量子力学第一性原理

合集下载

第一性原理理论介绍

第一性原理理论介绍

第一性原理理论介绍第一性原理理论是一种基于量子力学的理论,用于解释材料和分子的性质和行为。

它是通过求解薛定谔方程来描述原子核和电子之间的相互作用,从而得出系统的总能量。

第一性原理理论被广泛应用于材料科学、物理化学和计算物理等领域,为设计新材料、预测化学反应和模拟材料性质提供了重要的工具。

第一性原理理论的核心是薛定谔方程,它描述了系统的波函数随时间的演化。

薛定谔方程包括了系统的势能和动能项,其中势能项描述了原子核和电子之间的相互作用,动能项则描述了电子的运动。

解薛定谔方程可以得到系统的波函数,进而可以计算系统的总能量。

在求解薛定谔方程时,第一性原理理论通常采用密度泛函理论(DFT)作为基础。

DFT是一种将电子系统的性质与电子密度之间建立关联的方法。

根据Kohn-Sham方程,系统的能量可以表示为电子密度的泛函形式。

为了将电子相互作用考虑在内,通常使用电子交换关联泛函来近似描述系统的能量。

第一性原理理论已经成为材料科学和计算物理的重要工具。

它可以用于预测材料的结构和稳定性,计算材料的力学性质和电子结构,模拟化学反应和催化过程,设计新的材料和催化剂等。

特别是在材料发现和设计中,第一性原理理论具有重要的意义,可以指导实验研究,加速材料研发过程。

总之,第一性原理理论是一种基于量子力学的理论,通过求解薛定谔方程来描述原子核和电子之间的相互作用。

它是预测和解释材料和分子性质的重要工具,广泛应用于材料科学、物理化学和计算物理等领域。

通过第一性原理计算,我们可以更好地理解和控制材料的性质,促进科学研究和技术创新的发展。

第一性原理计算

第一性原理计算

第一性原理计算第一性原理计算是指利用基本的物理学原理和数学方程,通过计算机模拟来预测材料的性质和行为。

它是材料科学和凝聚态物理领域中一种非常重要的研究方法,可以帮助科学家们快速、高效地设计新材料,优化材料结构,预测材料的性能等。

首先,第一性原理计算是建立在量子力学原理之上的。

量子力学是描述微观世界中粒子运动和相互作用的理论,它提供了描述原子和分子行为的数学框架。

基于量子力学的第一性原理计算方法可以准确地描述原子和分子的结构、能量、电子结构等性质,为材料科学和工程领域提供了重要的理论基础。

其次,第一性原理计算的核心是求解薛定谔方程。

薛定谔方程是描述微观粒子运动的基本方程,通过求解薛定谔方程可以得到材料的电子结构和能量。

基于薛定谔方程的第一性原理计算方法可以准确地预测材料的电子能带结构、电子云分布、原子间相互作用等信息,为理解材料的性质和行为提供了重要的手段。

第三,第一性原理计算方法包括密度泛函理论、量子分子动力学、格林函数方法等。

这些方法在计算材料的结构、热力学性质、电子输运性质等方面都有重要应用。

通过这些方法,科学家们可以快速地筛选材料候选者,预测材料的稳定性和反应活性,设计新型的功能材料等。

第一性原理计算在材料科学和工程领域有着广泛的应用。

它可以帮助科学家们理解材料的基本性质,预测材料的性能,加速材料研发过程,降低研发成本。

同时,随着计算机技术的不断发展,第一性原理计算方法的计算速度和精度也在不断提高,为材料科学和工程领域的发展带来了新的机遇和挑战。

综上所述,第一性原理计算是一种基于量子力学原理的计算方法,可以准确地预测材料的性质和行为。

它在材料科学和工程领域有着重要的应用价值,可以帮助科学家们加快材料研发过程,推动材料科学的发展。

随着计算机技术的不断进步,第一性原理计算方法将会发挥越来越重要的作用,成为材料研发的重要工具。

第一性原理简介

第一性原理简介

第一性原理是什么?第一性原理有什么用?第一性原理怎么用?怎样将第一性原理与实践结合起来?什么是第一性原理?1原理,量子力学根据原子核和电子互相作用的原理及其基本运动规律,运用第一性称为经过一些近似处理后直接求解薛定谔方程的算法,从具体要求出发,计算为基础的从头算。

广义的第一原理包括两大类,以Hartree-Fock自洽场原理DFT)计算。

密度泛函理论和(自从定义可以看出第一性原理涉及到量子力学、薛定谔方程、Hartree-Fock因此我通过向师兄密度泛函理论等许多对我来说很陌生的物理化学定义。

洽场、请教和上网查资料一点点的了解并学习这些知识。

2第一性原理的作用为基础以及在此基础上发展起来的简单而具有一定精(DFT)以密度泛函理论,的第一性原理电子结构计算方法和广义梯度近似(GGA)度的局域密度近似(LDA)不但能够给出描述体系微观电子特性的物理量如波函与传统的解析方法一样,以及在此基础上所得到的体现体系宏,数、态密度、费米面、电子间互作用势等,穆斯堡尔谱等等比热、电导、观物理特性的参量如结合能、电离能、光电子谱、密度泛函计算的一些而且它还可以帮助人们预言许多新的物理现象和物理规律。

.导致了,结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布基于密度泛函理论的第一原理计算方法的广泛应用。

为第一性原理中的一类,在物理系、化学、材料科学以(DFT)密度泛函理论)及其计算已经快速发展成为材料建模DFT及其他工程领域中,密度泛函理论(模拟的一种“标准工具”。

密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。

3第一性原理怎么用?其中ASP、软件。

V目前我所学到的利用第一性原理的软件为Material Studio)是专门为材料科学领域研究者开发的一款可运行在MSMaterials Studio(简称使化学及材料科学的研究者们能更方便地建立三维结构模型,上的模拟软件。

第一性原理

第一性原理

第一性原理的理解及其应用第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。

我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。

量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。

从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。

但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。

根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一性原理[1]。

广义的第一原理包括两大类,以Hartree-Fork自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。

也有人主张,ab initio专指从头算,而第一性原理和所谓量子化学计算特指密度泛函理论计算。

第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其他的实验的,经验的或者半经验的参量,且具有很好的移植性。

作为评价事物的依据,第一性原理和经验参数是两个极端。

第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。

但是就某个特定的问题,第一性原理和经验参数没有明显的界限,必须特别界定。

如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

那为什么使用“第一性原理”这个字眼呢?据说这是来源于“第一推动力”这个宗教词汇。

第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作用下保持静止或匀速直线运动。

第一性原理计算

第一性原理计算

第一性原理计算
第一性原理计算是一种基于物理和数学原理的计算方法,用于研究物质的性质和行为。

它从基本的原子和分子相互作用出发,通过数值方法和近似算法来解决量子力学方程,从而得到材料的结构、能带结构、电子态密度等重要性质。

第一性原理计算的核心是量子力学的薛定谔方程。

这个方程描述了电子在势能场中的行为。

为了求解这个方程,需要考虑电子的波函数和势能场的相互作用。

然而,由于电子-电子相互
作用的复杂性以及多体问题的困难性,精确求解薛定谔方程是不可行的。

因此,第一性原理计算使用了一系列近似方法和数值技术,以在合理的计算复杂度下得到准确的结果。

第一性原理计算的基本步骤是将问题转化为一个离散化的体系。

首先,使用数值方法将空间划分为有限的格点,将连续的波函数表示为在这些格点上的数值。

然后,通过求解离散化的薛定谔方程,可以得到系统的电子和原子核的波函数。

接下来,利用这些波函数可以计算出材料的各种性质,如能带结构、电荷密度和振动谱等。

第一性原理计算在材料科学、物理化学和固体物理等领域有着广泛的应用。

它可以用于预测和设计新材料的性质,优化材料的性能以及研究材料的动力学行为。

通过结合实验数据和第一性原理计算的结果,科学家们可以更好地理解材料的行为,并为材料的应用提供指导和支持。

第一性原理计算

第一性原理计算

第一性原理计算
第一性原理计算是一种基于量子力学第一定律和波函数基本方程的计算方法,用于研究材料的性质及其在各种条件下的行为。

其核心是薛定谔方程求解,通过求解体系中电子波函数,得到电子的能量、布居数和位置分布等信息,从而计算材料的各种物理和化学性质。

这种方法基于原子核和电子的运动方程,不依赖于任何实验结论或经验参数,因此不需要任何近似方法或实验数据作为输入。

第一性原理计算是计算材料性质的重要工具,广泛应用于材料科学、化学、物理学等领域。

该方法对于复杂材料的计算也很有应用价值,可以通过计算机模拟得到材料的结构、能量、化学反应和电子结构等信息。

同时,该方法也可以用于设计制造新材料,为新材料的研究和开发提供了有力的工具。

第一性原理计算公式

第一性原理计算公式

第一性原理计算公式引言第一性原理计算是一种基于量子力学原理的理论和计算方法,可以用于研究和预测材料的物理和化学性质。

它是一种从头开始的计算方法,不依赖于任何经验参数和实验数据,因此被广泛应用于材料科学、化学、物理等领域的研究和设计。

在第一性原理计算中,通过求解薛定谔方程来得到体系的电子结构和能量。

这些计算需要使用一系列的公式和算法,本文将重点介绍一些常见的第一性原理计算公式,帮助读者理解这一领域的基本原理和方法。

基本概念在介绍具体的计算公式之前,我们先来回顾一些基本概念。

哈密顿算符哈密顿算符是量子力学中描述体系总能量和动力学演化的算符。

对于单电子体系,哈密顿算符可以写为:H = T + V其中T表示动能算符,V表示势能算符。

对于多电子体系,哈密顿算符则需要加入电子之间的相互作用算符,形式更加复杂。

波函数和薛定谔方程波函数是描述量子力学体系的状态的函数。

在薛定谔方程中,波函数满足以下的时间无关薛定谔方程:Hψ = Eψ其中H是哈密顿算符,ψ是波函数,E是能量。

求解薛定谔方程可以得到体系的能级结构和波函数。

密度泛函理论密度泛函理论是一种处理多电子体系的方法。

其核心思想是将多电子体系的性质建立在电子密度上。

密度泛函理论的基本方程是:E = T[n] + V[n] + E_{ee}[n]其中E是总能量,T[n]是电子动能的泛函,V[n]是外势能的泛函,E_{ee}[n]是电子之间相互作用的泛函。

第一性原理计算公式赝势方法赝势方法是一种快速计算材料电子结构的方法。

在赝势方法中,原子核和一部分芯层电子对价层电子的作用通过赝势进行描述。

赝势方法的基本方程是:H_{KS}ψ = Eψ其中H_{KS}是Kohn-Sham方程中的赝势哈密顿算符,ψ是波函数,E是能量。

平面波基组展开法平面波基组展开法是一种基于平面波基函数的展开方法。

平面波基组展开法的基本方程是:ψ(r) = ∑ c_k exp(ik·r)其中ψ(r)是波函数,c_k是展开系数,k是波矢。

第一性原理计算

第一性原理计算

第一性原理根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一原理第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其他的实验的,经验的或者半经验的参量,且具有很好的移植性。

作为评价事物的依据,第一性原理和经验参数是两个极端。

第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。

但是就某个特定的问题,第一性原理和经验参数没有明显的界限,必须特别界定。

如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。

我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。

量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。

从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。

但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。

那为什么使用“第一性原理”这个字眼呢?据说这是来源于“第一推动力”这个宗教词汇。

第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作用下保持静止或匀速直线运动。

如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致力于神学研究。

现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学第一性原理:仅需五个物理基本常数——电子质量、电子电量、普郎克常数、光速和玻耳兹曼常数,通过求薛定谔方程得到材料的电子结构,而不依赖于任何经验常数即可以预测微观体系的状态和性质,预测材料的组分、结构、性能之间的关系,进一步设计具有特定性能的新材料
作为评价事物的依据,第一性原理和经验参数是两个极端。

第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。

如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

量子化学的第一性原理是指多电子体系的Schrödinge r方程,但是光有这个方程是无法解决任何问题的,量子力学能够准确的解决的问题很少很少,绝大多数都是有各种各样的近似,为此计算量子力学提出一个称为“从头计算”的原理作为第一性原理,除了Schrödinger方程外还允许使用下列参数和原理:
(1) 物理常数,包括光速c、Planck常数h、电子电量e、电子质量m e以及原子的各种同位素的质量,尽管这些常数也是通过实验获得的。

(在国际单位值中,光速是定义值,Planck常数是测量值,在原子单位制中则相反。

)
(2) 各种数学和物理的近似,最基本的近似是“非相对论近似”(Schrödinger 方程本来就是非相对论的原理)、“绝热近似”(由于原子核质量比电子大得多,而把原子核当成静止的点处理)和“轨道近似”(用一个独立函数来描述一个独立电子的运动)。

量子化学的从头计算方法就是在各种近似上作的研究。

如果只考虑一个电子,而把其他电子对它的作用近似的处理成某种形式的势场,这样就可以把多电子问题简化成单电子问题,这种近似称为单电子近似,也称为平均场近似,例如最基本的从头计算方法哈特里-富克(Hartree-Fock)方法,是平均场近似的一种,它把所有讨论的电子视为在离子势场和其他电子的平均势场中的运动。

但是哈特里-富克近似程度过大,忽略了电子之间的交换和相关效应,使得计算的精度受到一定的限制,为了解决这一问题,P Hohenberg和W Kohn于1964年提出密度泛函理论(density functional theory, DFT),这一理论将电子之间的交换相关势表示为密度泛函,然后使薛定谔方程在考虑了电子之间的复杂相互作用后
利用建立在自洽场近似的方法求解,DFT认为:粒子的哈密顿量取决于电子密度的局域值,由此可以得出局域密度近似(local density approximation)方法由于诸多近似方法的使用,“从头计算”方法并不是真正意义上的第一性原理,但是其近似方法的运用使得量子计算得以实现。

从头计算的结果具有相当的可靠程度,某些精确的从头计算产生的误差甚至比实验误差还小。

相关文档
最新文档