6.3 余角、补角、对顶角(1)导学案
6.3余角、补角和对顶角

A.2个B.3个C.4个D.6个
A.20°B.40°C.50°D.60°
A.B.C.D.
A.B.C.D.
2、相交线
(1)相交线的定义
两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).
【练习】
1(2006•河南)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角
C.一定有一个直角D.一定有一个不是钝角
3(2011•柳州)如图,在所标识的角中,互为对顶角的两个角是()
A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2
4(2009•南平)如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则∠1+∠2的度数是()
A.45°B.60°C.90°D.180°。
七年级数学上册 6.3 余角、补角、对顶角导学案(1)(无答案)(新版)苏科版

1.对学: 任务 1:互为余角、互为补角的概念 任务 2:互为余角、互为补角的性质. 2.群学: 任务 3:一个角的补角的余角等于这个角的 三、拓展提升 例 1. 看图回答: (1)图中互余的角是__________与___________。 (2)图中互补的角是_______与_______;______与______。 O 例 2. 已知∠α 与∠β 互为补角,且∠β 比∠α 大 30°,求∠α 、∠β 的 度数. 【反馈练习】 1.完成课本 P161 页练一练。 2. 判断题. (1)一个锐角与一个钝角的和一定大于平角. ( ) (2)一个角一定小于它的余角,也小于它的补角. ( (3)如果两个角互补,则它们的角平分线互相垂直. (
如果两个角的和等于 180°(平角),就说这两 个角互为 个角是另一个角的 。
练习:⑴∵ 1 和 2 互余,∴ 1 2 ___(或 1 ___ 2 ) ∵ 1 和 2 互补 ∴ 1 2 ___(或 1 ___ 2 )
(2)判断:如果 A 40 , B 60 , C 80 , 那么 A, B, C 互为 补角. ( )
余角、补角、对顶角
学习 目标 重点难 点预测 1.在具体情境中了解余角、补角,知道余角、补角之间的数量关系; 2. 会运用互为余角、互为补角的性质来解决问题. 3. 经历观察、操作、说理、交流等过程,进一步说明发展空间观念,学习有条理的表 述. 重点 难点 正确区分余角和补角,并运用余角、补角的性质解决问题. 正确区分余角和补角,并运用余角、补角的性质解决问题. 学生活动过程 一、自主预习(独学) 任务 1:阅读课本 159 页内容。 结论:如果两个角的和等于 90°(直角),就说这两个角互为 个角是另一个角的 。 ,其中一 ,其中一 教师导学过程
6.3余角、补角(1)

7上6.3余角、补角(1)学案班级姓名学号学习目标1.在具体情境中了解余角、补角,知道余角、补角之间的数量关系;2.经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;3.会运用互为余角、互为补角的性质来解决问题.学习难点正确区分余角和补角,并运用余角、补角的性质解决问题教学过程一、情景导入图中∠α和∠β的度数之间有什么特殊关系?请你用一副三角板操作一下!二、数学化认识1、互为余角的概念:如果两个角的和是一个直角,这两个角叫做互为余角.简称互余.其中一个角叫做另一个角的余角.2、互为补角的概念:如果两个角的和是一个平角,这两个角叫做互为补角.简称互补.其中一个角叫做另一个角的补角.三、基础训练1.填表想一想:同一个角的补角与它的余角之间有怎样的数量关系?2.已知3组角:A 组B 组C 组(1)对A 组中的每一个角,在B 组中找出它的补角,并用线连接; (2)B 组中有哪些角的余角在C 组中?分别找出这些角,并用线连接。
3.判断:(1)90°的角叫余角,180°的角叫补角。
( ) (2)如果∠1+ ∠ 2 +∠3=180 ° ,那么∠1、 ∠ 2与∠3互补。
( ) 四、例题讲解例⒈如图,如果∠1与∠ 2互余, ∠1与∠3互余,那么∠2与∠3相等吗?为什么?想一想1.如图,如果∠1与∠ 2互余, ∠ 3 与∠4互余, ∠1 =∠ 3,那么∠2与∠4相等吗?为什么?2.如图,如果∠1与∠ 2互补, ∠ 3与∠4∠1 =∠ 3,那么∠2与∠4相等吗?为什么?∠α的 度数 ∠α的 余角 ∠α的 补角50450120(0<n <90)n 0100550*******1450350800105012501700100150350550115j31结论:余角性质:同角(或等角)的 余角相等。
补角性质:同角(或等角)的补角相等。
例2.如图,直线AB 与CD 相交于点O ,∠2与∠3有怎样的大小关系?为什么?五、当堂反馈 一、判断:(1)如果两个角相等,则它们的补角相等。
七年级上数学第六章 6.3.3 余角和补角优质课教案

6.3.3 余角和补角教学目标课题 6.3.3 余角和补角授课人素养目标1.理解余角、补角的概念.2.探索并掌握同角(等角)的余角相等、同角(等角)的补角相等.3.通过余角和补角的学习过程,进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理.教学重点角的互余、互补关系及其性质.教学难点通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境引入】意大利著名建筑比萨斜塔的塔身与地面、塔身与垂直于地面的方向会形成夹角.图中的∠1和∠2、∠3和∠4分别有怎样的数量关系呢?经测量可知:∠1+∠2=90°,∠3+∠4=180°.学完本节课,你就知道啦!下面我们一起走进本节课的学习.【教学建议】教师不要限制学生的思维,鼓励学生思考解决方案,并敢于表达自我.设计意图为学生创设一种思考的情境,自然而然地导入,为本节课的探究活动做好铺垫.活动二:实践探究,获取新知探究点1余角和补角的概念问题1(1)在一副三角尺中,大家观察一下每个三角尺的度数有什么特点?每个三角尺都有一个角是90°,而其他两个角的和是90°(30°+60°=90°,45°+45°=90°).知识引入:(2)钝角有余角吗?钝角没有余角,只有锐角有余角.问题2 类似地,如果两个角的和等于180°(平角),这两个角有什么数量关系?知识引入:【教学建议】教师提醒学生注意区分互补和互余,前者两角的和是180°,后者两角的和是90°,在对比中记忆.根据余角和补角的概念,我们能够直接得出互余(补)两角之间的数量关系.设计意图从直观的角度去感受互为余(补)角的概念.并用语言去表达这个概念,培养口头表达能力.教学步骤师生活动追问改变问题1,2中∠1与∠2(或∠3与∠4)的位置关系,它们仍然互余(互补)吗?因为∠1+∠2=90°,∠3+∠4=180°,所以∠1和∠2仍互余,∠3和∠4仍互补.例1 (教材P177例4)如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC. 图中哪些角互为余角?分析:互为余角的两个角的和是90°,而已知条件中隐含互为补角的条件,再利用角平分线的条件,便可以发现互为余角的角.解:因为点A,O,B在同一条直线上,所以∠AOC和∠BOC互为补角. 又因为射线OD和射线OE分别平分∠AOC和∠BOC,所以所以∠COD和∠COE互为余角.同理,∠AOD和∠BOE,∠AOD和∠COE , ∠COD和∠BOE也互为余角.【对应训练】教材P177练习第1,2,4题.【教学建议】提醒学生注意:互为补角和互为余角反映的是角的数量关系,而非角的位置关系.教科书在画图时(图6.3-13,图6.3-14)把互为补角或互为余角的角画成互相分离的样子,是为了避免学生误认为互为补角或互为余角的两角一定有公共顶点和公共边(例如学生容易混淆补角和邻补角).设计意图探究点2余角和补角的性质问题1已知∠1与∠2互为余角,∠1与∠3互为余角,那么∠2与∠3的大小有什么关系?请说明理由.因为∠1与∠2互为余角,所以∠2=90°-∠1.因为∠1与∠3互为余角,所以∠3=90°-∠1,所以∠2=∠3.教师归纳:同角(等角)的余角相等.问题2已知∠1与∠2互为补角,∠1与∠3互为补角,那么∠2与∠3的大小有什么关系?请说明理由.因为∠1与∠2互为补角,所以∠2=180°-∠1.因为∠1与∠3互为补角,所以∠3=180°-∠1,所以∠2=∠3.教师归纳:同角(等角)的补角相等.例2如图,如果∠AOB=∠COD=90°,那么∠1与∠2有什么数量关系?为什么?解:∠1=∠2. 理由:因为∠AOB=∠COD=90°,所以∠1+∠BOC=90°,∠2+∠BOC=90°,所以∠1=∠2.【对应训练】如图,点C,O,E在同一条直线上,∠AOB=∠EOD=90°.比较∠1与∠3的大小,并说明理由.解:∠1=∠3. 理由:因为∠DOE=90°,所以∠DOC=180°-∠DOE=90°.因为∠DOC=∠AOB=90°,所以∠DOC-∠2=∠AOB-∠2,所以∠1=∠3. 【教学建议】这里开始要让学生简单说理,要求学生能用数学语言表达思考过程,不要求严格的推理形式.【教学建议】例题和习题是两个补充的说理题,旨在进一步强化学生的说理能力.教师引导学生分析角重叠时的角度关系.通过对两个问题的分析得出关于余角和补角的两个性质,开始让学生简单说理,用数学语言表达自己的思考过程,逐步强化推理能力.教学步骤师生活动活动三:典例精析,巩固提升例3一个角的余角与这个角的3倍互补,求这个角的度数.解:设这个角的度数为x°.根据题意得90-x+3x=180.解得x=45.所以这个角的度数是45°.【对应训练】教材P177练习第3题.【教学建议】教师引导学生厘清相等关系:设计意图综合余角、补角的概念和性质,培养学生用方程思想解题.活动四:随堂训练,课堂总结【随堂训练】“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.余角和补角的概念是什么?2.余角和补角的性质是什么?【知识结构】【作业布置】1.教材P178习题6.3第2(3)(4),4,7,11题.2.相应课时训练.板书设计教学反思本节课在具体的教学过程中坚持“数形结合”,从学生熟悉的知识着手,例如讲解余角和补角的性质时,先以数的形式出现,然后在练习中再强化从图形上形象地理解性质,激发学生的学习兴趣,促成好的学习方法,养成良好的学习习惯.解题大招余角、补角与三角尺的结合以三角尺为背景的角的问题(30°,60°,45°,90°),寻找图形中角之间的和、差关系并结合余角、补角的性质求角的度数或角之间的关系.例如图,把一副三角尺按不同的方式摆放,其中∠α与∠β不相等的是(C)。
2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版

结合余角、补角、对顶角内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的余角、补角、对顶角内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
-及时反馈:教师应及时将作业的批改结果反馈给学生,让学生了解自己的学习效果。对于表现优秀的学生,教师可以给予表扬和奖励,以激发他们的学习动力。对于表现一般或较差的学生,教师应给予鼓励和指导,帮助他们提高学习成绩。
-鼓励学生继续努力:在作业评价中,教师应鼓励学生继续努力,不断提高自己的学习能力。教师可以提供一些学习方法和技巧,帮助学生提高学习效果。同时,教师还可以鼓励学生之间的合作和互助,让他们相互学习,共同进步。
-材料三:《生活中的几何图形》
本材料通过生活中的实例,如建筑设计、艺术作品等,展示了余角、补角、对顶角在实际生活中的应用,增强学生对几何知识实用性的认识。
2.课后自主学习和探究
-探究一:余角和补角在实际图形中的应用
鼓励学生在家中或学校周围寻找含有余角和补角的图形,如窗户的角、墙角等,并进行测量和计算,观察余角和补角的实际效果。
-难点四:解决含有多个余角、补角的复合问题。在复杂问题中,学生需要能够理清角度之间的关系,正确求解。
举例:设计一些综合性的问题,如一个多边形内多个角的余角和补角的计算,训练学生综合运用所学知识。
教学方法与手段
1.教学方法
-方法一:讲授法。对于余角、补角、对顶角的基本概念和性质,采用讲授法进行教学。通过生动的语言、具体的例子,引导学生理解和掌握这些基本知识。
初中数学(苏科版)七年级-6.3 余角、补角、对顶角_教学设计_教案_1(课件免费下载)

教学准备1. 教学目标1、通过现实情境,掌握余角和补角的概念;2、使学生能用简单的代数思想——方程思想来处理图形的数量关系;3、培养学生的识图能力、发展空间观念和知识运用能力,进一步感受学习数学的意义.2. 教学重点/难点教学重点:认识角的互余、互补关系.教学难点:方程思想来处理图形的数量关系.3. 教学用具课件4. 标签余角、补角、对顶角教学过程一.创设情境,引入新课.让学生观察意大利著名建筑比萨斜塔.比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.二.探究新知.1.探究互为余角的定义:教师活动:讲解.学生活动:观察图形,得出结果:∠1+∠2=90°.定义:如果两个角的和等于90°(直角),就说这两个角互为余角.简称互余.其中一个角是另一个角的余角.2.探究互为补角的定义:教师活动:讲解.学生活动:观察图形,得出结果:∠3+∠4=180°.定义:如果两个角的和等于180°(平角),就说这两个角互为补角.简称互补.其中一个角是另一个角的补角.3.问题1.找朋友(朋友的条件:互余或互补).问题2.判断对错.小结1:互为余角、互为补角主要反映两个角之间的数量关系,与角的位置无关.4.练习1.填表并思考问题:∠1 ∠1的余角∠1的补角24°130°n°问题:①任何角都有余角吗?任何角都有补角吗?②一个锐角的补角与其余角之间有什么关系?小结2:1、锐角有余角,直角、钝角没有余角;锐角、直角、钝角都有补角.2、一个锐角的补角比它的余角大90°.练习:(1)70°的余角是,补角是.(2)∠a(∠a<90°)的余角是,它的补角是.教师提醒:(如何表示一个角的余角和补角)锐角∠a的余角是(90°—∠a).∠a的补角是(180°—∠a).三.例题讲解.例1点A、O、B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC.图中哪些角互为余角?解:∵射线OD平分∠AOC,射线OE平分∠BOC,∠AOC=140°,∴∠COD= ∠AOC=70°,∠COE= ∠BOC= (180°-∠AOC)=20°,∴∠DOE=∠COD+∠COE=90°.所以,∠COD和∠COE互为余角.同理,∠AOD和∠BOE,角AOD和∠COE,角COD和∠BOE也互为余角.例2如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB的方向就是北偏东40°,即客轮B所在的方向.请同学们自己动手画出表示货轮C和海岛D方向的射线.教师讲解.四.巩固练习.1、已知一个角的补角是这个角的余角的4倍,求这个角的度数.2、已知一个角的余角比它的补角的还少20°,求这个角的度数.(视时间情况)五.小结.本节课我们学习了哪些知识?这节课你有哪些收获?课堂小结学了这节课,你有什么收获?课后习题完成课后练习题。
初中数学63余角、补角、对顶角

初中数学63余角、补角、对顶角6.3《余角、补角、对顶角》学讲预案一、自主先学活动一:(走进课本)1.互为余角的概念:如果,这两个角叫做互为余角.简称互余.其中一个角叫做另一个角的余角.2.互为补角的概念:如果,这两个角叫做互为补角.简称互补.其中一个角叫做另一个角的补角.3.已知3组角:A 组 B组 C组(1)对A组中的每一个角,在B组中找出它的补角,并用线连接;(2)B组中有哪些角的余角在C组中?分别找出这些角,并用线连接.活动二:(走进课本)如图,如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?想一想1.如图,如果∠1与∠ 2互余,∠3与∠4互余,∠1 =∠3,那么∠2与∠4相等吗?为什么?2.如图,如果∠1与∠2互补,∠ 3与∠4互补,∠1 =∠ 3,那么∠2与∠4相等吗?为什么?结论:余角性质:.补角性质:.活动三:如图,∠AOB= ∠COD=90 °,则∠BOC 与∠AOD 有怎样的大小关系?为什么活动四:如图,∠AOC 和∠BOD 都是直角,如果∠AOB=140◦求∠DOC 的度数. 二、 合作助学1.一个角的补角的余角等于这个角的,求这个角的度数.三、 拓展导学2.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角() 、等于、小于、小于或等于、大于或等于四、 检测促学3.1.25度 = ________分; 123°角的补角是_________°.4.已知一个角的余角等于 ,则它的补角等于_____________。5.若,则的余角为_____度,的补角为_____度.五、反思悟学6.如图,AOB 为一条直线,∠1+∠2=90 º,∠COD 是直角(1)请写出图中相等的角,并说明理由; (2)请分别写出图中互余的角和互补的角. DCA BE O 1 2。
数学七年级上册《余角和补角(1)》导学案

数学七年级上册《余角和补角(1)》导学案设计人: 审核人:【学习目标】1、能举例说出一个角的余角和补角。
2、学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用, 能在独立思考和小组交流中获益。
【学习重点】角的互余、互补关系。
【学习难点】通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质【学习方法】学习简单演绎推理方法自学认真阅读课本P137 页内容,完成下列问题。
1、(1)在一副三角板中同一块三角板的两个锐角和等于多少度?(2)如图①,已知∠1=61°,∠2=29°,那么∠1+∠2=?(3)如 图 ②,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2=?互为余角的定义:点拨:在一幅三角板中,除了一个900,我们都有300+600=900,而450+450=900。
因此我们规定如果两个有的和等于900(直角),我们就说这两个角互为余角,即其中一个角是另一个角的余角.如:300、600是互为余角(简称互余),300是600的余角,600也是300的余角2、(1)如图③,已知∠1=62°,∠2=118°,那么 ∠1+∠2=?(2)如图④,A 、O 、B 在同一直线上,∠1+∠2=?2 图 ① 90° 1 2 图 ② 1 2 A O B 图 41 2 图 3 C O D互为补角的定义:点拨:如果两个角的和等于1800(平角),就说这两个角互为补角(简称互补),其中的一个角是另一个角的补角.友情提示:互为补角和互为余角的角主要反映角的数量关系,而不是角的位置关系。
3.完成课本P138-139练习4.我的疑惑是:研学1.讨论解决组长整理的问题。
2.能力提升 一个角的余角比它的补角的31还少 20,求这个角的度数。
提示:可运用方程知识求解 示学展示任务:课后练习题和研学第2题展示方法:C 层展示解题过程,B 层标注重点,指出易错点,A 层提炼方法,总结规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 余角、补角、对顶角(1)学案
一、创设问题情境 三角板演示
找出α与β之间的关系
归纳新知:如果 互为余角,简称 ,其中一个叫做
另一个角的 。
如果 互为补角,简称 ,其中一个叫做 另一个角的 。
二、做一做 1
想一想:同一角的补角与它的余角之间有怎样的数量关系? 2.已知3组角
A 组
B 组
C 组
⑴对A 组中的每一个角,在B 组中找出它的补角,并用线连接; ⑵B 组中有哪些角的余角在C 组中?分别找出这些角,并用线连接。
三、想一想:
如果∠1与∠2互余,∠1与∠3互
余,
那么∠2与∠3相等吗?为什么?
如果你将上述题中的互余换成互补,如何?(同学相互交流)
总结:。
试一试:若一个角的余角比它的补角的31
还小20°,求这个角。
练一练:
1.如果∠1=∠
2,∠
2=∠3,那么∠1 ∠3;
如果∠1>∠2,∠2>∠3,那么∠1 ∠3
1
2 3
2.如图,∠A+∠B=90°,∠BCD+∠B=90°, ∠A 与∠BCD 有怎样的大小关系?为什么?
四、小结
五、当堂训练: 1.判断:
⑴两个互补的角中必有一个是钝角 ( ) ⑵一个角的补角一定比这个角大 ( ) ⑶互补的两个角中,至少有一个角大于或等于直角 ( ) ⑷两个互余的角都是锐角 ( ) 2.一个角为50°17′,则它的余角为 ;补角为 。
3.锐角α的余角比它的补角( )
A .大90°
B .小90°
C .大α
D .小α
4.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角( )
A .等于45°
B .小于45°
C .小于等于45°
D .大于或等于45°
5.一个角的补角的余角等于这个角的5
2
,求这个角的度数。
6.如图AB 、CD 相交于O ,OB 平分∠DOE ,
若∠DOE 等于60°,求∠AOC 的度数。
A O D
B
E C。