浙江省绍兴市鲁迅中学2020-2021学年第一学期高一第一次月考数学试卷
浙江省绍兴市2020版高一上学期数学10月月考试卷A卷

浙江省绍兴市2020版高一上学期数学10月月考试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)设集合,则()A .B .C .D .2. (2分) (2020高三上·宣化月考) 全集,,,则()A .B .C .D .3. (2分) (2019高一上·临渭月考) 如果,那么()A .B .C .D .4. (2分) (2019高一上·沭阳期中) 已知集合,若,则实数的取值范围为()A .B .C .D .5. (2分) (2019高二上·哈尔滨期末) 已知为虚数单位,为实数,复数在复平面内对应的点为,则“ ”是“点第四象限”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件6. (2分) (2019高一上·长沙月考) 用表示非空集合中的元素个数,定义,若,,且,则实数的取值范围是()A .B .C .D .7. (2分) (2020高一上·黄陵期末) 设全集为,则图中阴影部分所表示的集合是()A .B .C .D .8. (2分) (2019高一上·陕西期中) 已知方程的两根为,,则()A .B .C .D . 12二、多选题 (共4题;共12分)9. (3分) (2020高一上·无锡期中) 对于给定数集M,若对于任意a,b∈M,有a+b∈M,a-b∈M,则称集合M为F集合,则下列说法中正确的有()A . 集合M={1,0,-1}为F集合B . 有理数集为F集合C . 集合M={x│x=2k,k∈Z}为F集合D . 若集合A,B为F集合,则A∪B为F集合10. (3分) (2020高一上·沛县月考) 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为,即, .给出如下四个结论正确的是()A . ;B . ;C . ;D . 整数a,b属于同一“类”的充要条件是“ ”.11. (3分) (2020高一上·武汉月考) 设,,若,则实数的值可以为()A .B . 0C . 3D .12. (3分) (2020高一上·大名月考) 下列结论中正确的是()A . “ ”是“ ”的必要不充分条件B . 在中,“ ”是“ 为直角三角形”的充要条件C . 若,,则“ ”是“a,b不全为0”的充要条件D . “x为无理数”是“ 为无理数”的必要不充分条件三、填空题 (共4题;共4分)13. (1分) (2016高三上·闽侯期中) 若不等式>|a﹣2|+1对于一切非零实数x均成立,则实数a 的取值范围是________.14. (1分) (2019高二上·铜山期中) 命题“ ,.”的否定是________.15. (1分)在Rt△ABC中,CD是斜边上的高线,AC:BC=3:1,则S△ABC:S△ACD=________.16. (1分) (2018高一上·长春期中) 已知函数,若对任意的,恒有,则实数a的最大值为________.四、解答题 (共6题;共60分)17. (5分) (2018高二上·大港期中) 解关于的不等式.18. (10分) (2020高三上·哈尔滨月考) 已知函数 .(1)求不等式的解集;(2)若为集合中的最大元素,且,求的最小值.19. (10分) (2019高一上·于都月考) 已知,, .(1)求 .(2)若,求实数m的取值范围.20. (10分) (2016高二上·菏泽期中) 已知二次函数f(x)=ax2+2x+c的对称轴为x=1,g(x)=x+ (x >0).(1)求函数g(x)的最小值及取得最小值时x的值;(2)试确定c的取值范围,使g(x)﹣f(x)=0至少有一个实根;(3)若F(x)=﹣f(x)+4x+c,存在实数t,对任意x∈[1,m],使F(x+t)≤3x恒成立,求实数m的取值范围.21. (10分) (2019高一上·宿州期中) 已知全集,集合,,(1);(2)若,求实数的取值范围22. (15分) (2020高二下·林州月考)(1)已知(是虚数单位)是关于的方程的根,、,求的值;(2)已知(是虚数单位)是关于的方程的一个根,、,求的值.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、多选题 (共4题;共12分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:四、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:。
2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题Word版含解析

2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题一、选择题(本大题共8个小题,每小题3分,共24分.)1.(3分)若全集U=R,集合A={x|x2﹣4≥0},则∁U A=()A.(﹣2,2)B.(﹣,)C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣]∪[,+∞)2.(3分)函数y=3﹣2sin2x的最小正周期为()A.B.πC.2πD.4π3.(3分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1] B.[﹣1,3] C.[﹣3,1] D.(﹣∞,﹣3]∪[1,+∞)4.(3分)对两条不相交的空间直线a和b,则()A.必定存在平面α,使得a⊂α,b⊂αB.必定存在平面α,使得a⊂α,b∥αC.必定存在直线c,使得a∥c,b∥cD.必定存在直线c,使得a∥c,b⊥c5.(3分)若||=||=2||,则向量+与的夹角为()A.B.C. D.6.(3分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f[f(a)]=的实数a的个数为()A.2 B.4 C.6 D.87.(3分)以BC为底边的等腰三角形ABC中,AC边上的中线长为6,当△ABC面积最大时,腰AB长为()A.6 B.6 C.4 D.48.(3分)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为()A.相交直线 B.双曲线C.抛物线D.椭圆弧二、填空题(每小题4分,共28分.)9.(4分)已知f(x)=lg(2x﹣4),则方程f(x)=1的解是,不等式f(x)<0的解集是.10.(4分)设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a10=27,则a5= ,S9= .11.(4分)某几何体三视图如图所示,则该几何体的体积等于.12.(4分)已知实数a>0,且a≠1,函数f(x)=log a|x|在(﹣∞,0)上是减函数,函数的大小关系为.13.(4分)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.14.(4分)已知F1、F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率的取值范围是.15.(4分)边长为2的正三角形ABC内(包括三边)有点P,•=1,求•的取值范围.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B﹣C)=4sinB•sinC﹣1.(1)求A;(2)若a=3,sin=,求b.17.(10分)数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.18.(10分)在三棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D为CC1中点,(Ⅰ)求证:CC1⊥平面A1B1D;(Ⅱ)求DH与平面AA1C1C所成角的正弦值.19.(10分)已知抛物线y2=2px,过焦点且垂直x轴的弦长为6,抛物线上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C.(1)求抛物线方程;(2)试证线段AB的垂直平分线经过定点,并求此定点;(3)求△ABC面积的最大值.20.(10分)已知函数f(x)=x|x﹣a|+bx(Ⅰ)当a=2,且f(x)是R上的增函数,求实数b的取值范围;(Ⅱ)当b=﹣2,且对任意a∈(﹣2,4),关于x的程f(x)=tf(a)有三个不相等的实数根,求实数t 的取值范围.2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题参考答案一、选择题(本大题共8个小题,每小题3分,共24分.)1.(3分)若全集U=R,集合A={x|x2﹣4≥0},则∁U A=()A.(﹣2,2)B.(﹣,)C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣]∪[,+∞)【分析】所有不属于A的元素组成的集合就是我们所求,故应先求出集合A.再求其补集即得.【解答】解:A={x|x≥2或x≤﹣2},易知C∪A={x|﹣2<x<2},故选A.【点评】本题考查了补集的运算、一元二次不等式,属于基础运算.2.(3分)函数y=3﹣2sin2x的最小正周期为()A.B.πC.2πD.4π【分析】利用降幂法化简函数y,即可求出它的最小正周期.【解答】解:∵函数y=3﹣2sin2x=3﹣2•=2+cos2x,∴函数y的最小正周期为T==π.故选:B.【点评】本题考查了三角函数的化简以及求三角函数最小正周期的应用问题,是基础题目.3.(3分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1] B.[﹣1,3] C.[﹣3,1] D.(﹣∞,﹣3]∪[1,+∞)【分析】根据直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,可得圆心到直线x﹣y+1=0的距离不大于半径,从而可得不等式,即可求得实数a取值范围.【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.【点评】本题考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离不大于半径,建立不等式.4.(3分)对两条不相交的空间直线a和b,则()A.必定存在平面α,使得a⊂α,b⊂αB.必定存在平面α,使得a⊂α,b∥αC.必定存在直线c,使得a∥c,b∥cD.必定存在直线c,使得a∥c,b⊥c【分析】根据空间直线的位置关系、直线与平面的位置关系和平面与平面的位置关系的性质与判定,对各个选项依次加以判别,即可得到B项是正确的,而A、C、D都存在反例而不正确.【解答】解:对于A,若两条直线a、b是异面直线时,则不存在平面α使得a⊂α且b⊂α成立,故A不正确;对于B,因为a、b不相交,所以a、b的位置关系是平行或异面:①当a、b平行时,显然存在平面α,使得a⊂α且b∥α成立;②当a、b异面时,设它们的公垂线为c,在a、b上的垂足分别为A、B.则经过A、B且与c垂直的两个平面互相平行,设过A的平面为α,过B的平面为β,则α∥β,且a、b分别在α、β内,此时存在平面α,使得a⊂α且b∥α成立.故B正确;对于C,若两条直线a、b是异面直线时,则不存存在直线c,使得a∥c且b∥c成立,故C不正确;对于D,当a、b所成的角不是直角时,不存在直线c,使得a∥c且b⊥c成立,故D不正确.综上所述,只有B项正确.故选:B【点评】本题给出空间直线不相交,要我们判定几个命题的真假性,考查了空间直线的位置关系、直线与平面的位置关系和平面与平面的位置关系等知识,属于基础题.5.(3分)若||=||=2||,则向量+与的夹角为()A.B.C. D.【分析】将已知式子平方可得=0,代入向量的夹角公式可得其余弦值,结合夹角的范围可得答案.【解答】解:∵,∴,两边平方可得=,化简可得=0,设向量与的夹角为θ则可得cosθ====,又θ∈[0,π],故θ=故选B.【点评】本题考查数量积与向量的夹角,涉及向量的模长公式,属中档题.6.(3分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f[f(a)]=的实数a的个数为()A.2 B.4 C.6 D.8【分析】令f(a)=x,则f[f(a)]=转化为f(x)=.先解f(x)=在x≥0时的解,再利用偶函数的性质,求出f(x)=在x<0时的解,最后解方程f(a)=x即可.【解答】解:令f(a)=x,则f[f(a)]=变形为f(x)=;当x≥0时,f(x)=﹣(x﹣1)2+1=,解得x1=1+,x2=1﹣;∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(a)=1+,1﹣,﹣1﹣,﹣1+;当a≥0时,f(a)=﹣(a﹣1)2+1=1+,方程无解;f(a)=﹣(a﹣1)2+1=1﹣,方程有2解;f(a)=﹣(a﹣1)2+1=﹣1﹣,方程有1解;f(a)=﹣(a﹣1)2+1=﹣1+,方程有1解;故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,综上所述,满足f[f(a)]=的实数a的个数为8,故选D.【点评】本题综合考查了函数的奇偶性和方程的解的个数问题,同时运用了函数与方程思想、转化思想和分类讨论等数学思想方法,对学生综合运用知识解决问题的能力要求较高,是高考的热点问题.7.(3分)以BC为底边的等腰三角形ABC中,AC边上的中线长为6,当△ABC面积最大时,腰AB长为()A.6 B.6 C.4 D.4【分析】设D为AC中点,由已知及余弦定理可求cosA=,在△ABD中,由余弦定理可求2a2+b2=144,利用配方法可得S=ah=,利用二次函数的图象和性质即可得解当△ABC面积最大时,腰AB长.【解答】解:如下图所示,设D为AC中点,由余弦定理,cosA==,在△ABD中,BD2=b2+()2﹣2×,可得:2a2+b2=144,所以,S=ah====,所以,当a2=32时,S有最大值,此时,b2=144﹣2a2=80,解得:b=4,即腰长AB=4.故选:D.【点评】本题主要考查了余弦定理,二次函数的图象和性质在解三角形中的应用,考查了配方法的应用,考查了数形结合思想和转化思想的应用,属于中档题.8.(3分)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为()A.相交直线 B.双曲线C.抛物线D.椭圆弧【分析】建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和y=0代入即可求得轨迹.【解答】解:如图所示,建立坐标系,不妨设两条互相垂直的异面直线为OA,BC,设OB=a,P(x,y,z)到直线OA,BC的距离相等,∴x2+z2=(x﹣a)2+y2,∴2ax﹣y2+z2﹣1=0若被平面xoy所截,则z=0,y2=2ax﹣1;若被平面xoz所截,则y=0,z2=﹣2ax+1故选C.【点评】本题主要考查了抛物线的方程.考查了学生分析归纳和推理的能力.二、填空题(每小题4分,共28分.)9.(4分)已知f(x)=lg(2x﹣4),则方程f(x)=1的解是7 ,不等式f(x)<0的解集是(2,2.5).【分析】由f(x)=1,利用对数方程,可得结论;由f(x)<0,利用对数不等式,即可得出结论.【解答】解:∵f(x)=1,∴lg(2x﹣4)=1,∴2x﹣4=10,∴x=7;∵f(x)<0,∴0<2x﹣4<1,∴2<x<2.5,∴不等式f(x)<0的解集是(2,2.5).故答案为:7;(2,2.5).【点评】本题考查对数方程、对数不等式,比较基础.10.(4分)设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a10=27,则a5= 9 ,S9= 81 .【分析】等差数列的性质可得:a1+a4+a10=27=3a5,解得a5,再利用S9==9a5.即可得出.【解答】解:由等差数列的性质可得:a1+a4+a10=27=3a5,解得a5=9,∴S9==9a5=81.故答案分别为:9;81.【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.11.(4分)几何体三视图如图所示,则该几何体的体积等于 4 .【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中:侧面PAB⊥底面BACD,底面为矩形ABCD.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中:侧面PAB⊥底面BACD,底面为矩形ABCD.∴该几何体的体积V==4,故答案为:4.【点评】本题考查了四棱锥的三视图及其体积计算公式,考查了推理能力与计算能力,属于基础题.12.(4分)已知实数a>0,且a≠1,函数f(x)=log a|x|在(﹣∞,0)上是减函数,函数的大小关系为g(2)<g(﹣3)<g(4).【分析】由已知中函数f(x)=log a|x|在(﹣∞,0)上是减函数,我们根据复合函数的单调性,可求出a 与1的关系,进而判断出函数的奇偶性及单调区间,再根据偶函数函数值大小的判断方法,即可得到结论.【解答】解:∵函数f(x)=log a|x|在(﹣∞,0)上是减函数,令u=|x|,则y=log a u,由u=|x|在(﹣∞,0)上是减函数,及复合函数同增异减的原则可得外函数y=log a u为增函数,即a>1又∵函数为偶函数且函数在[0,+∞)上单调递增,在(﹣∞,0]上单调递减且|2|<|﹣3|<|4|∴g(2)<g(﹣3)<g(4)故答案为:g(2)<g(﹣3)<g(4)【点评】本题考查的知识点是指数函数单调性的应用,其中利用复合函数的单调性性质,确定底数a的取值范围是解答本题的关键.13.(4分)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.【解答】解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2=8,在a=b=4时是等号成立,∴a+b的最小值为8.故答案为:8【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(4分)已知F1、F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率的取值范围是.【分析】设A点坐标为(m,n),则直线AF1的方程为(m+c)y﹣n(x+c)=0,求出右焦点F2(c,0)到该直线的距离,可得直线AF1的方程为ax﹣by+ac=0,根据A是双曲线上的点,可得b4﹣a4>0,即可求出双曲线的离心率的取值范围.【解答】解:设A点坐标为(m,n),则直线AF1的方程为(m+c)y﹣n(x+c)=0,右焦点F2(c,0)到该直线的距离=2a,所以n=(m+c),所以直线AF1的方程为ax﹣by+ac=0,与﹣=1联立可得(b4﹣a4)x2﹣2a4cx﹣a4c2﹣a2b4=0,因为A在右支上,所以b4﹣a4>0,所以b2﹣a2>0,所以c2﹣2a2>0,即e>.故答案为:.【点评】本题考查双曲线的几何性质,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.15.(4分)边长为2的正三角形ABC内(包括三边)有点P,•=1,求•的取值范围[3﹣2,5﹣] .【分析】先建立坐标系,根据•=1,得到点P在(x﹣1)2+y2=2的半圆上,根据向量的数量积得到•=﹣x﹣y+4,设x+y=t,根据直线和圆的位置关系额判断t的范围,即可求出•的取值范围.【解答】解:以B为原点,BC所在的直线为x轴,建立如图所示的坐标系,∵正三角形ABC边长为2,∴B(0,0),A(1,),C(2,0),设P的坐标为(x,y),(0≤x≤2,0≤y≤),∴=(﹣x,﹣y),=(2﹣x,﹣y),∴•=x(x﹣2)+y2=1,即点P在(x﹣1)2+y2=2的半圆上,∵=(﹣1,﹣)∴•=﹣x﹣y+4,设x+y=t,则直线x+y﹣t=0与圆交点,∴d=≤,解得0≤t≤2+1,当直线x+y﹣t=0过点D(﹣1,0)时开始有交点,∴﹣1=t,即t≥﹣1,∴﹣1≤t≤2+1,∴3﹣2≤4﹣t≤5﹣,故•的取值范围为[3﹣2,5﹣].故答案为:[3﹣2,5﹣].【点评】本题考查了数量积运算,直线和圆的位置关系,培养了学生的运算能力和转化能力,属于中档题.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B﹣C)=4sinB•sinC﹣1.(1)求A;(2)若a=3,sin=,求b.【分析】(1)由已知利用两角和的余弦公式展开整理,cos(B+C)=﹣.可求B+C,进而可求A(2)由sin,可求cos=,代入sinB=2sin cos可求B,然后由正弦定理,可求b【解答】解:(1)由2cos(B﹣C)=4sinBsinC﹣1 得,2(cosBcosC+sinBsinC)﹣4sinBsinC=﹣1,即2(cosBcosC﹣sinBsinC)=﹣1.从而2cos(B+C)=﹣1,得cos(B+C)=﹣.…4分∵0<B+C<π∴B+C=,故A=.…6分(2)由题意可得,0<B<π∴,由sin,得cos=,∴sinB=2sin cos=.…10分由正弦定理可得,∴,解得b=.…12分.【点评】本题主要考查了两角和三角公式的应用,由余弦值求解角,同角基本关系、二倍角公式、正弦定理的应用等公式综合应用.17.(10分)数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.【分析】(I)由已知中(n∈N+),我们易变形得:,即,进而根据等差数列的定义,即可得到结论;(II)由(I)的结论,我们可以先求出数列的通项公式,进一步得到数列{a n}的通项公式a n;(Ⅲ)由(II)中数列{a n}的通项公式,及b n=n(n+1)a n,我们易得到数列{b n}的通项公式,由于其通项公式由一个等差数列与一个等比数列相乘得到,故利用错位相消法,即可求出数列{b n}的前n项和S n.【解答】解:(Ⅰ)证明:由已知可得,即,即∴数列是公差为1的等差数列(5分)(Ⅱ)由(Ⅰ)知,∴(8分)(Ⅲ)由(Ⅱ)知b n=n•2nS n=1•2+2•22+3•23++n•2n2S n=1•22+2•23+…+(n﹣1)•2n+n•2n+1(10分)相减得:=2n+1﹣2﹣n•2n+1(12分)∴S n=(n﹣1)•2n+1+2【点评】本题考查的知识点是数列的递推公式及数列求各,其中(I)中利用递推公式,得到数列是等差数列并求出其通项公式是解答本题的关键.18.(10分)在三棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D为CC1中点,(Ⅰ)求证:CC1⊥平面A1B1D;(Ⅱ)求DH与平面AA1C1C所成角的正弦值.【分析】方法一:常规解法(I)由已知中,棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为2的正方形,易得CC1⊥A1B1,取A1B1中点E,可证出DE⊥CC1,结合线面垂直的判定定理可得CC1⊥平面A1B1D;(II)取AA1中点F,连CF,作HK⊥CF于K,结合(I)的结论,我们可得DH与平面AA1C1C所成角为∠HDK,解Rt△CFH与Rt△DHK,即可得到DH与平面AA1C1C所成角的正弦值.方法二:向量法(I)以H为原点,建立空间直角坐标系,分别求出向量的坐标,根据坐标的数量积为0,易得到CC1⊥A1D,CC1⊥B1D,进而根据线面垂直的判定定理得到CC1⊥平面A1B1D;(II)求出直线DH的方向向量及平面AA1C1C的法向量,代入向量夹角公式,即可求出DH与平面AA1C1C所成角的正弦值.【解答】证明:方法一:(Ⅰ)因为CC1∥AA1且正方形中AA1⊥A1B1,所以CC1⊥A1B1,取A1B1中点E,则HE∥BB1∥CC1且,又D为CC1的中点,所以,得平行四边形HEDC,因此CH∥DE,又CH⊥平面AA1B1B,得CH⊥HE,DE⊥HE,所以DE⊥CC1∴CC1⊥平面A1B1D(6分)解:(Ⅱ)取AA1中点F,连CF,作HK⊥CF于K因为CH∥DE,CF∥A1D,所以平面CFH∥平面A1B1D,由(Ⅰ)得CC1⊥平面A1B1D,所以CC1⊥平面CFH,又HK⊂平面CFH,所以HK⊥CC1,又HK⊥CF,得HK⊥平面AA1C1C,所以DH与平面AA1C1C 所成角为∠HDK(10分)在Rt△CFH中,,在Rt△DHK中,由于DH=2,(14分)方法二:(向量法)证明:(Ⅰ)如图,以H为原点,建立空间直角坐标系,则C(0,0,),C1(),A1(),B1(0,,0),所以,,∴,,因此CC1⊥平面A1B1D;(6分)解:(Ⅱ)设平面AA1C1C的法向量,由于则,得,所以(10分)又,所以(14分)【点评】本题考查的知识点是直线与平面所成的角,直线与平面垂直的判定,其中方法一的关键是熟练掌握空间直线与平面关系的判定、性质及定义,方法二的关键是建立空间坐标系,将线面夹角问题转化为向量夹角的问题.19.(10分)已知抛物线y2=2px,过焦点且垂直x轴的弦长为6,抛物线上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C.(1)求抛物线方程;(2)试证线段AB的垂直平分线经过定点,并求此定点;(3)求△ABC面积的最大值.【分析】(1)由题意,2p=6,即可得出抛物线方程为y2=6x;(2)设线段AB的中点为M(x0,y0),求出线段AB的垂直平分线的方程由此能求出直线AB的垂直平分线经过定点C(5,0).(3)直线AB的方程为y﹣y0=(x﹣2),代入y2=6x,由此利用两点间距离公式和点到直线距离公式能求出△ABC面积的表达式,利用均值定理能求出ABC面积的最大值.【解答】(1)解:由题意,2p=6,∴抛物线方程为y2=6x.…(2分)(2)设线段AB的中点为M(x0,y0),则x0=2,y0=,k AB==.线段AB的垂直平分线的方程是y﹣y0=﹣(x﹣2),①由题意知x=5,y=0是①的一个解,所以线段AB的垂直平分线与x轴的交点C为定点,且点C坐标为(5,0).所以直线AB的垂直平分线经过定点C(5,0).…(4分)(2)由①知直线AB的方程为y﹣y0=(x﹣2),①即x=(y﹣y0)+2,②②代入y2=6x得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02﹣12=0,③依题意,y1,y2是方程③的两个实根,且y1≠y2,所以△>0,﹣2<y0<2.|AB|==.定点C(5,0)到线段AB的距离h=|CM|=.∴S△ABC=•.…(8分)(3)由(2)知S△ABC=•≤=,…(11分)当且仅当=24﹣2,即y0=所以,△ABC面积的最大值为.…(13分)【点评】本题考查直线的垂直平分线经过定点的证明,考查三角形面积的表达式的求法,考查三角形面积的最大值的求法,解题时要认真审题,注意均值定理的合理运用.20.(10分)已知函数f(x)=x|x﹣a|+bx(Ⅰ)当a=2,且f(x)是R上的增函数,求实数b的取值范围;(Ⅱ)当b=﹣2,且对任意a∈(﹣2,4),关于x的程f(x)=tf(a)有三个不相等的实数根,求实数t 的取值范围.【分析】(Ⅰ)去绝对值号得,f(x)在R上递增等价于这两段函数分别递增,从而解得;(Ⅱ),tf(a)=﹣2ta,讨论a以确定函数的单调区间,从而求实数t的取值范围.【解答】解:(Ⅰ),因为f(x)连续,所以f(x)在R上递增等价于这两段函数分别递增,所以,解得,b≥2;(Ⅱ),tf(a)=﹣2ta,当2≤a≤4时,<≤a,f(x)在(﹣∞,)上递增,在(,a)上递减,在(a,+∞)上递增,所以f极大(x)=f()=﹣a+1,f极小(x)=f(a)=﹣2a,所以对2≤a≤4恒成立,解得:0<t<1,当﹣2<a<2时,<a<,f(x)在(﹣∞,)上递增,在(,)上递减,在(,+∞)上递增,所以f极大(x)=f()=﹣a+1,f极小(x)=f()=﹣﹣a﹣1,所以﹣﹣a﹣1<﹣2ta<﹣a+1对﹣2<a<2恒成立,解得:0≤t≤1,综上所述,0<t<1.【点评】本题考查了函数的性质的判断与应用,同时考查了数形结合的数学思想,属于难题.。
高一数学上学期第一次月考试题2 27

卜人入州八九几市潮王学校开高2021秋季第一次月考试卷高一数学本卷须知:本套试卷分第1卷(选择题)和第二卷(非选择题)两局部.总分值是150分, 考试时间是是120分钟.第一卷(选择题一共60分)个选项里面,只有一项为哪一项哪一项符合题目要求的)1.给出以下四个关系式:(1)R ∈3;〔2〕Q Z ∈;〔3〕φ∈0;〔4〕{}0⊆φ,其中正确的个数是〔〕A.1B.2 C 2.全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},那么集合∁U (A ∪B)=( )A.{1,3}B.{1,4,5}C.{3,4,5}D.{2}3.集合A={x |x ²-2x -3≥0},B={x|-2≤x <2},那么A∩B =〔 〕。
A.[-2,-1]B.[-1,2〕C.[-1,1]D.[1,2〕4.设全集I=R ,集合M={x|-1≤x ≤3},N={x |x<0或者x >2},P={x |x ≥4},那么以下列图中的阴影局部表示的集合为〔〕A .{x |-1≤x ≤2}B .{x |-1≤x <0,或者2<x <4}C .{x |-1≤x <0,或者2<x ≤3}D .{x |x <0,或者x >4}5.以下集合中,只有一个子集的是()A.{x ∈R |x 2-4=0}B.{x |x >9,或者x <3}C.{(x ,y )|x 2+y 2=0}D.{x |x >9,且x <3}6.函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如以下列图的曲线ABC , 其中A(1,3),B(2,1),C(3,2),那么f [g (2)]的值是()A.3B.1C.2D.0 7.映射f :A→B,其中A=B=R ,对应法那么f :x →y =﹣x 2+2x ,对于实数k ∈B,在集合A 中存在两个不同的原像,那么k 的取值范围是〔〕A.k >1B.k ≤1C.k <1D.k ≥1A={x|2<x <3},B={x |x <a },假设A ⊆B ,那么a 的取值范围是〔〕A.a >2B.a ≥3C.a ≤2D.a ≤39.以下四个图像中,是函数图像的是〔〕A.〔1〕〔3〕〔4〕B.(1)C.〔1〕〔2〕〔3〕D.〔3〕〔4〕()()xx x x f 233230-+++=的定义域是〔〕 A.⎥⎦⎤⎢⎣⎡-23,3 B.⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--23,2323,3 C.⎪⎭⎫⎢⎣⎡-23,3 D.⎥⎦⎤ ⎝⎛-⎪⎭⎫⎢⎣⎡--23,2323,3 11.以下各组函数中,表示同一函数的是( )A.293x y x -=-与3y x =+ B.1y =与1y x =- C .()00y x x =≠与()10y x =≠ D.21y x =+,x Z ∈与21y x =-,x Z ∈12.定义集合{x |a ≤x ≤b }的“长度〞是b -a .m ,n ∈R ,集合M ={x |m ≤x ≤m +},N ={x |n -≤x ≤n },且集合M ,N 都是集合{x |1≤x ≤2} 的子集,那么集合M ∩N 的“长度〞的最小值是〔〕 A. B. C. D.第二卷(非选择题一共90分)二、填空题〔此题一共有4小题,每一小题5分,一共20分〕13.函数()21y f x =-的定义域为[]1,1-,那么函数()2y f x =-的定义域为__________.14.高一某班期中考试,物理90分以上有17人,化学90分以上的有13人,而物理与化学两科中至少有一科90分以上的有22人,那么物理和化学两科都在90分以上的有_______人.15.设f 〔x 〕=2(10)[(6)](10)x x f f x x -≥⎧⎨+<⎩,,,那么f 〔7〕的值是_________. 的值域为.三、解答题:(本大题一一共6小题,一共70分.解容许写出文字说明、推理过程或者演算过程.)17.〔本小题总分值是10分〕集合A ={x |3≤x <7},B ={x |2<x <10},求∁R (A ∩B),(∁R A )∩B.18.〔本小题总分值是12分〕设集合A={x 2,2x -1,-4},B={x -5,1-x ,9},其中x 为同一常数.假设A∩B={9}, 求A∪B.19.〔本小题总分值是12分〕A={x |x 2-3x +2=0},B={x |ax -2=0},且A ∪B=A,务实数a 组成的集合C. 20.〔本小题总分值是12分〕〔1〕f〔x〕是一次函数,且f[f(x)]=x+2,求函数f〔x〕的解析式;〔2〕,求函数f〔x〕的解析式.21.〔本小题总分值是12分〕函数〔1〕画出函数的图像;〔2〕求f〔1〕,f〔-1〕,f[f(-1)]的值.22.〔本小题总分值是12分〕M={x|x2-3x-10≤0},N={x|a+1≤x≤2a1};〔1〕假设M∩N=M,务实数a的取值范围;〔2〕假设M∩N=N,务实数a的取值范围.。
2020-2021绍兴市绍兴一初高中必修一数学上期中试题带答案

2020-2021绍兴市绍兴一初高中必修一数学上期中试题带答案一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .24.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③5.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,77.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭8.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >> B .a b c >>C .c a b >>D .c b a >>9.函数()111f x x =--的图象是( )A .B .C .D .10.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-11.已知函数21,0,()|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩若函数()y f x a =-有四个零点1x ,2x ,3x ,4x ,且12x x <3x <4x <,则312342()x x x x x ++的取值范围是( ) A .(0,1)B .(1,0)-C .(0,1]D .[1,0)-12.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .5222+C .32D .2二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 15.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是_____.16.函数()12x f x -的定义域是__________. 17.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________.18.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是________.19.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x x f x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.20.关于函数()f x =__________.①()f x 的定义域为[)(]1,00,1-U ;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.三、解答题21.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x N *∈)件.当20x ≤时,年销售总收人为(233x x -)万元;当20x >时,年销售总收人为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入一年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少? 22.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}. (1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围.23.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?24.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?25.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x 的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.C解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.4.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .5.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.6.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x <<因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.7.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.8.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .9.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象,把11 yx=--的图象向上平移一个单位得到()111f xx=--的图象,故选:B.【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.10.C解析:C【解析】x⩽1时,f(x)=−(x−1)2+1⩽1,x>1时,()()21,10a af x x f xx x=++'=-…在(1,+∞)恒成立,故a⩽x2在(1,+∞)恒成立,故a⩽1,而1+a+1⩾1,即a⩾−1,综上,a∈[−1,1],本题选择C选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f(x1)-f(x2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.11.C解析:C【解析】作出函数函数()21,0,|log,0,x xf xx x⎧+≤⎪=⎨⎪⎩的图象如图所示,由图象可知,123442,1,12x x x x x+=-=<≤,∴()312334422222x x x xx x x++=-+=-+,∵422yx=-+在412x<≤上单调递增,∴41021x<-+≤,即所求范围为(]0,1。
浙江省绍兴市2020-2021学年高一上学期期末数学试题及答案

绍兴市2021届第一学期高一期末统考数学一、选择题(本大题共8小题,每小题3分,共24分.每小题列出的四个选项中,只有一项是符合题目要求的)1.已知集合{12}A x x =-≤<∣,{13}B x x =<≤∣,则A B ⋃=( )A .{12}x x ≤≤∣B .{12}x x <<∣C .{13}x x -<<∣D .{13}x x -≤≤∣2.“1x =”是“21x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知4sin cos 3αα+=,则sin cos αα⋅=( ) A .79-B .718-C .718D .794.设m ,n 都是正整数,且1n >,若0a >,则不正确...的是( )A .mna=B .211122a a a a --⎛⎫+=+ ⎪⎝⎭C .mna-=D .01a =5.函数()f x 的部分图象如图所示,则()f x 的解析式可能是( )A .()()sin 2x xf x e e x -=+B .()()sin 2x xf x e ex -=-C .()()cos 2x xf x e ex -=+D .()()cos 2x xf x e ex -=-6.已知12a ⎛= ⎪⎝⎭,3log 2b =,13log 2c =,则( )A .c a b <<B .b c a <<C .c b a <<D .a c b <<7.已知0m >,0n >,且(1)(4)9m n ++=,则( )A .mn 有最大值1,m n +有最小值2B .mn 有最大值1,m n +有最小值1C .mn 有最大值1,m n +无最小值D .mn 无最大值,m n +无最小值8.已知,,a b c ∈R ,0a b c ++=,若函数2()32(0)f x ax bx c a =++≠的两个零点是1x ,2x ,则12112121x x +--的最小值是( )A.6B.3CD.二、选择题(本大题共4小题,每小题3分,共12分.在每小题给出的选项中有多项符合题目要求全部选对的得3分,有选错的得0分,部分选对的得2分) 9.已知α是第二象限角,则2α可以是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角10.设扇形的圆心角为a ,半径为r ,弧长为l ,面积为S ,周长为L ,则( )A .若a ,r 确定,则L ,S 唯一确定B .若a ,l 确定,则L ,S 唯一确定C .若S ,L 确定,则a ,r 唯一确定D .若S ,l 确定,则a ,r 为宜确定11.已知函数()log (1)a f x x =-(0a >,且1a ≠)1()(||)g x f x =,2()|()|g x f x =,3()|(||)|g x f x = ( )A .函数1()g x ,2()g x ,3()g x 都是偶函数B .若()()()111212g x g x a x x ==<,则214x x ->C .若()()()212212g x g x a x x ==<,则12111x x += D .若()()()()()313233341234g x g x g x g x x x x x ===<<<,则123411110x x x x +++= 12.已知函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,函数()y f x =图象关于直线x c =成轴对称图形的充要条件是函数()y f x c =+为偶函数,则( ) A .函数32()3f x x x =+的对称中心是(1,2)P -B .函数32()3f x x x =+的对称中心是(1,4)PC .函数222()22x xf x x x -=-+有对称轴D .函数222()22x xf x x x -=-+无对称轴三、填空题(本大题共4小题,每小题3分,共12分) 13.已知函数2lg ,0(),0x x f x x x >⎧=⎨≤⎩,则110f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 14.若点12A ⎛- ⎝⎭绕坐标原点按逆时针方向旋转30°到达点B ,则点B 的横坐标是________.15.已知函数()f x 是定义域为R 的偶函数,且周期为2,当[1,0)x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,则当(2,3]x ∈时,()f x =________. 16.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.四、解答题(本大题共6小题,共52分,解答应写出文字说明、证明过程或演算过程) 17.(本题满分8分)已知集合{2}A x x =<∣,{}2430B x x x =-+<∣. (1)求集合B ; (2)求()RA B ⋂.18.(本题满分8分)已知函数2()sin sin 22f x x x x π⎛⎫=+- ⎪⎝⎭. (1)求6f π⎛⎫⎪⎝⎭的值; (2)若,02x π⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 19.(本题满分8分)已知函数2()1()f x x ax a a =+--∈R .(1)若()f x 在[1,)+∞上单调递增,求a 的取值范围; (2)解关于x 的不等式()0f x ≤. 20.(本题满分8分)如图,某超市的平面图为矩形ABCD ,超市门EF 在边AD 上,其中8m AD =,5m AB =, 5.5m AE =,1.6m EF =.(1)求ECF ∠的正切值;(2)若要在边CD 上找一点M 安装安防摄像头,使得对超市门的摄像视角EMF ∠最大,求DM 的长. 21.(本题满分10分)已知函数2()121x f x =-+. (1)求证:()f x 是奇函数;(2)若对任意(0,)x π∈,恒有()2221log (sin )log cos 1f a a x f x ⎛⎫++ ⎪+⎝⎭,求实数a 的取值范围.22.(本题满分10分)已知函数,01()1sin ,12a bx x xf x x x a π⎧+<<⎪⎪=⎨⎪+≤≤⎪⎩(0a >,0b >).(1)若1b =,且()f x 是减函数,求a 的取值范围;(2)若1a =,关于x 的方程3|()2|(1)2f x b x -=--有三个互不相等的实根,求b 的取值范围. 绍兴市2020学年第一学期高中期末调测高一数学参考谷案一、选择题(每小题3分,共24分)二、选择题(每小题全部选对的得3分,有选错的得0分,部分选对的得2分,共12分)三、填空题(每小题3分,共12分)13.114.2-15.221x --16.130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭四、解答题(共52分)17.解:(I )因为{(1)(3)0}B x x x =--<∣,所以{13}B x x =<<∣.(Ⅱ)因为R{2}A x x =≥∣,所以(){23}R A B x x ⋂=≤<∣.18.解:(1)22sin sin 636622f ππππ⎛⎫=-=⎪⎝⎭.(Ⅱ)2()cos sin f x x x x =+1sin 2cos 2)222x x =++-1sin 2cos 2sin 2223x x x π⎛⎫=+=+ ⎪⎝⎭. 因为,02x π⎡⎤∈-⎢⎥⎣⎦,所以22333x πππ-≤+≤,所以()f x ⎡∈-⎢⎣⎦.19.解:(I )()f x 的对称轴为2ax =-, 因为()f x 在[1,)+∞上单调递增,所以12ax =-≤, 所以,2a ≥-.(Ⅱ)因为()(1)(1)f x x a x =++-,所以,当2a <-时,解集为{11}x x a ≤≤--∣; 当2a =-时,解集为{1}x x =∣; 当2a >-时,解集为{11}x a x --≤≤∣.20.解:(I )因为9tan 50FD FCD CD ∠==, 1tan 2ED ECD CD ∠==,ECF ECD FCD ∠∠∠=-, 所以tan tan()ECF ECD FCD ∠∠∠=-tan tan 1tan tan ECD FCDECD FCD∠∠∠∠-=+⋅1932250191091250-==+⋅. (Ⅱ)设(05)DM x x =<≤,则5tan 2EMD x ∠=,9tan 10FMD x∠=. 因为EMF EMD FMD ∠∠∠=-, 所以,tan tan tan 1tan tan EMD FMDEMF EMD FMD∠∠∠∠∠-=+⋅25982105599112104x x x x x x -==+⋅+3232845451520x x x=≤=+.当且仅当4520x x=,即 1.5x =时,tan EMF ∠取得最大值. 所以,当 1.5m DM =时,EMF ∠最大.21.(I )证明:()f x 的定义城是R ,又21()21x x f x -=+,且1121122()()1212112xxx x x xf x f x ------====-+++,所以,()f x 是奇函数.(Ⅱ)解:由()2221log (sin )log 0cos 1f a a x f x ⎛⎫++≥ ⎪+⎝⎭,得()2221log (sin )log cos 1f a a x f x ⎛⎫+≥- ⎪+⎝⎭, 因为()f x 是奇函数,所以()2221log (sin )log cos 1f a a x f x ⎛⎫+≥- ⎪+⎝⎭, 即()()()222log (sin )log cos 1f a a x f x +≥+. 又因为()f x 在R 上单调递增,所以()222log (sin )log cos 1a a x x +≥+, 即2sin cos 1a a x x +≥+,所以,对任意(0,)x π∈,2cos 11sin x a x+≥+恒成立,设1sin t x =+,(1,2]t ∈.则222cos 12sin 211sin 1sin x x t t x x t +--++==++12t t=-+. 因为函数12y t t=-+在(1,2]t ∈上单调递减,所以122t t-+<,即2cos 121sin x x +<+, 所以,实数a 的取值范围是[2,)+∞.22.解:(I ),01()1sin ,12a x x xf x x x a π⎧+<<⎪⎪=⎨⎪+≤≤⎪⎩,当0a >时,函数ay x x=+在上单调递减,在)+∞上单调递增,1≥,所以1a ≥. 函数1sinxy aπ=+的周期22T a =≥,且3,22a a ⎡⎤⎢⎥⎣⎦单调递减, 所以12322a a ⎧≤⎪⎪⎨⎪≥⎪⎩,解得423a ≤≤.当423a ≤≤时,满足11sin a aπ+>+, 所以a 的取值范围是4,23⎡⎤⎢⎥⎣⎦.(Ⅱ)设12,01,()|()2|1sin ,12bx x g x f x xx x π⎧+-<<⎪=-=⎨⎪-≤≤⎩, 3()(1)(02)2h x b x x =--<≤, 由题意,()g x 与()h x 的图象有三个不同的交点.①当1b >时,12,01()1sin ,12bx x g x xx x π⎧+-<<⎪=⎨⎪-≤≤⎩, 则()g x在0,b ⎛⎝⎭和3,22⎛⎤⎥⎝⎦上单调递减,在b ⎫⎪⎪⎣⎭和31,2⎡⎤⎢⎥⎣⎦上单调递增, ()h x 在(0,2]上单调递减,如图1所示.当x ⎛∈ ⎝⎭时,因为113(1)044h g b b b ⎛⎫⎛⎫-=-< ⎪ ⎪⎝⎭⎝⎭, 253042h g ⎫-=+>⎪⎭⎝⎭⎝⎭,所以()g x 与()h x 的图象在0,b ⎛⎝⎭上存在一个交点; 当31,2x ⎡⎤∈⎢⎥⎣⎦时,因为1(1)(1)02h g -=>, 3310222b h g +⎛⎫⎛⎫-=-< ⎪ ⎪⎝⎭⎝⎭,所以()g x 与()h x 的图象在31,2⎡⎤⎢⎥⎣⎦上存在一个交点;当3,22x ⎛⎤∈⎥⎝⎦时,33()1222bh x h ⎛⎫<=-< ⎪⎝⎭,()(2)1g x g ≥=,所以()g x 与()h x 的图象在3,22⎛⎤ ⎥⎝⎦上不存在交点.因此,要满足题意,()g x 与()h x 的图象在b ⎫⎪⎪⎣⎭上必存在一个交点, 所以13212b +->,即52b >, 所以,当52b >时,()g x 与()h x 的图象有三个不同的交点. ②当1b =时,()g x 与()h x 的图象有两个不同的交点,不合题意,舍去.③当01b <<时,设关于x 的方程120bx x +-=在(0,1)内的根为m ,1,12m ⎛⎫∈ ⎪⎝⎭,则12,0()12,11sin ,12bx x m x g x bx m x x x x π⎧+-<≤⎪⎪=⎨--+<<⎪⎪-≤≤⎩, 所以()g x 在(0,]m 和3,22⎛⎤ ⎥⎝⎦上单调递减,在(,1)m 和31,2⎡⎤⎢⎥⎣⎦上单调递增,()h x 在(0,2]上单调递减,如图2所示.当(0,]x m ∈时,因为3()()(1)02h m g m b m -=-->, 1110442b h g -⎛⎫⎛⎫-=< ⎪ ⎪⎝⎭⎝⎭,所以()g x 与()h x 的图象在(0,]m 上存在一个交点,当(,1)x m ∈时,因为3()(1)2h x h >=, 13()2112g x b b <--+=-<,所以()g x 与()h x 的图象在(,1)m 上不存在交点;当31,2x ⎡⎤∈⎢⎥⎣⎦时,因为1(1)(1)02h g -=>,3310222b h g +⎛⎫⎛⎫-=-< ⎪ ⎪⎝⎭⎝⎭, 所以()g x 与()h x 的图象在31,2⎡⎤⎢⎥⎣⎦上存在一个交点.因此,要满足题意,()g x 与()h x 的图象在3,22⎛⎤ ⎥⎝⎦上必存在一个交点,所以(2)(2)h g ≥,即102b <≤. 所以,当102b <≤时,()g x 与()h x 的图象有三个不同的交点, 综上,b 的取值范围是150,,22⎛⎤⎛⎫⋃+∞ ⎪⎥⎝⎦⎝⎭.。
2020-2021学年浙江省绍兴市中考数学第一次模拟试题及答案解析

(第5题图)(第4题图)浙江省绍兴市最新第一次中考模拟测试卷数 学试卷Ⅰ一、选择题(本大题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.给出四个数:-1、0、2、14.3,其中为无理数的是( )A .-1B .0C .2D .14.32.下列计算正确的是( )A. 347x x x +=B. 341x x x --=C. 347x x x •=D. 34x x x ÷=3.如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )4.如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A .12B .13C .14 D .165.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A. 130°B. 140°C. 150°D. 160° 6.若a -b =2ab ,则11a b-的值为( ) A .-2 B . 12- C .12D .27.若将直尺的0cm 刻度线与半径为5cm 的量角器的0°线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图),则直尺上的10cm 刻度线对应量角器上的度数约为( )(第3题图) 主视方向 A .B . C .D .(第9题图)(第7题图) (第10题图)A. 90°B. 115°C. 125°D. 180°8成 绩 45 46 47 48 49 50 人数124251A. 47, 49B. 48, 49C. 47.5, 49D. 48, 509.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点 (点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落 到点C ’处;作∠BPC ’的角平分线交AB 于点E .设BP =x ,BE =y , 则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .10.已知,直线l 1⊥x 轴于点A (2,0),点B 是直线l 1上的动点. 直线l 2:y =x +1交l 1于点C ,过点B 作直线l 3垂直于l 2,垂足为D , 过点O ,B 的直线l 4交l 2于点E .设直线l 1,l 2,l 3围成的三角形 面积为S 1,直线l 2,l 3,l 4围成的三角形面积为S 2,且S 231, 则∠BOA 的度数为( )A.15°B. 30°C. 15° 或30°D. 15° 或75°试卷Ⅱ二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上) 11.分解因式:a 2 -4b 2=____________. 1212x x 的取值范围是.13. 如图,把正△ABC 的外接圆对折,使点A 落在弧BC 的中点F 上,若BC =6,则折痕在△ABC内的部分DE 长为 .E PC’A DBC1111222++-+-x x x x (第13题图)(第14题图)(第15题图)(第18题图)14.如图,在边长为2的菱形ABCD 中, ∠ABC =120°, E ,F 分别为AD ,CD 上的动点,且AE +CF =2,则线段EF 长的最小值是.15.如图,一段抛物线:y =-x (x -3)(0≤ x ≤3),记为C 1,它与 x 轴交于点 O , A 1;将C 1绕点 A 1旋转180°得C 2,交 x 轴于点 A 2;将C 2绕点 A 2旋转180°得C 3,交 x 轴于点A 3;…若 P (m , 2)在第3段抛物线C 3上,则 m =.16.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中较大的数,如:max {2,4}=4.按照这个规定,方程}{21,x max x x x+-=的解为.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17. (1)计算:()()213|4|221--+-⨯--;(2)化简: .18. 有一艘渔轮在海上C 处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A 处和B 处,B 在A 的正东方向,且相距100里,测得地点C 在A 的南偏东60°,在B 的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派哪艘救助轮才能尽早赶到C 处救援?(3≈1.7)(第19题图)19. 李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C 类女生有名,D 类男生有名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位 男同学和一位女同学的概率.20.如图,已知四边形ABCD 内接于⊙O ,∠ABC =60°,BD 是⊙O 的直径,AD =1,112DC=,点C ,D ,E 在同一直线上. (1)写出∠ADE 的度数; (2)求⊙O 的直径BD 长.21. 如图,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,sin ∠AOB =45,反比例函数(0)ky x x=>在第一象限内的图象经过点A ,与BC 交于点F . (1)若OA =10,求反比例函数解析式;(2)若点F 为BC 的中点,且△AOF 的面积S =12,求OA的长和点C 的坐标。
高一数学上学期第一次月考试题含解析 18

卜人入州八九几市潮王学校一中2021级高一年级第一次月考试卷〔数学〕本卷须知:2.请将答案正确填写上在答题卡上第I卷〔选择题〕一、选择题(一共10小题,每一小题3分,一共计30分)1.集合,,那么为( )A. B. C. D.【答案】C,由指数函数的性质可,那么应选C.2.集合,那么〔〕A. B. C. D.【答案】C3.假设集合,集合,那么〔〕A. B. C. D.【答案】D【解析】A={x|lg〔x-2〕<1}={x|lg〔x-2〕<lg10}={x|2<x<},B={x|<2x<8}={x|2-1<2x<23}={x|-1<x<3},∴A∩B={x|2<x<3}应选D.4.函数,那么的值是〔〕A.10B.11C.12D.13【答案】B【解析】,应选B.5.函数y=f〔x〕定义域是[-2,3],那么y=f〔2x-1〕的定义域是〔〕A. B.[-1,4]C. D.[-5,5]【答案】C【解析】∵函数y=f(x)定义域是[−2,3],∴由−2⩽2x−1⩽3,解得−⩽x⩽2,即函数的定义域为,此题选择C选项.6.函数的图象是〔〕A. B. C. D.【答案】D【解析】去掉函数绝对值号得到,分别画出直线图象,截取在定义域上的局部,应选D.7.,,,那么,,的大小关系为〔〕A. B. C. D.【答案】B...............8.设偶函数的定义域R,当时,是增函数,那么的大小关系是〔〕A. B.C. D.【答案】A【解析】试题分析:因为函数是R上的偶函数,所以,又由函数在区间上是增函数,,即:考点:此题主要是对偶函数的性质的考察。
点评:此题难度适中,对偶函数性质的考察表达的淋漓尽致9.化简等于()A. B. C. D.【答案】C【解析】,选C.10.f(x)是定义域为(-1,1)的奇函数,而且f(x)是减函数,假设f(m-2)+f(2m-3)>0,那么实数m的取值范围是〔〕A. B. C.(1,3)D.【答案】A【解析】由f(x)是定义域为(-1,1)的奇函数,而且f(x)是减函数,,故第II卷〔非选择题〕二、填空题(一共5小题,每一小题4分,一共计20分)11.函数恒过定点A,那么A的坐标为_____.【答案】(0,2)【解析】,即A的坐标为(0,2)12.函数y=1-2x(x∈[-2,2])的值域是________.【答案】[-3,]【解析】因为y=2x是R上的单调增函数,所以当x∈[-2,2]时,2x∈[,4],所以-2x∈[-4,-],所以y=1-2x∈[-3,].13.计算的结果为_____.【答案】7【解析】原式。
高一数学上学期第一次月考试题含解析3

卜人入州八九几市潮王学校双十二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题:本大题一一共10小题,每一小题4分,一共40分,在给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},那么〔∁U A 〕∩B=〔〕A.{0}B.{﹣3,﹣4}C.{﹣1,﹣2}D.∅【答案】B【解析】∴C U A{−3,−4},∴〔C U A 〕∩B=={−3,−4}.故答案选B.点睛:1.用描绘法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进展集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. ()f x 的定义域是[1,3)-,那么(21)f x -的定义域是〔〕A.(]1,1-B.[0,2)C.(0,2]D.[1,2)-【答案】B【解析】【分析】根据抽象函数定义域求法,即可求其定义域.【详解】因为函数()f x 的定义域是[1,3)- 所以13x -≤< 所以()21f x -的定义域满足解不等式,可得02x ≤<,即[)0,2x ∈ 应选B【点睛】此题考察了抽象函数定义域的求法,紧扣定义域为x 的取值范围这一概念即可,属于根底题. **{(,)|43120,,}B x y x y x N y N =+-<∈∈,那么B 的子集个数为〔〕A.3B.4C.7D.8 【答案】D【解析】【分析】根据条件,列举出M 中的元素,利用集合含子集的个数与集合中元素个数的关系求出集合M 的子集个数.【详解】∵集合()**{,|43120,,}B x y x y x N y N =+-<∈∈,∴B={〔1,1〕,〔1,2〕,〔2,1〕},所以B 中含有3个元素,集合B 的子集个数有23=8应选:D .【点睛】此题考察假设一个集合含有n 个元素那么其子集的个数是2n ,其真子集的个数为2n ﹣1,属于根底题.4.如下列图,I 为全集,M 、P 、S 为I 的子集,那么阴影局部所表示的集合为〔〕A.〔M∩P〕∪SB.〔M∩P〕∩SC.〔M∩P〕∩〔C I S 〕D.〔M∩P〕∪〔C I S 〕【答案】C【解析】 试题分析:由图示可知阴影局部为集合M,P 的公一共局部,并且不在集合S 中,因此为〔M∩P〕∩〔C I S 〕 考点:集合的表示方法()412x x f x +=的图象 A.关于原点对称B.关于直线y=x 对称C.关于x 轴对称D.关于y 轴对称【答案】D【解析】【详解】试题分析:,因为,所以为偶函数.所以的图象关于y 轴对称.应选D.考点:函数的奇偶性. ()21f x x x =+的值域是()A.[0,+∞)B.(-∞,0]C.1,2⎡⎫-+∞⎪⎢⎣⎭D.[1,+∞)【答案】C【解析】【分析】用换元法转化为求二次函数的值域求解或者根据函数的单调性求解.【详解】方法一:设)210t x t =+≥,那么212t x -=,∴()2221111t (1)12222t g t t t t -=+=+-=+-, ∴函数()gt 在[0,)+∞上单调递增, ∴()1(0)2g t g ≥=-, ∴函数()f x 的值域是1,2⎡⎫-+∞⎪⎢⎣⎭.应选C .方法二:由210x +≥得21x ≥-, ∴函数()f x 的定义域为1,2⎡⎫-+∞⎪⎢⎣⎭,又由题意得函数()f x x 为增函数, ∴()1122f x f ⎛⎫≥-=- ⎪⎝⎭, ∴函数()f x 的值域是1,2⎡⎫-+∞⎪⎢⎣⎭. 应选C .【点睛】对于一些无理函数,可通过换元转化为有理函数〔如二次函数〕,再利用有理函数求值域的方法解决问题,“换元法〞的本质是等价转化的思想方法,解题中要注意新元的范围.()f x =的定义域为R ,那么实数a 的取值范围是〔〕 A.40,9⎛⎫ ⎪⎝⎭ B.40,9⎡⎤⎢⎥⎣⎦ C.40,9⎛⎤ ⎥⎝⎦ D.40,9⎡⎫⎪⎢⎣⎭【答案】D【解析】【分析】讨论0a =与0a >0a =时满足题意,当0a >时,根据∆<0即可求得实数a 的取值范围.【详解】当0a =时,分母变为常数1,所以定义域为R ,即0a =符合题意因为定义域为R ,所以当0a ≠时,0a >∆<0即()2340a a ∆=-<,解不等式可得409a <<综上所述,实数a 的取值范围为409a ≤<,即40,9a ⎡⎫∈⎪⎢⎣⎭应选D【点睛】此题考察了函数定义域的求解,定义域为R 时函数满足的条件,属于根底题.8.0.70.8a =,0.90.8b =,0.81.2c =,那么a 、b 、c 的大小关系是〔〕A.a b c >>B.c a b >>C.b a c >>D.c b a >>【答案】B【解析】【分析】根据指数函数的单调性,选取中间量,即可比较大小.【详解】根据指数函数的性质可知,函数0.8x y =为单调递减函数,所以00.70.910.80.80.8=>>,即1a b >>因为 1.2x y =为单调递增函数,所以0.80.211 1.2>=,即1c >综上可知,c a b >>应选B【点睛】此题考察了指数函数图像与性质,指数幂形式的比较大小,属于根底题.3()1x x f x e =-的图象大致是〔〕A. B. C.D.【答案】C【解析】【分析】根据函数()f x 的解析式,结合特殊值法即可判断选项.【详解】因为()31x x f x e =- 定义域为0x ≠,所以排除A 选项当x →+∞时,10xe ->且30x >,所以()0f x >;分母e 1x -增长的速度大于分子中3x 的增长速度,所以()0f x →,排除选项D当x →-∞时,分母10xe -<,分子30x <,所以()0f x >,排除选项B 综上,应选C【点睛】此题考察了根据函数解析式判断函数的图像,属于根底题.解决有关函数图像这一类题目,一般从三个方面入手研究图像:〔1〕分析函数的单调性;〔2〕分析函数的奇偶性;〔3〕特殊值法检验,特殊值法包括详细取值与极限取值.427()49f x x x =-+,那么关于x 的不等式(23)(1)f x f x -<-的解集为〔〕 A.3,4⎛⎫+∞ ⎪⎝⎭ B.3,4⎛⎫-∞ ⎪⎝⎭ C.30,4⎡⎫⎪⎢⎣⎭ D.13,24⎛⎫ ⎪⎝⎭【答案】D【解析】【分析】根据函数()42749f x x x =-+解析式,可知函数为偶函数,结合函数的单调性,解不等式即可求得x 的取值范围.【详解】函数()42749f x x x =-+,定义域为R 那么()()()4422774949f x x x x x -=--=-+-+ 所以()()f x f x -=,即函数()42749f x x x =-+为偶函数 当0x ≥时,()41f x x =为增函数,()22749f x x =-+为增函数 那么()42749f x x x =-+在0x ≥时为增函数,在0x <时为减函数 不等式()()231f x f x -<- 即满足231x x -<-即可 不等式()()22231x x -<-化简可得281030x x -+< 即()()21430x x --< 解得1324x <<,即13,24x ⎛⎫∈ ⎪⎝⎭ 应选D【点睛】此题考察了函数的奇偶性、单调性的综合应用,根据函数性质解不等式,属于根底题.二、多项选择题:此题一共4小题,每一小题5分,一共20分.在每一小题给出的五个选项里面,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.()f x 中,在其定义域内既是奇函数又是减函数的是〔〕 A.1()f x x = B.21()f x x = C.21()f x x x=+D.()f x x =-E.()||f x x x =-【答案】DE【解析】【分析】根据函数的奇偶性定义和函数单调性的断定即可得解.【详解】对于A,()1f x x =,定义域为()(),00,-∞⋃+∞.()1f x x =为奇函数,在(),0-∞单调递减,在()0,∞+单调递减,但是()(),00,-∞⋃+∞递减不成立,所以A 错误;对于B,()21f x x =定义域为()(),00,-∞⋃+∞.()21f x x =为偶函数,所以B 错误 对于C,()21f x x x =+,定义域为()(),00,-∞⋃+∞.()21f x x x =+非奇非偶函数,所以C 错误; 对于D,()f x x =-,定义域为R,为奇函数,且在R 上为递减函数,所以C 正确;对于E,()f x x x =-,定义域为R,即()22x f x x ⎧-=⎨⎩00x x ≥<,画出函数图像如以下列图所示 所以()f x x x =-为奇函数,且在R 上为递减函数,所以E 正确综上,应选DE【点睛】此题考察了函数奇偶性与单调性的断定,注意定义域的特殊要求,属于根底题.a ,b ,定义{},min ,,a a b a b b a b≤⎧=⎨>⎩假设2()2f x x =-,2()g x x =,以下关于函数{}()min (),()F x f x g x =的说法正确的选项是〔〕A.函数()F x 是偶函数B.方程()0F x =有三个解C.函数()F x 在区间[1,1]-单调递增D.函数()F x 有4个单调区间E.函数()F x 有最大值为1,无最小值【答案】ABDE【解析】【分析】根据题意函数{},min ,,a a b a b b a b≤⎧=⎨>⎩为取小函数,画出()22f x x =-与()2g x x =在同一坐标系中的图像,可得()()(){}min ,F x f x g x =的图像,根据图像即可判断选项.【详解】由题意函数{},min,,a a b a b b a b ≤⎧=⎨>⎩为取小函数 根据()22f x x =-与()2g x x =,画出()()(){}min ,F x f x g x =的图像如以下列图所示: 由图像可知,函数()()(){}min ,F x f x g x =关于y 轴对称,所以A 正确.函数图像与x 轴有三个交点,所以方程()0Fx =有三个解,所以B 正确. 函数在(],1-∞-内单调递增,在[]1,0-内单调递减,在[]0,1内单调递增,在[)1,+∞内单调递减,所以C 错误,D 正确.由函数图像可知,函数有最大值为1,无最小值,所以E 正确综上,应选ABDE【点睛】此题考察了函数的单调性、奇偶性与最值的综合应用,根据函数图像研究函数的性质,属于根底题.13.假设一系列函数的解析式和值域一样,但其定义域不同,那么称这些函数为“同族函数〞,例如函数2,[1,2]y x x =∈与函数2y x ,[2,1]x ∈--为“同族函数〞.下面函数解析式中可以被用来构造“同族函数〞的是〔〕 A.21()f x x = B.()||f x x = C.1()f x x = D.1()f x x x=+ E.()22x x f x -=- 【答案】ABD【解析】【分析】由题意可知定义域不同且解析式和值域一样,得函数必为不单调函数,举出满足条件的例子构造出同族函数即可.【详解】对于A,()21f x x =,当定义域分别为()1,0-与()0,1时,值域均为()1,+∞,所以()21f x x =为同族函数,所以A 正确;对于B,()||f x x =,当定义域分别为[]1,0-与[]0,1时,值域均为[]0,1,所以()f x x =为同族函数,所以B 正确;对于C,()1f x x=在定义域()(),00,-∞⋃+∞内,函数图像在第一象限内单调递减,在第三象限内单调递减,不满足定义域不同时,值域一样,所以C 错误;对于D,()1f x x x =+定义域为()(),00,-∞⋃+∞,当定义域分别为1,12⎡⎤⎢⎥⎣⎦与[]1,2时,值域均为52,2⎡⎤⎢⎥⎣⎦,所以D 正确 对于E,()22x x f x -=-定义域为R,且函数在R 上单调递增,所以不满足定义域不同时,值域一样,所以E 错误综上,应选ABD【点睛】此题考察了函数新定义的理解,注意定义域、值域和解析式间的关系,属于中档题. x ,符号[]x 表示不超过x 的最大整数,例如[]3π=,[ 1.08]2-=-,定义函数()[]f x x x =-〕A.( 3.9)(4.1)f f -=B.函数()f x 的最大值为1C.函数()f x 的最小值为0D.方程1()02f x -=有无数个根 E.函数()f x 是增函数【答案】ACD【解析】【分析】 根据题意,画出函数()[]f x x x =-的图像,根据图像分析函数的性质即可.【详解】根据符号[]x 的意义,讨论当自变量x 取不同范围时函数()[]f x x x =-的解析式:当10x -≤<时,[]1x =-,那么()[]1f x x x x =-=+当01x ≤<时,[]0x =,那么()[]f x x x x =-=当12x ≤<时,[]1x =,那么()[]1f x x x x =-=-当23x ≤<时,[]2x =,那么()[]2f x x x x =-=-画出函数()[]f x x x =-的图像如以下列图所示:根据定义可知,()( 3.9) 3.940.1,f -=---=(4.1) 4.140.1f =-=,即( 3.9)(4.1)f f -=,所以A正确;从图像可知,函数()[]f x x x =-最高点处取不到,所以B 错误;函数图像最低点处函数值为0,所以C 正确; 从图像可知()102f x -=,即()12f x =有无数个根,所以D 正确 根据函数单调性,可知函数()[]f x x x =-在特定区间内为增函数,在整个定义域内没有增减性,所以E 错误综上,应选ACD【点睛】此题考察了函数新定义的内容,分段函数图像的画法.画出所给函数图像,根据图像分析函数的性质是解决问题的常见方法,属于中档题.三、填空题:此题一共4小题,每一小题5分,一共20分()23x f x a +=+〔0a >,且1a ≠〕的图像恒过定点________.【答案】(2,4)- 【解析】 【分析】根据指数函数过定点()0,1,结合函数图像平移变换,即可得()23x f x a +=+过的定点.【详解】因为指数函数()x f x a =〔0a >,且1a ≠〕过定点()0,1()23x f x a +=+是将()x f x a =向左平移2个单位,向上平移3个单位得到所以()23x f x a +=+过定点()2,4-【点睛】此题考察了指数函数的图像与性质,函数图像的平移变换,属于根底题.2()3||2f x x x =-+单调减区间是__________.【答案】3,2∞⎛⎤--⎥⎝⎦,30,2⎡⎤⎢⎥⎣⎦【解析】 【分析】根据绝对值的定义去绝对值,写成分段函数形式,再根据函数单调性求得单调递减区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绍兴鲁迅中学高一数学学科2020学年第一学期10月限时训练试卷 考生须知:1、本卷共四大题,19小题,满分100分,时间90分钟
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
一、单项选择题:本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一项符合题
目要求.
1.已知全集2,{|20},{|1}U R A x x x B x x ==-<=≥,则()U A C B ⋂= ( )
A .(0,)+∞
B .(1,2)
C .(,2)-∞
D .(0,1)
2.设集合{1,2},{|10}A B x ax =-=-=,若A B B ⋂=,则实数a 的值的集合是(
) A. 1{1,}2- B. 1{1,}2- C. 1{1,,0}2- D.1
{1,,0}2-
3.下列四组函数中,表示同一函数的是( )
A .()2 f x x =,()()21g x x =+
B .() f x =,()2g x =
C .()()f x g x x ==
D .()()f x g x 4.若函数()y f x =的定义域是[]0,2,则函数(1)
()1f x g x x +=-的定义域是( )
A .[]0,2
B .[)1,1-
C .(1,3]
D .[)(]0,11,2⋃
5.函数2()43,[0,]f x x x x a =-+∈的值域为[1,3]-,则实数a 的取值范围是( )
A.[2,4]
B.(0,4]
C.[2,)+∞
D.(0,2]
6.若11,23a b c -<<<<<,则()a b c -的取值范围是( )
A.(4,6)-
B. (6,4)--
C.(6,0)-
D.(4,0)-
7.不等式20ax bx c ++>的解集为()2,1-,则不等式()
()22130b x a x c --++>的解集为( ) A .3,22⎛⎫- ⎪⎝⎭ B .32,2⎛⎫- ⎪⎝⎭ C .()3,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .()32,,2⎛⎫--∞⋃+∞ ⎪⎝⎭
二、多项选择题:本题共3小题,每小题4分,共12分.在每小题给出的选项中,有多项符合要求.全
部选对的得4分,部分选对的得2分,有选错的得0分.
8.下列命题中,正确的是( )
A.若22a b c c
<,则a b < B.若ac bc >,则a b > C.若a b <,那么11a b >
D.已知0a b <<,则1b a < 9.下列结论不正确的是( )
A .当0x >2
≥ B .当0x >2
2
C .当54x <时,22145x x -+-的最小值是52
D .设0x >,0y >,且2x y +=,则
14x y +的最小值是92 10.下列结论正确的是( )
A .不等式2
(1)(2)04x x x
+-≤-的解集为{|4,1}x x x >≤-或 B .设函数2()(,,,0)f x ax bx c a b c a =++∈>R ,则“02b f f a ⎛⎫⎛⎫-< ⎪ ⎪⎝
⎭⎝⎭”是“方程()0f x =与(())0f f x =”都恰有两个不等实根的充要条件
C .存在函数()f x 满足,对任意的x R ∈,都有2(4)23f x x +=-
D .集合{(,)|5,6}A x y x y xy =+==表示的集合是{(2,3),(3,2)}
三、填空题:本题共4小题,每小题4分,共16分.
11.设函数3,0()(2),0
x x f x x f x x ⎧+>⎪=⎨⎪+≤⎩,则(3)f -=_________. 12.已知函数2()f x ax b =-满足4(1)1,1(2)5f f -≤≤--≤≤,则(3)f 的取值范围是_________.
13.若命题“x R ∃∈,使得2kx x k >+成立”是假命题,则实数k 的取值范围是________. 14.已知集合2
{|525},{|(1)(1)0}P x a x a Q x x x =-<<+=+->,若“x P ∈”是“x Q ∈”的必要不充分条件,则实数a 的取值范围是_________.
四、解答题:本题共5小题,共44分.解答应写出文字说明、证明过程或演算步骤.
15.(本题满分共8分)设全集U R =,不等式
2112
x x -≤+的解集为A ,集合{|22}B x a x a =-<<+. (1)求集合A ;
(2)若2a =,求A B ⋂和()()U U C A C B ⋃.
16.(本题满分共9分)已知二次函数()f x 满足2(1)510f x x x +=++.
(1)求(2)f -,并求()f x ;
(2)若函数()()(1)1
f x
g x x x =
>-+,试求函数()g x 的值域.
17.(本题满分共9分)若关于x 的不等式21
0x bx c x +-≥-的解集为[1,1)[3,)-+∞. (1)求2()f x x bx c =++在闭区间[]
,1m m +(m R ∈)上的最小值()g m .
(2)画出函数()g m 的简图,并写出函数()g m 的最小值.
18.(本题满分共9分)设函数()()()2
230f x ax b x a =+-+≠. (1)若(1)4f =,且,a b 均为正实数,求14a b
+的最小值,并确定此时实数,a b 的值; (2)若b R ∀∈满足()2
2
2(1)32b f x a x a ab >--+-+在x R ∈上恒成立,求实数a 的取值范围.
19.(本题满分共9分)设函数()1 ,01(1),11x x a a f x x a x a
⎧≤≤⎪⎪=⎨⎪-<≤⎪-⎩,其中a 为常数且()0,1a ∈.新定义:若0x 满足()()00f f x x =,但()00f x x ≠,则称0x 为()f x 的次不动点.
(1)当12
a =时,分别求13f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭和45f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值; (2)求函数()f x 在[]0,1x ∈上的次不动点.。