锆石SHRIMP定年原理和方法
锆石U_Pb同位素定年的原理_方法及应用_高少华

立年龄; 定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,
灵活选择; 锆石 U-Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应
用时要结合地质背景,对定年结果进行合理解释。
关键词: 锆石; U-Pb 同位素; 原理; 定年方法; 地质应用
收稿日期: 2013 - 04 - 11; 修订日期: 2013 - 05 - 30 作者简介: 高少华( 1986 - ) ,男,在读硕士,专业方向: 沉积盆地物源分析研究。
·364·
江西科学
2013 年第 31 卷
1 锆石的地球化学特征和内部结构
1. 1 锆石的地球化学特征 锆石 的 氧 化 物 中 ω ( ZrO2 ) 占 67. 2% 、ω
Abstract: This article discusses geochemical characteristics and internal structure of zircon,the principle of zircon U-Pb isotopic dating,the advantages and disadvantages of dating method and the application of geological problems through consulting a large number of Chinese and foreign literature and combined with the author's experiments. The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics. Principle is that by using of the U-Pb decay equation getting three independent ages of 206 Pb / 238 U、207 Pb / 235 U and 207 Pb / 206 Pb. Dating methods have advantages and disadvantages,please accord to the quantity,size,internal structure and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly. Zircon U-Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone. The dating results are reasonable explanation to combined with the geological background. Key words: Zircon,U-Pb isotope,The principle,Dating method,The geological applications
锆石测年的几个问题探讨

锆石测年的几个问题探讨锆石等副矿物在地质学中的广泛应用与近年来原位分析测试技术的快速发展密不可分。
目前已广泛应用的微区原位测试技术主要有离子探针、激光探针和电子探针等。
[關键词]锆石检测探讨1微区原位测试技术离子探针(sensit ive high resolut ion io n microprobe,简称SHRIMP)可用于矿物稀土元素、同位素的微区原位测试。
在目前所有的微区原位测试技术中,SHRIMP 的灵敏度、空间分辨率最高(对U 、Th 含量较高的锆石测年,束斑直径可达到8 μm),且对样品破坏小(束斑直径10~50 μm,剥蚀深度<60 μm,剥蚀深度为10~20 μm),其空间分辨率和分析精度一般低于SIMS、SHRIMP。
电子探针(electr on pr obe X-ray micro analysis,简称EPMA)、质子探针(proton- induced X-rayemission micro-probe,简称PIXE)和X 射线荧光探(X-ray fluo rescence- probe,简称XRF)均属微区化学测年技术。
其优点是可以直接在岩石探针片上进行测定,不破坏样品,保留了岩石的原始结构,样品制备方便,便于实现原地原位分析,与同位素定年相比,价格低廉,分析快速;其缺点是不能估计平行的U-Pb 衰变体系的谐和性且由于化学定年不需进行普通铅的校正,容易导致过高估计年轻独居石、锆石等矿物的年龄。
质子探针是继电子探针之后发展起来的、一种新的微束分析技术,能有效地进行微区微量元素、痕量元素的分析,近年来用于测定独居石的U-Th-Pb年龄,其分析原理与电子探针相似。
对EPMA 无能为力的、小于100 Ma 的独居石年龄的测定,PIXE具有明显的优势。
2锆石化学成分特征及其在岩石成因中的应用3锆石测年中铅丢失的原因铅丢失的原因是蜕晶质化锆石的重结晶作用。
如果岩石经历的不是一次,而是二次以上的地质作用,而且两次之间有足够的时间使锆石蜕晶质化,当叠加作用的温度达到一定高度后,蜕晶质化的锆石将发生重结晶作用,玻璃质状态将重新恢复成晶体状态。
青藏北部贡帽日玛正长斑岩的锆石SHRIMPU-Pb定年及其岩石地球化学

青藏北部贡帽日玛正长斑岩的锆石SHRIMPU-Pb定年及其岩石地球化学青藏北部贡帽日玛正长斑岩的锆石SHRIMP U-Pb定年及其岩石地球化学研究贡帽日玛新生代正长斑岩位于青藏高原北部、可可西里东部,形成于古近纪渐新世时期(E3),锆石的SHRIMP U-Pb谐和年龄为26.51 Ma±0.79 Ma.正长斑岩的w(SiO2)为58.62%~61.86%,具富碱(ALK=7.71%~10.09%),高w(K2O)(5.72%~7.75%),高K2O/Na2O比值(2.1~5.3),高w(MgO)(3.09%~4.61%)和高Mg#值(0.59~0.69),以及钾玄岩系列的岩石地球化学特征.稀土总量高(∑REE=262.88×10-6~371.65×10-6),轻稀土强烈富集(LREE=247.76×10-6~352.92×10-6),重稀土明显亏损(HREE=15.12×10-6~18.68×10-6),Y(17.43×10-6~21.53×10-6,平均18.71×10-6)和Yb(1.30×10-6~1.67×10-6,平均1.52×10-6)质量分数普遍偏低,稀土元素配分模式呈轻稀土强烈富集的右倾斜型,(La/Yb)N值为24.49~33.85,负铕异常不明显(Eu/Eu*=0.87~0.92).微量元素Sr质量分数及Sr/Y比值高,分别为675×10-6~1949×10-6和38.73~90.52,在微量元素比值蛛网图上正长斑岩强烈地表现出Nb,Ta,P,Ti,Y的负异常.贡帽日玛新生代正长斑岩属一高Mg高K的C型埃达克质岩,其源区物质组成相当于榴辉岩相的下地壳,形成于青藏高原隆升和板内地壳加厚背景之下,是青藏高原北部在古近纪渐新世时期(E3)因大陆地壳加厚引起下地壳部分熔融的岩浆产物.作者:魏启荣李德威王国灿郑建平WEI Qi-rong LI De-wei WANG Guo-can ZHENG Jian-ping 作者单位:魏启荣,WEI Qi-rong(中国地质大学材料科学与化学工程学院,湖北,武汉,430074;中国地质大学地球科学学院,湖北,武汉,430074)李德威,王国灿,郑建平,LI De-wei,WANG Guo-can,ZHENG Jian-ping(中国地质大学地球科学学院,湖北,武汉,430074)刊名:矿物岩石ISTIC PKU 英文刊名:JOURNAL OFMINERALOGY AND PETROLOGY 年,卷(期): 2007 27(4) 分类号:P588.13+3 关键词:锆石SHRIMPU-Pb定年高Mg高K埃达克岩岩石地球化学贡帽日玛青藏高原北部。
西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石Ar-Ar定年及其地质意义

西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石Ar-Ar定年及其地质意义西藏沙让斑岩钼矿床位于西藏那曲地区,是中国南缘的一个大型钼矿床。
近年来,针对该矿床的研究逐渐深入,其中包括SHRIMP定年和角闪石Ar-Ar定年研究。
本文将从两个方面介绍这些研究的结果及其地质意义。
一、SHRIMP定年SHRIMP(Sensitive High Resolution Ion MicroProbe)是一种高分辨率的离子微探测技术,能够在十微米级别上测定岩石中锆石的放射性同位素含量,从而得到岩石的年龄信息。
针对沙让斑岩钼矿床,研究者使用SHRIMP技术对钼矿床中的锆石进行了定年研究,结果显示:1.1 沙让斑岩钼矿床的形成时间为1.8-1.6亿年前。
1.2 在该时期,西藏地区发生了特提斯洋的俯冲带形成和严重挤压的构造运动,同时地壳内部熔岩活动也非常活跃,形成了一系列斑岩体和矿床,沙让斑岩钼矿床就是其中之一。
1.3 该时期的沉积岩石中还发现了大量同龄的锆石,表明这一时期是整个西藏构造带的重要期间,地壳内部构造和岩浆活动十分剧烈。
二、角闪石Ar-Ar定年角闪石是一种亲石英的矿物,是测定矿物形成时间的另一种常用方法。
针对沙让斑岩钼矿床,研究者使用角闪石Ar-Ar定年技术对钼矿床中的角闪石进行了定年研究,结果显示:2.1 沙让斑岩钼矿床的角闪石形成时间为1.6-1.57亿年前。
2.2 这一时期同样处于西藏地区特提斯洋俯冲带形成和构造运动活跃的时期,这些构造和岩浆活动对沙让斑岩钼矿床的形成和演化产生了重要影响。
2.3 此次研究还发现了一些早期存在的角闪石,它们的形成时间和区域内其他矿床的形成时间非常接近,说明这些矿床可能存在紧密的物源关系。
以上是对沙让斑岩钼矿床SHRIMP定年和角闪石Ar-Ar定年研究结果的简要介绍。
这些研究的意义在于,它们为我们理解西藏地区的构造演化和岩浆活动提供了重要的时间框架,同时也为找寻相似矿床奠定了基础。
锆石L—1)h同位素定年的原理、方法及应用

收稿日期:2013-04-11;修订日期:2013-05-30作者简介:高少华(1986-),男,在读硕士,专业方向:沉积盆地物源分析研究。
第31卷 第3期2013年6月江 西 科 学JIANGXI SCIENCEVol.31No.3Jun.2013 文章编号:1001-3679(2013)03-0363-07锆石U⁃Pb 同位素定年的原理、方法及应用高少华,赵红格,鱼 磊,刘 钊,王海然(西北大学地质学系,陕西 西安710069)摘要:通过查阅大量中外文献,结合作者实验经过,对锆石的地球化学特征和内部结构,锆石U⁃Pb 同位素定年的原理、定年方法的优缺点及地质应用等问题进行了讨论。
结果表明,岩浆锆石与变质锆石在地化和内部结构方面具有不同的特征;定年的原理是利用U⁃Pb 衰变方程得到206Pb /238U 、207Pb/235U 和207Pb /206Pb 3个独立年龄;定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,灵活选择;锆石U⁃Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应用时要结合地质背景,对定年结果进行合理解释。
关键词:锆石;U⁃Pb 同位素;原理;定年方法;地质应用中图分类号:P597+.3 文献标识码:AZircon U⁃Pb Isotopic Dating of Principle ,Method and Application GAO Shao⁃hua,ZHAO Hong⁃ge,YU Lei,LIU Zhao,WANG Hai⁃ran(Department of Geology,Northwest University,Shanxi Xi′an 710069PRC)Abstract :This article discusses geochemical characteristics and internal structure of zircon,the prin⁃ciple of zircon U⁃Pb isotopic dating,the advantages and disadvantages of dating method and the ap⁃plication of geological problems through consulting a large number of Chinese and foreign literature and combined with the author′s experiments.The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics.Principle is that by using of the U⁃Pb decay equation getting three independent ages of206Pb /238U、207Pb /235U and 207Pb /206Pb.Dating methods have advantages and disadvantages,please accord to the quantity,size,internal struc⁃ture and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly.Zircon U⁃Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone.The dating results are reasonable explanation to combined with the geological background.Key words :Zircon,U⁃Pb isotope,The principle,Dating method,The geological applications0 前言锆石是沉积岩、岩浆岩、变质岩和月岩中常见的副矿物,主要化学成分是ZrSiO 4,含有U、Th、Pb放射性元素及稀土等微量元素[1~5]。
锆石定年原理锆石U-Pb定年3

蒸发法Pb丢失的判断
207Pb/206Pb表面年龄始终一致,表明没有Pb丢失, U-Pb体系是封闭的; 207Pb/206Pb表面年龄逐渐增大,显示外部Pb丢失明 显;如果在某一时刻后年龄不变了,说明内部是封 闭的。经高压气体磨蚀后可以提高谐和性。
目前(95以来), 此方法已很少被人们使用. 因为没有 突出的优点.
表明年龄的取舍
206Pb/238U, 207Pb/235U, 207Pb/206Pb表面年龄。 对单个样品的分析,如果三个表明年龄不一致, 即不谐和年龄,一般取舍标准是: 年轻的锆石以206Pb/238U表面年龄为准, 老锆石则以207Pb/206Pb表面年龄作为形成时代。 但是,界线在哪里?
1000 Ma? 540 Ma?
对分析结果的解释
1. 单一年龄且在谐和线上 加权平均值→结晶年龄 2. 一组年龄,谐和线附近,与不一致线相交的年龄 3. 一组年龄,等时线分布,上交点→结晶年龄 4. 一组年龄,等时线分布,下交点→结晶年龄 5. 一组碎屑锆石年龄,碎屑锆石中最年轻谐和年龄→沉积年龄 6. 低于上述最年轻谐和年龄的→变质年龄
68 34.6±0.2 3.29 1.96
中部斑岩 13 34.1±0.3 1.15 83 33.3±0.3 7.92
智利斑岩铜矿区的斑岩时代
可以用LA-ICP-MS测定第三纪锆石的年龄,其总体精度可 与SHRIMP相媲美
4. 热离子质谱计逐级蒸发-沉积测定法
蒸发法的结果
此方法只能获得207Pb/206Pb, 208Pb/206Pb和 204Pb/206Pb 比值, 所以必须对上述年龄计算式进行换算:
原来年龄计算方程: 206Pb / 238U = e238t -1 207Pb / 235U = e235t -1
工作笔记——锆石定年

工作笔记——锆石定年工作笔记—锆石定年2014年4月4日,于中国地质科学院地质所,经与多接受等离子质谱实验室联系,老师安排我做两天LA-MC-ICP-MS锆石U- P b 定年实验。
一、工作内容整个锆石定年过程大致包括锆石分选、样品制靶、锆石U-P b 测年、分析测试数据。
我们的实验工作主要为锆石U-P b测年,包括装靶/换靶→定位→吹气→打点→调数据→吹气→打点。
仪器运行几乎是全自动控制,我们的主要任务就是选好要测试的锆石颗粒以及每颗锆石要测试的年龄位置。
此次实验样品采自塔里木盆地前寒武纪基底的碎屑岩、变质岩、岩浆岩,测试时使用锆石标样GJ1、SRM610/620和91500作为参考物质。
二、工作流程方法(一)锆石分选锆石采集之前要对采样区的岩石出露情况、风化、剥蚀程度,岩浆活动的期次、成分,变质作用的程度、期次以及岩石成因机制等进行比较全面的了解。
锆石的主要成分是硅酸锆,由于岩石酸性不同,不同类型岩石一般采集重量不同。
偏酸性的岩类一般含锆石相对多一些,而偏基性岩类含锆石则相对较少。
对于花岗岩、流纹岩等偏酸性岩石,采集3~4kg重的样品就行;对于闪长岩、安山岩等中性岩石,通常采集7~10kg;而对辉长岩、玄武岩等偏基性岩石,一般采集40~50kg。
对采集样品进行机械粉碎(以不破坏锆石晶体形态为标准)、淘洗、重力分选或磁选、双目镜下把锆石分选开来。
(二)样品制靶在双目显微镜下挑选锆石颗粒粘到双面胶上,加注环氧树脂,待固化后,将靶内锆石打磨至原尺寸一半大小。
样品靶抛光后在显微镜下拍摄锆石反射光和折射光照片,在等离子质谱实验室拍摄阴极发光(CL)照片。
(三)锆石U-P b测年实验根据锆石CL照片、反射光和折射光照片选择锆石测试位置,利用激光器对锆石进行剥蚀。
每个实验样靶一般粘有6~8个样品,每个样品可以根据情况测试不同数量的样点,而样点多时一般分成几组进行打点。
样点分组时,每组前后都有四个标样,即两个GJ1、一个SRM610/620和一个91500,其中SRM620不能出现在总体样点的首位位置且只出现一次。
考古学中的锆石定年技术

考古学中的锆石定年技术考古学是一门研究人类历史文化遗存的科学,旨在通过对各个历史时期的文物、人类遗址和物质文化遗存等的研究,探讨人类社会的演变和发展。
而锆石定年技术则是考古学中的一种用于确定古代文化遗存时代的重要手段。
下面本文将详细阐述锆石定年技术在考古学中的应用和意义。
一、锆石定年技术的原理及方法锆石定年技术,是利用锆石中的天然放射性元素,通过测量其衰变产物的量来确定其年龄。
具体来说,就是利用锆石中U元素的放射性衰变将U元素变成Pb元素的过程,来确定锆石时间的方法。
锆石定年是基于锆石中存在缺陷位点导致的掺杂和不稳定核素的半衰期测量得到的年代数据。
锆石定年技术主要有两种方法:一种是利用共聚焦激光剥蚀质谱(CLA)扫描锆石,另一种是利用电感耦合等离子体质谱(ICP-MS)扫描锆石。
这两种方法都是利用现代仪器测量锆石中含有的钍、铀、铅等元素的比例,然后通过计算它们的半衰期来确定年龄。
二、锆石定年技术在考古学中的应用锆石定年技术在考古学中有着广泛的应用,可以用于不同类型的文物、石器、土壤等样品的年代测定。
以下是一些常见的应用:1.考古遗址的年代测定考古学家通过在考古遗址中发现的不同文物、器物等,可以了解到不同历史时期的人类生活和社会文化。
而通过利用锆石定年技术,可以精确地确定这些文物和器物的年代,从而有效地推测出考古遗址的实际年代。
2.地层学的年代测定锆石定年技术也可以应用于地层学中,通过采集地质样品进行测量,获得该地质样品所在的地层年代数据。
这对于了解地壳构造、地貌演化以及地震活动等方面都有着重要的意义。
3.古生物学的年代测定古生物学是一门关于古代生物的学科。
利用锆石定年技术,可以测定一些古代动植物化石的年龄,从而确定它们出现和灭绝的历史时期,为了解生物演化提供了有力的支持。
三、锆石定年技术的意义1.精确测定年代与传统的考古学方法相比,锆石定年技术可以更加精准地测定古代文物、地质样品和古生物化石的年代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锆石SHRIMP定年原理和方法
锆石分选采用常规重力分选和显微镜下手工挑选的方法进行,具体是将岩石样品粉碎成60目左右,通过淘洗和使用重液等物理方法分离锆石,然后在双目镜下精选、剔除杂质。
然后将其与标准锆石(TEM,417 Ma)一起粘贴,制成环氧树脂样品靶,打磨抛光并使其露出中心部位,进行反射光透射光和阴极发光显微照相,阴极发光图像用以确定单颗粒锆石晶体的形态、结构特征以及标定测年点。
最后,用超声波在去离子水中清洗约10分钟后,镀金膜并上机测年。
在分析中,采用跳峰扫描记录Zr2O+、204Pb+、背景值、206Pb+、207Pb+、208Pb+、U+、ThO+和UO+等9个离子束峰值,每5次扫描记录一次平均值:一次离子为4.5nA,10kV的O-2,离子束直径约25~30um:质量分辨率约5400(1%峰高):应用SL13(572Ma,U=238×10-6)标定样品的U、Th及Pb含量,用TEM(417Ma)标定样品的年龄。
为了尽量降低锆石表面普通Pb和镀金过程中的污染,测定过程中先将束斑在120um 范围内扫描 5 分钟,具体测试条件及流程见Compston等(1992)、Williams(1998)、宋彪(2002)等。
数据处理采用SQUID1.0和ISOPLOT 程序,普通Pb一般根据实测204Pb及Cumming等(1975)模式铅成分校正:单个测试数据误差和206Pb/238U 年龄的加权平均值误差均为95%置信度误差(1σ),对年轻的岩浆锆石,采用206Pb/238U 年龄;对较老的继承锆石,采用207Pb/206Pb 年龄。
206Pb/238U 年龄的加权平均值,即谐和年龄,用谐和图表示,谐和图是锆石同位素地质年代学最常用的图解,它是以207Pb/235U 和206Pb/238U 为坐标,t为参
数的超越方程(207Pb/235U=t
e*λ-1和206Pb/238U =t eλ-1,其中λ*和λ分别是235U 和238U的衰变常数)的轨迹――谐和线。
在谐和线上的点具有一致年龄,即206Pb/238U、207Pb/235 U、207Pb/206Pb三个表面年龄相等,表明被测对象自形成以来,同位素母体子体一直处于封闭体系中。
本次研究锆石分选工作在河北地勘局廊坊实验室进行,锆石样品在北京离子探针中心完成制靶,阴极发光显微照相在中国地质科学院矿产地质研究所电子探针室完成,最后分批在北京离子探针中心和澳大利亚Curtin University of Technology 离子探针中心完成测试,测试原始数据由北京离子探针中心处理。
标样为来自澳大利亚国立大学(ANU)的SL13和TEM。
SL13(宝石级锆石,U含量为238μg/g,年龄为572 Ma)用于样品U含量标定。
TEM(母岩为澳大利亚堪培拉附近一闪长岩体,年龄为417 Ma)用于样品年龄标定,采用公式为206Pb+/238U+=A (254UO+/238U+)。