.
解:(1)令f(x)=ax2-2(a+1)x+a-1.
课堂篇 探究学习
探究一
探究二
探究三
思想方法 随堂演练
例3 (1)方程log3x+x=3的解所在的区间为 ( )
A.(0,2)
B.(1,2) C.(2,3) D.(3,4)
(2)根据表格中的数据,可以判定方程ex-x-2=0的一个实数解所在
的区间为(k,k+1)(k∈N),则k的值为
.
分析:(1)构造函数f(x)=log3x+x-3,转化为确定函数f(x)的零点所 在的区间;(2)构造与方程对应的函数,然后根据表格判断函数值的 符号,从而确定零点所在的区间,再求k值.

分析高中数学中的函数的零点与极限的重要性质

分析高中数学中的函数的零点与极限的重要性质

分析高中数学中的函数的零点与极限的重要性质函数是高中数学中的重要概念之一,它包含了数学研究中的许多重要性质。

函数的零点和极限是函数研究的两个关键概念,它们在数学理论和实际问题求解中都具有重要意义。

首先,我们来讨论函数的零点。

函数的零点是指使函数取值为零的输入值。

零点的概念在数学中是非常重要的,因为零点可以帮助我们解决方程和不等式等问题。

通过求得函数的零点,我们可以找到方程的根或者不等式的解,这在解决实际问题时具有重要作用。

零点的概念也与函数图像的特征密切相关。

函数的零点可以揭示函数图像与x轴的交点,通过分析零点的性质,我们可以得到函数图像的有关信息。

例如,函数在零点处取得极值,或者函数图像在零点处存在断点等情况。

其次,我们来讨论函数的极限。

极限是用来描述函数在某一点“无限接近于某个值”的概念。

函数的极限与函数的连续性和稳定性相关。

通过研究函数的极限,我们可以了解函数在某一点附近的行为,判断函数的连续性和研究函数的性质。

函数的极限还可以帮助我们解决一些求解问题的困难。

例如,在求导数的过程中,我们经常会使用极限的性质来进行推导。

通过对函数极限的理解,我们可以更好地理解导数的概念,从而更加深入地研究函数的性质。

此外,函数的极限还与数学分析中的许多重要概念密切相关。

例如,利用函数的极限可以定义函数的导数、积分和级数等。

这些概念在数学分析中起着重要的作用,并且在实际问题求解中也有广泛的应用。

函数的零点和极限在高中数学中的学习和理解中是不可或缺的。

通过研究函数的零点和极限,我们可以深入了解函数的性质,从而在实际问题求解中更加准确地把握函数的特点。

同时,对于将来进一步学习数学的同学来说,函数的零点和极限也是他们深入研究数学分析所必备的基础。

总结起来,函数的零点和极限是高中数学中的重要概念。

它们不仅是数学理论中的关键概念,而且在实际问题求解中具有重要意义。

函数的零点和极限能够帮助我们解决方程和不等式等问题,同时也能揭示函数图像和函数性质的重要信息。

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

人教版高中数学必修1《函数的零点与方程的解》PPT课件

人教版高中数学必修1《函数的零点与方程的解》PPT课件

•题型二 判断零点所在的区间
• [探究发现]
• (1)什么是函数的零点? • 提示:函数的零点是函数y=f(x)与x轴交点的横坐标.
• (2)f(a)f(b)<0是连续函数f(x)在区间(a,b)上存在零点的 什么条件?f(a)f(b)>0时函数在区间上一定没有零点吗? • 提示:f(a)f(b)<0是连续函数f(x)在(a,b)上存在零点的 充分不必要条件.f(a)f(b)>0时函数在区间(a,b)上不一定 没有零点.
• (2)函数零点存在定理是不可逆的.因为由f(a)·f(b)<0可 以
•推出函数y=f(x)在区间(a,b)内存在零点,但是,已知函 数y
•=f(x)在区间(a,b)内存在零点,不一定能推出f(a)·f(b)<0. 如图,
• (二)基本知能小试
• 1.判断正误:
•(1)函数的零点是一个点.
()
•(2)任何函数都有零点.
• [方法技巧] 确定函数f(x)零点所在区间的常用方法
当对应方程f(x)=0易解时,可先解方程,再看求得的根是 解方程法
否落在给定区间上 首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看 函数零点 是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必 存在定理 有零点 数形 通过画函数图象与x轴在给定区间上是否有交点来判断 结合法
()
•(3)函数y=x的零点是O(0,0).
()
•(4)若函数f(x)满足f(a)·f(b)<0,则函数在区间[a,b]上至少
有一个零点.
()
•(5)函数的零点不是点,它是函数y=f(x)的图象与x轴交点 的横坐标,是方程f(x)=0的根.
•2.函数f(x)=log2x的零点是 (

数学高中必修知识点必备

数学高中必修知识点必备

数学高中必修知识点必备人教版数学必修一知识点1、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

(2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。

因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。

函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。

②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。

③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(2、函数零点的判定(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法①代数法:函数)(xfy的零点Û0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤:①确定区间[,]ab,验证()()0fafb,给定精确度e;②求区间(,)ab的中点c;③计算()fc;(ⅰ)若()0fc,则c就是函数的零点;(ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.高一数学下册必修知识点整理一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

高中数学必修一课件:第四章函数的零点与方程的解

高中数学必修一课件:第四章函数的零点与方程的解

要点3 函数零点存在定理 如果函数y=f(x)在区间[a,b]上的图象是一条____连__续_不__断_____的曲线,且有 ___f_(a_)_f(_b)_<_0 ___,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在 c∈(a,b),使得___f(_c)_=_0____,这个c也就是方程f(x)=0的解.
解析 令f(x)=0,得-x2+5x-6=0,即x2-5x+6=0,(x-2)(x-3)=0,
∴x=2或x=3.故选B.
3.方程ex-x=2在实数范围内的解有( C )
A.0个
B.1个
C.2个
D.3个
解析 由题意令y1=ex,y2=x+2,在同一坐标系下作出两个函数的图象, 如图,由图可知两图象有两个交点,即方程ex-x=2有两个解.故选C.
3.如何正确理解函数零点存在定理? 答:(1)并不是所有的函数都有零点,如函数y=1x就没有零点. (2)函数y=f(x)若满足:①函数在区间[a,b]上的图象是一条连续不断的曲 线;②f(a)f(b)<0,则函数y=f(x)在区间(a,b)内有零点. (3)对于有些函数,即使它的图象是一条连续不断的曲线,当它通过零点 时,函数值也不一定变号.如函数y=x2有零点x0=0,但显然函数值没有变 号.但是,对于任意一个函数,相邻的两个零点之间所有的函数值保持同号. (4)函数在区间[a,b]上的图象是一条连续不断的曲线,且在区间(a,b)上单 调,若f(a)f(b)<0,则函数y=f(x)在区间(a,b)内有且只有一个零点.
4.若二次函数y=x2+2x+k+3有两个不同的零点,则k的取值范围是( B )
A.(-2,+∞)
B.(-∞,-2)
C.(2,+∞)

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

高中数学:函数零点

高中数学:函数零点

函数零点一、函数的零点1.零点的定义:对于函数()y f x ,使()0f x 的实数x 叫做函数()yf x 的零点.2.函数零点的等价关系函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.3.零点存在性判定定理定理:如果函数()y f x =在区间[]a b ,上的图象是连续不断的一条曲线,且()()0f a f b ⋅<,则函()y f x =在区间()a b ,内有零点,即存在()c a b ∈,,使得()0f c =,这个c 就是方程()0f x =的根.4.对函数零点存在的判断中,必须强调:1)()f x 在[]a b ,上连续; 2)()()0f a f b <; 3)在()a b ,内存在零点. 这是零点存在的一个充分条件,但不是必要条件. 注意:函数()yf x 的零点就是方程()0f x 的实数根,也就是函数()yf x 的图象与x 轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.5. 二次函数零点的判定0)的图像2ax bx c 0a )的根2a2ax bxc0)的零点2ba2ax bxc0)的解集2ax bxc0)的解集1x 或2xx }2a6.一元二次方程20axbx c根的分布(下面对0a 进行讨论)20bk a △20bk a △1212()x x k k ,,1122k x k x )k ,内有且只有一根yyyky y1220b k a△23()0()0f k f k △且(2b k a一.选择题(共12小题)1.(2018•重庆模拟)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.32.(2018•商洛模拟)函数f(x)=ln(x+1)﹣2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)3.(2017秋•镇原县校级期末)函数f(x)=2x+7的零点为()A.7B.7 2C.﹣7D.−7 24.(2017秋•平罗县校级期末)方程2x=2﹣x的根所在区间是()A.(﹣1,0)B.(2,3)C.(1,2)D.(0,1)5.(2018春•番禺区校级月考)方程x3﹣3x﹣m=0在[0,1]上有实数根,则m的最大值是()A.0B.﹣2C.﹣118D.16.(2017•奉贤区二模)若f(x)为奇函数,且x0是y=f(x)﹣e x的一个零点,则﹣x0一定是下列哪个函数的零点()A.y=f(x)e x+1B.y=f(﹣x)e﹣x﹣1C.y=f(x)e x﹣1D.y=f(﹣x)e x+17.(2016秋•仙桃期末)函数f(x)=2x2﹣3x+1的零点个数是()A.0B.1C.2D.38.(2016秋•库尔勒市校级期末)下列函数中,既是奇函数又存在零点的函数是()A.y=sinx B.y=cosxC.y=lnx D.y=x3+19.(2016秋•黄山期末)函数f(x)=log2(x﹣1)的零点是()A.(1,0)B.(2,0)C.1D.210.(2016秋•东莞市校级期末)函数f(x)=x2﹣4x+4的零点是()A.(0,2)B.(2,0)C.2D.411.(2017秋•青冈县校级期中)函数f(x)=2x2﹣3x+1的零点是()A.﹣12,﹣1B.﹣12,1C.12,﹣1D.12,112.(2017春•江津区期中)设f(x)=ax+4,若f(1)=2,则a的值()A.2B.﹣2C.3D.﹣3二.填空题(共5小题)13.(2014秋•新沂市校级月考)已知集合A={x|ax2﹣3x+2=0,x∈R,a∈R}只有一个元素,则a=.14.(2014秋•涟水县校级期中)方程4x2﹣12x+k﹣3=0没有实根,则k的取值范围是.15.(2012秋•浦东新区校级月考)2﹣x+x2=5的实根个数为.16.(2012秋•金山区校级月考)函数y=x3﹣2x的零点是.17.已知x 38=234,则x=.三.解答题(共1小题)18.解方程:x3+x2=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


在罗马帝国时期,罗马帝国皇帝是个数学 迷。有一次,他举办了一场宫廷数学竞赛, 其中一道竞赛题是求三次方程
x 2x 10 x - 20 0
的实数根。来自比萨的大数学家斐波那契成 功地获得了它的近似解,并精确到了小数点 之后的6 位数字(1.368808)。 斐波那契赢得了比赛,深受皇帝的赞赏。
求证:函数至少有一个零点在区间(0,2)内。
3
2
请同学们思考如下问题: (1)什么是函数 y =f(x)的零点? (2)你能结合你熟悉的函数,说出 函数y = f(x) 的零点和方程 f(x)=0 的根、 函数y = f(x) 的零点和函数y = f(x) 的图象与x轴的交点之间的关系吗? y y x
2
1O 1
2
2x 1
3 x
2
4
6
x
思考:什么时候零点就是唯一的?
勇于提出问题比解决问题更重要
问题2:函数 y f x 在区间 a , b上的图象是不间 断的,且 y f x 在区间 a , b 上存在零点 ,则一定有 f a f b 0 吗?
yБайду номын сангаас
O
a
b
x
尝试应用
1.求证:函数 f x x 3 x 2 1 在区间 2,1 上存在零点.
O
y
a
b
x
问题1:若函数y=f(x)在区间[a,b]上的图象是一条不 间断的曲线,且f(a) · f(b)<0,则函数y=f(x)在区间(a,b) 上仅有一个零点吗?
y
a
b
x
提对 出 零 哪 点 些 定 新 理 的 思你 考能 ?
“ ”
y
a
b x
y
7 5 3 1O 1
y f ( x)
b
a
你初步能得到什么一般性的结论?
对函数y=f(x),x∈[a,b],若f(a) ·f(b) <0, 则函数y=f(x),在(a,b)上一定存在零点
零点定理:
若函数y=f(x)在区 间[a,b]上的图象是 一条不间断的曲线, 且 f(a ) · f(b)<0,则函 数y=f(x)在区间(a,b) 上存在零点.
2 2.判断函数 f ( x) ln x x
是否存在零点。
你能想出方法使得函数f(x)的零点更精确一点吗?
现在你能给出一种斐 波那契求
方程
x 2x 10 x - 20 0
3
2
近似解1.368808 的可能方法吗?
1、知识点: 一个概念、两个关系、一个定理
2、能力: 探求“零点存在性问题”策略: 解方程思想:函数 y =f (x) 的零点就是方程 f(x)=0 的实 数根; 零点存在性定理:若函数y=f(x)在区间[a,b]上的图像是一 条不间断的曲线,且f(a).f(b)<0,则函数y=f(x)在区间 (a,b)上有零点; 数形结合思想:函数y =f (x) 的零点就是函数y=f(x)的图象 与x轴的交点的横坐标。
1、零点:使函数y =f (x)的值为0的 实数x,称为函数 y =f (x)的零点 2、关系:
y y x 2 2x 1
2
1O 1
3 x
函数 y =f (x) 的零点就是方程 f(x)=0 的实数根;
函数y =f (x) 的零点就是函数 f(x) 的图象与x 轴的交点的 横坐标; 零点不是交点!
3、两种方法:数形结合;转化与化归。
1.求函数 f ( x ) log 2 ( x x ) 1的零点。
2
2.已知函数
f ( x) x 2 x b
2
在区间(2,4)内有唯一零点,求b的取值范围。
3.已知函数 f ( x) ax bx c(a 0)
2
a 且 f (1) 2
相关文档
最新文档