高考文科数学练习题解析等比数列及其前n项和
(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。
2024届新高考数学复习:专项(等比数列及其前n项和)历年好题练习(附答案)

2024届新高考数学复习:专项(等比数列及其前n 项和)历年好题练习[基础巩固]一、选择题1.等比数列{a n }的前n 项和为S n ,公比为q ,若S 6=9S 3,S 5=62,则a 1=( ) A .2 B .2 C .5 D .32.已知等比数列{a n }满足a 1=18 ,4a 2a 4=4a 3-1,则a 2=( )A .±14B .14C .±116 D .1163.等比数列{a n }中,若a n >0,a 2a 4=1,a 1+a 2+a 3=7,则公比q =( )A .14B .12C .2D .44.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( ) A .7 B .8 C .15 D .165.设{a n }是公比为q >1的等比数列,若a 2 010和a 2 011是方程4x 2-8x +3=0的两根,则a 2 012+a 2 013=( )A .18B .10C .25D .96.已知等比数列{a n }的前n 项积为T n ,若a 1=-24,a 4=-89 ,则当T n 取得最大值时,n 的值为( )A .2B .3C .4D .6 7.[2022ꞏ全国乙卷(理),8]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6 D. 38.[2023ꞏ新课标Ⅱ卷]记S n 为等比数列{a n }的前n 项和,若S 4=-5,S 6=21S 2,则S 8=( )A .120B .85C .-85D .-1209.(多选)已知等比数列{a n }的公比为q ,前n 项和为S n ,且满足a 6=8a 3,则下列说法正确的是( )A .{a n }为单调递增数列B .S 6S 3=9C .S 3,S 6,S 9成等比数列D .S n =2a n -a 1二、填空题10.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74 ,S 6=634 ,则a 8=________.11.[2023ꞏ全国乙卷(理)]已知{}a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=________.12.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.[强化练习]13.[2023ꞏ全国甲卷(理)]设等比数列{a n }的各项均为正数,前n 项和为S n ,若a 1=1,S 5=5S 3-4,则S 4=( )A .158 B .658 C .15 D .4014.设首项为1,公比为23 的等比数列{a n }的前n 项和为S n ,则( ) A .S n =2a n -1 B .S n =3a n -2 C .S n =4-3a n D .S n =3-2a n15.记S n 为等比数列{a n }的前n 项和.若a 1=13 ,a 24 =a 6,则S 5=________.16.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.参考答案1.B由题意可得⎩⎪⎨⎪⎧a 1(1-q 6)1-q =9×a 1(1-q 3)1-q,a 1(1-q 5)1-q =62,即⎩⎪⎨⎪⎧q 3=8,a 1(1-q 5)1-q=62, 得⎩⎪⎨⎪⎧q =2,a 1=2,选B. 2.A 因为4a 2a 4=4a 3-1,所以4a 21 q 4=4a 1q 2-1,又a 1=18 ,解得q =±2,所以a 2=a 1ꞏq =18 ×(±2)=±14 .故选A.3.B 由等比数列的性质得a 23 =a 2a 4=1,结合a n >0,得a 3=1.由a 1+a 2+a 3=7,得a 3q 2 +a 3q +a 3=7,则1q 2 +1q =6,结合q >0,得q =12 ,故选B.4.C ∵4a 1,2a 2,a 3成等差数列,∴4a 2=4a 1+a 3.又{a n }为等比数列,∴4q =4+q 2,∴q =2.又a 1=1,∴S 4=a 1(1-q 4)1-q=1-241-2 =15. 5.A 由题意可得:a 2010=12 ,a 2011=32 ,又{a n }为等比数列,∴q =3.∴a 2012+a 2013=92 +272 =18.6.C 设等比数列{a n }的公比为q ,则a 4=-24q 3=-89 ,q 3=127 ,q =13 ,此等比数列各项均为负数,当n 为奇数时,T n 为负数,当n 为偶数时,T n 为正数,所以T n 取得最大值时,n 为偶数,排除B ,而T 2=(-24)2×⎝⎛13 =24×8=192,T 4=(-24)4×⎝⎛⎭⎫13 6=84×19 =849 >192,T 6=(-24)6×⎝⎛⎭⎫13 15 =86×⎝⎛⎭⎫13 9=8639 =19 ×8637 <849 ,T 4最大,故选C.7.D 设等比数列{a n}的公比为q .由题意知,⎩⎪⎨⎪⎧a 2q +a 2+a 2q =168,a 2-a 2q 3=42.两式相除,得1+q +q 2q (1-q 3)=4,解得q =12 .代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D. 8.C 方法一 设等比数列{a n }的公比为q (q ≠0),由题意易知q ≠1,则⎩⎪⎨⎪⎧a 1(1-q 4)1-q =-5a 1(1-q 6)1-q =21×a 1(1-q 2)1-q ,化简整理得⎩⎪⎨⎪⎧q 2=4a 11-q =13 .所以S 8=a 1(1-q 8)1-q =13 ×(1-44)=-85.故选C.方法二 易知S 2,S 4-S 2,S 6-S 4,S 8-S 6,……为等比数列,所以(S 4-S 2)2=S 2ꞏ(S 6-S 4),解得S 2=-1或S 2=54 .当S 2=-1时,由(S 6-S 4)2=(S 4-S 2)ꞏ(S 8-S 6),解得S 8=-85;当S 2=54 时,结合S 4=-5得⎩⎪⎨⎪⎧a 1(1-q 4)1-q=-5a 1(1-q 2)1-q=54,化简可得q 2=-5,不成立,舍去.所以S 8=-85,故选C.9.BD 由a 6=8a 3,可得q 3a 3=8a 3,则q =2,当首项a 1<0时,可得{a n }为单调递减数列,故A 错误;由S 6S 3=1-261-23 =9,故B 正确; 假设S 3,S 6,S 9成等比数列,可得S 26 =S 3S 9, 即(1-26)2=(1-23)(1-29),显然不成立, 所以S 3,S 6,S 9不成等比数列,故C 错误;由{a n }是公比q 的等比数列,可得S n =a 1-a n q 1-q=2a n -a 12-1 =2a n -a 1,故D 正确. 10.32答案解析:设{a n }的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=14 ×27=25=32. 11.-2 答案解析:方法一 设数列{a n }的公比为q ,则由a 2a 4a 5=a 3a 6,得a 1q ꞏa 1q 3ꞏa 1q 4=a 1q 2ꞏa 1q 5.又a 1≠0,且q ≠0,所以可得a 1q =1 ①.又a 9a 10=a 1q 8ꞏa 1q 9=a 21 q 17=-8 ②,所以由①②可得q 15=-8,q 5=-2,所以a 7=a 1q 6=a 1q ꞏq 5=-2.方法二 设数列{a n }的公比为q .因为a 4a 5=a 3a 6≠0,所以a 2=1.又a 9a 10=a 2q 7ꞏa 2q 8=q 15=-8,于是q 5=-2,所以a 7=a 2q 5=-2.12.-8答案解析:由{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ② 显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.13.C 方法一 若该数列的公比q =1,代入S 5=5S 3-4中,有5=5×3-4,不成立,所以q ≠1.由1-q 51-q =5×1-q 31-q-4,化简得q 4-5q 2+4=0,所以q 2=1(舍)或q 2=4,由于此数列各项均为正数,所以q =2,所以S 4=1-q 41-q=15.故选C.方法二 由已知得1+q +q 2+q 3+q 4=5(1+q +q 2)-4,整理得(1+q )(q 3-4q )=0,由于此数列各项均为正数,所以q =2,所以S 4=1+q +q 2+q 3=1+2+4+8=15.故选C.14.D ∵a 1=1,q =23 ,∴S n =a 1(1-q n )1-q=3⎣⎡⎦⎤1-⎝⎛⎭⎫23n =3-2ꞏ⎝⎛⎭⎫23 n -1 =3-2a n .15.1213答案解析:通解:设等比数列{a n }的公比为q ,因为a 24 =a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13 ,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3 =1213 .优解:设等比数列{a n }的公比为q ,因为a 24 =a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13 ,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3 =1213 .16.64答案解析:设等比数列{a n }的公比为q , ∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5, 即⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5, 解得⎩⎪⎨⎪⎧a 1=8,q =12, ∴a 1a 2…a n =⎝⎛⎭⎫12 (-3)+(-2)+…+(n -4)=⎝⎛⎭⎫12 12n (n -7)=⎝⎛⎭⎫1212⎣⎡⎦⎤()n -722-494 , 当n =3或4时,12 ⎣⎡⎦⎤⎝⎛⎭⎫n -722-494 取到最小值-6,此时⎝⎛⎭⎫12 12⎣⎡⎦⎤()n -722-494 取到最大值26,所以a 1a 2…a n 的最大值为64.。
等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法・例题解析【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中最大的一项为54,又它的前2n项和为6560,求a和q.解:由S n=80,S2n=6560,故q≠1∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an.∴a n=aq n-1=54④将③代入①化简得a=q-1 ⑤由⑤,⑥联立方程组解得a=2,q=3证∵Sn=a1+a1q+a1q2+...+a1q n-1S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n)类似地,可得S3n=S n(1+q n+q2n)说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧.【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数.分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q.解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1.即公比为2,项数为8.说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.【例3】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}.[ ]A.是等比数列B.当p≠0时是等比数列C.当p≠0,p≠1时是等比数列D.不是等比数列分析:由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时,a n=S n-S n-1=p n-p n-1=(p-1)p n-1但满足此条件的实数p是不存在的,故本题应选D.【例4】已知等比数列1,x1,x2,...,x2n,2,求x1・x2・x3*...・x2n.解∵1,x1,x2,...,x2n,2成等比数列,公比q∴2=1・q2n+1x1x2x3...x2n=q・q2・q3...q2n=q1+2+3+ (2)式;(2)已知a3・a4・a5=8,求a2a3a4a5a6的值.∴a4=2【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.证法一∵a、b、c、d成等比数列∴b2=ac,c2=bd,ad=bc∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)=a2-2ad+d2=(a-d)2=右边证毕.证法二∵a、b、c、d成等比数列,设其公比为q,则:b=aq,c=aq2,d=aq3∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2=a2-2a2q3+a2q6=(a-aq3)2=(a-d)2=右边证毕.说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d 统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】求数列的通项公式:(1){an}中,a1=2,a n+1=3a n+2(2){an}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0思路:转化为等比数列.∴{a n+1}是等比数列∴a n+1=3・3n-1 ∴a n=3n-1∴{a n+1-a n}是等比数列,即a n+1-a n=(a2-a1)・2n-1=3・2n-1再注意到a2-a1=3,a3-a2=3・21,a4-a3=3・22,...,a n-a n-1=3・2n-2,这些等式相加,即可以得到说明解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n+1}是等比数列,(2)中发现{a n+1-a n}是等比数列,这也是通常说的化归思想的一种体现.证∵a1、a2、a3、a4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a1、a2、a3为实数因而a1、a2、a3成等比数列∴a4即为等比数列a1、a2、a3的公比.。
2020版高考数学一轮复习 第5章 数列 第3讲 等比数列及其前n项和讲义 理(含解析)

(2018·全国卷Ⅰ)已知数列{an}满足 a1=1,nan+1=2(n+1)an,设 bn= ann.
(1)求 b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. 解 (1)由条件可得 an+1=错误!an。 将 n=1 代入,得 a2=4a1,而 a1=1,所以 a2=4。 将 n=2 代入,得 a3=3a2,所以 a3=12. 从而 b1=1,b2=2,b3=4。 (2){bn}是首项为 1,公比为 2 的等比数列.由题设条件可得na+n+11 = 错误!,即 bn+1=2bn,又 b1=1,所以{bn}是首项为 1,公比为 2 的等比数 列. (3)由(2)可得错误!=2n-1,所以 an=n·2n-1. 条件探究 1 将举例说明条件改为“a1=1,a2,n-(2an+1-1)an-2an+1 =0,且 an>0",求{an}的通项公式.
答案 6
解析 因为 a1=2,an+1=2an,所以 an≠0,故aan+n 1=2.
所以数列{an}是公比为 2 的等比数列,因为 Sn=126,所以错误!=126, 所以 2n=64,故 n=6.
题型 错误! 等比数列基本量的运算
1.已知等比数列{an}满足 a1+a2=6,a4+a5=48,则数列{an}前 8 项的 和 S8=( )
第 3 讲 等比数列及其前 n 项和
[考纲解读] 1。理解等比数列的概念及等比数列与指数函数的关系. 2。掌握等比数列的通项公式与前 n 项和公式,并熟练掌握其推导方法,能 在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决 相应的问题.(重点) 3。熟练掌握等比数列的基本运算和相关性质.(难点)
新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。
高中数学《等比数列的前n项和公式第一课时》专题突破含解析

4.3.2 等比数列的前n 项和公式 第一课时 等比数列的前n 项和公式课标要求素养要求1.探索并掌握等比数列的前n 项和公式.2.理解等比数列的通项公式与前n 项和公式的关系.在探索等比数列的前n 项和公式的过程中,发展学生的数学运算和逻辑推理素养.新知探究在信息技术高度发展的今天,人们可以借助手机、计算机等快速地传递有关信息.在此背景下,要求每一个人都要“不造谣,不信谣,不传谣”,否则要依法承担有关法律责任.你知道这其中的缘由吗?如图所示,如果一个人得到某个信息之后,就将这个信息传给3个不同的好友(称为第1轮传播),每个好友收到信息后,又都传给了3个不同的好友(称为第2轮传播)……,依此下去,假设信息在传播的过程中都是传给不同的人,则每一轮传播后,信息传播的人数就构成了一个等比数列问题 如果信息按照上述方式共传播了20轮,那么知晓这个信息的人数共有多少?提示 1+3+9+…+320=1-3211-3=12(321-1).1.等比数列的前n 项和公式应用公式求和,首先要判断公比是否为1,再选择公式已知量 首项、公比和项数 首项、末项和公比公式S n =⎩⎨⎧na 1,q =1a 1(1-q n )1-q ,q ≠1S n =⎩⎨⎧na 1,q =1a 1-a n q 1-q ,q ≠12.当公比q ≠1时,设A =a 1q -1,等比数列的前n 项和公式是S n =A (q n -1).即S n 是n 的指数型函数.当公比q =1时,因为a 1≠0,所以S n =na 1,S n 是n 的正比例函数. 3.错位相减法(1)推导等比数列前n 项和的方法叫错位相减法;(2)该方法一般适用于求一个等差数列与一个等比数列对应项积的前n 项和,即若{b n }是公差d ≠0的等差数列,{c n }是公比q ≠1的等比数列,求数列{b n ·c n }的前n 项和S n 时,可以用这种方法.拓展深化[微判断]1.求等比数列的前n 项和可以直接套用公式S n =a 1(1-q n )1-q .(×)提示 当q =1时,S n =na 1.2.等比数列的前n 项和不可以为0.(×)提示 可以为0,比如1,-1,1,-1,1,-1的和.3.数列{a n }的前n 项和为S n =a n +b (a ≠0,a ≠1),则数列{a n }一定是等比数列.(×) 提示 由于等比数列的前n 项和为S n =a 1(1-q n )1-q =a 11-q -a 11-q q n.可以发现b =-1时,数列{a n }才为等比数列.4.求数列{n ·2n }的前n 项和可用错位相减法.(√)[微训练]1.在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和S 10=( ) A.2-128 B.2-129 C.2-1210D.2-1211解析 易知公比q =12,则S 10=1-12101-12=2-129. 答案 B2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则公比q =( ) A.1或-1 B.1 C.-1D.12解析 由S 3+S 6=S 9得S 3=S 9-S 6,即a 1+a 2+a 3=a 7+a 8+a 9=q 6(a 1+a 2+a 3),则q 6=1,q =±1. 答案 A [微思考]1.若等比数列{a n }的公比q 不为1,其前n 项和为S n =Aq n +B ,则A 与B 有什么关系? 提示 A =-B .2.等比数列{a n }的前n 项和公式中涉及a 1,a n ,n ,S n ,q 五个量,已知几个量方可以求其它量? 提示 三个.题型一 等比数列前n 项和公式的直接应用 【例1】 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12, 所以S 8=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1281-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8. 又由q <0,可得q =-13,所以S 8=a 1-a 8q 1-q =a 1-a 91-q =27-12431-⎝ ⎛⎭⎪⎫-13=1 64081. 规律方法 求等比数列的前n 项和,要确定首项,公比或首项、末项、公比,应注意公比q =1是否成立.【训练1】 (1)求数列{(-1)n +2}的前100项的和;(2)在14与78之间插入n 个数,组成所有项的和为778的等比数列,求此数列的项数. 解 (1)法一 a 1=(-1)3=-1,q =-1. ∴S 100=-1[1-(-1)100]1-(-1)=0.法二 数列{(-1)n +2}为-1,1,-1,1,…, ∴S 100=50×(-1+1)=0.(2)设此数列的公比为q (易知q ≠1),则⎩⎪⎨⎪⎧78=14q n +1,778=14-78q 1-q,解得⎩⎪⎨⎪⎧q =-12,n =3,故此数列共有5项. 题型二 等比数列前n 项和公式的综合应用【例2】 已知一个等比数列{a n },a 1+a 3=10,a 4+a 6=54,求a 4和S 5. 解 设等比数列的公比为q ,则⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q 3+a 1q 5=54,即⎩⎪⎨⎪⎧a 1(1+q 2)=10, ①a 1q 3(1+q 2)=54. ② ∵a 1≠0,1+q 2≠0,②÷①得q 3=18, ∴q =12,∴a 1=8,∴a 4=8×⎝ ⎛⎭⎪⎫123=1,∴S 5=8×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=312.【迁移1】 设数列{a n }是等比数列,其前n 项和为S n ,且S 3=3a 3,求此数列的公比q .解 当q =1时,S 3=3a 1=3a 3,符合题目条件. 当q ≠1时,a 1(1-q 3)1-q=3a 1q 2.因为a 1≠0,所以1+q +q 2=3q 2,2q 2-q -1=0, 解得q =-12.所以此数列的公比q =1或-12.【迁移2】 在等比数列{a n }中,S 2=30,S 3=155,求S n . 解 若q =1,则S 3∶S 2=3∶2, 而事实上,S 3∶S 2=31∶6,故q ≠1.所以⎩⎪⎨⎪⎧a 1(1-q 2)1-q =30, ①a 1(1-q 3)1-q =155, ②两式作比,得1+q 1+q +q 2=631,解得⎩⎨⎧a 1=5,q =5或⎩⎪⎨⎪⎧a 1=180,q =-56,从而S n =5(1-5n )1-5=54(5n-1)或S n =180⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-56n 1-⎝ ⎛⎭⎪⎫-56=1 080⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-56n 11.规律方法 等比数列前n 项和公式的运算(1)应用等比数列的前n 项和公式时,首先要对公比q =1或q ≠1进行判断,若两种情况都有可能,则要分类讨论.(2)当q =1时,等比数列是常数列,所以S n =na 1;当q ≠1时,等比数列的前n 项和S n 有两个公式.当已知a 1,q 与n 时,用S n =a 1(1-q n )1-q 比较方便;当已知a 1,q 与a n 时,用S n =a 1-a n q1-q比较方便.【训练2】 (1)等比数列{a n }的前n 项和为S n ,公比q ≠1.若a 1=1,且对任意的n ∈N *都有a n +2+a n +1=2a n ,则S 5=( ) A.12 B.20 C.11D.21(2)已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( ) A.-2 B.2 C.-3D.3解析 (1)a n +2+a n +1=2a n 等价于a n q 2+a n q =2a n . 因a n ≠0,故q 2+q -2=0,即(q +2)(q -1)=0.因为q ≠1,所以q =-2,故S 5=1×[1-(-2)5]1-(-2)=11,故选C.(2)设数列{a n }的公比为q ,若q =1,则S 2mS m=2,与题中条件矛盾,故q ≠1. ∵S 2mS m=a 1(1-q 2m )1-q a 1(1-q m)1-q=q m +1=9,∴q m =8. ∵a 2m a m=a 1q 2m -1a 1q m -1=q m=8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.答案 (1)C (2)B题型三 等比数列前n 项和公式的函数特征应用【例3】 数列{a n }的前n 项和S n =3n -2.求{a n }的通项公式,并判断{a n }是否是等比数列.解 当n ≥2时,a n =S n -S n -1=(3n -2)-(3n -1-2)=2·3n -1. 当n =1时,a 1=S 1=31-2=1不适合上式. ∴a n =⎩⎨⎧1,n =1,2×3n -1,n ≥2. 法一 由于a 1=1,a 2=6,a 3=18,显然a 1,a 2,a 3,不是等比数列, 即{a n }不是等比数列.法二 由等比数列{b n }的公比q ≠1时的前n 项和S n =A ·q n +B 满足的条件为A =-B ,对比可知S n =3n -2,-2≠-1,故{a n }不是等比数列.规律方法 已知S n ,通过a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2求通项a n ,应特别注意n ≥2时,a n =S n -S n -1.(2)若数列{a n }的前n 项和S n =A (q n -1),其中A ≠0,q ≠0且q ≠1,则{a n }是等比数列.【训练3】 若{a n }是等比数列,且前n 项和为S n =3n -1+t ,则t =________. 解析 显然q ≠1,此时应有S n =A (q n -1), 又S n =13×3n +t ,∴t =-13. 答案 -13题型四 利用错位相减法求数列的前n 项和【例4】 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 当x =1时,S n =1+2+3+…+n =n (n +1)2;当x ≠1时,S n =x +2x 2+3x 3+…+nx n ,xS n =x 2+2x 3+3x 4+…(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1,∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得,S n =⎩⎪⎨⎪⎧n (n +1)2,x =1,x (1-x n )(1-x )2-nx n +11-x ,x ≠1且x ≠0.规律方法 一般地,如果数列{a n }是等差数列,{b n }是公比不为1的等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法. 【训练4】求数列⎩⎨⎧⎭⎬⎫n 2n 的前n 项和.解 设S n =12+222+323+…+n2n , 则有12S n =122+223+…+n -12n +n2n +1,两式相减,得S n -12S n =12+122+123+…+12n -n2n +1,即12S n =12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n-n2n +1. ∴S n =2-12n -1-n2n =2-n +22n (n ∈N *).一、素养落地1.通过学习等比数列前n 项和公式及其应用,提升数学运算和逻辑推理素养.2.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.3.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即当q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.二、素养训练1.数列1,5,52,53,54,…的前10项和为( ) A.15()510-1 B.14()510-1 C.14()59-1D.14()511-1解析 S 10=1-5101-5=14(510-1).答案 B2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A.2B.4C.152D.172解析 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152.答案 C3.等比数列{a n }中,a 3=8,a 6=64,则{a n }的前5项的和是________.解析 ∵q 3=a 6a 3=8,∴q =2,从而a 1=2.∴S 5=2(1-25)1-2=62.答案 624.已知等比数列{a n }中,a 1=2,q =2,前n 项和S n =126,则n =________. 解析 S n =2(1-2n )1-2=126,即2n +1=128,故n +1=7,n =6.答案 65.在等比数列{a n }中,a 1=2,S 3=6,求a 3和q . 解 由题意,得若q =1, 则S 3=3a 1=6,符合题意. 此时,q =1,a 3=a 1=2.若q ≠1,则由等比数列的前n 项和公式, 得S 3=a 1(1-q 3)1-q =2(1-q 3)1-q=6,解得q =-2.此时,a 3=a 1q 2=2×(-2)2=8.综上所述,q =1,a 3=2或q =-2,a 3=8.基础达标一、选择题1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.答案 D2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A.33 B.72 C.84D.189解析 由S 3=a 1(1+q +q 2)=21且a 1=3, 得q 2+q -6=0.∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=q 2·S 3=22×21=84. 答案 C3.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( ) A.2n -1 B.4n -13 C.1-(-4)n3D.1-(-2)n 3解析 由a 1a 2a 3=1得a 2=1,又a 4=4,故q 2=4,a 2+a 4+a 6+…+a 2n =1-4n1-4=4n -13. 答案 B4.已知等比数列{a n }的前n 项和为S n ,a 4-a 1=78,S 3=39,设b n =log 3a n ,那么数列{b n }的前10项和为( )A.log 371B.692C.50D.55解析 由a 4-a 1=78得a 1(q 3-1)=78,又S 3=a 1(1+q +q 2)=39,解得a 1=q =3,故a n =3n ,b n =n ,所以数列{b n }的前10项和为55.答案 D5.已知{a n }是首项为1的等比数列,S n 是其前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和等于( )A.158或5 B.3116或5 C.3116 D.158解析 设数列{a n }的公比为q ,显然q ≠1,由已知得9(1-q 3)1-q =1-q 61-q,解得q =2,∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,前5项和为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案 C二、填空题6.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 由题意设数列{a n }的首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 327.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.解析 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0.∵a n >0,∴a n +1=3a n .又a 1=2,∴{a n }是首项为2,公比为3的等比数列,∴S n =2(1-3n )1-3=3n -1. 答案 3n -18.若等比数列{a n }的前n 项和为S n =m ·4n -1+t (其中m ,t 是常数),则m t =________.解析 法一 a 1=S 1=m +t ,a 2=S 2-S 1=3m ,a 3=S 3-S 2=12m ,则a 22=a 1a 3,所以9m 2=12m (m +t ),即m =-4t ,故m t =-4.法二 S n =m ·4n -1+t =14m ·4n +t ,因为{a n }是等比数列,故14m =-t ,则m t =-4.答案 -4三、解答题9.在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.解 设数列{a n }的公比为q (q ≠0).由已知可得⎩⎨⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2, 所以⎩⎨⎧a 1(q -1)=2, ①q 2-4q +3=0, ② 解②得q =3或q =1.由于a 1(q -1)=2,因此q =1不合题意,应舍去.故公比q =3,首项a 1=1.所以数列{a n }的前n 项和S n =a 1(1-q n )1-q =1×(1-3n )1-3=3n -12(n ∈N *). 10.已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5.(1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n .解 (1)数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,∴S n n =a 1+n -1,可得S n =n (a 1+n -1),∴a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5.解得a 1=1.∴S n =n 2.∴n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1(n =1时也成立).∴a n =2n -1.(2)b n =a n ·3n =(2n -1)·3n ,∴数列{b n }的前n 项和T n =3+3×32+5×33+…+(2n -1)×3n ,∴3T n =32+3×33+…+(2n -3)×3n +(2n -1)×3n +1,∴-2T n =3+2×(32+33+…+3n )-(2n -1)×3n +1=3+2×9(3n -1-1)3-1-(2n -1)×3n +1,可得T n =3+(n -1)×3n +1.能力提升11.数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =________.解析 a n -a n -1=a 1q n -1=2n -1, 即⎩⎨⎧a 2-a 1=2,a 3-a 2=22,…a n -a n -1=2n -1.各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1(n ∈N *).答案 2n -112.已知数列{a n }的前n 项和为S n ,a 1=t ,点(S n ,a n +1)在直线y =3x +1上.(1)当实数t 为何值时,数列{a n }是等比数列?(2)在(1)的结论下,设b n =log 4a n +1,c n =a n +b n ,T n 是数列{c n }的前n 项和,求T n . 解 (1)因为点(S n ,a n +1)在直线y =3x +1上, 所以a n +1=3S n +1,当n ≥2时,a n =3S n -1+1.于是a n +1-a n =3(S n -S n -1)⇒a n +1-a n =3a n ⇒a n +1=4a n . 又当n =1时,a 2=3S 1+1⇒a 2=3a 1+1=3t +1, 所以当t =1时,a 2=4a 1,此时,数列{a n }是等比数列.(2)由(1),可得a n =4n -1,a n +1=4n , 所以b n =log 4a n +1=n ,c n =4n -1+n ,那么T n =c 1+c 2+…+c n=(40+1)+(41+2)+…+(4n -1+n )=(40+41+…+4n -1)+(1+2+…+n ) =4n -13+n (n +1)2.创新猜想13.(多选题)已知等比数列{a n }的前n 项和是S n ,则下列说法一定成立的是() A.若a 3>0,则a 2 021>0B.若a 4>0,则a 2 020>0C.若a 3>0,则S 2 021>0D.若a 3>0,则S 2 021<0解析 设数列{a n }的公比为q ,当a 3>0时,a 2 021=a 3q 2 018>0,A 正确; 当a 4>0时,a 2 020=a 4·q 2 016>0,B 正确.又当q ≠1时,S 2 021=a 1(1-q 2 021)1-q ,当q <0时,1-q >0,1-q 2 021>0,∴S 2 021>0, 当0<q <1时,1-q >0,1-q 2 021>0,∴S 2 021>0, 当q >1时,1-q <0,1-q 2 021<0,∴S 2 021>0. 当q =1时,S 2 021=2 021a 1>0,故C 正确,D 不正确. 答案 ABC14.(多空题)已知等比数列{a n }的前n 项和为S n ,且公比q >1,若a 2=2,S 3=7.则数列{a n }的通项公式a n =________,a 21+a 22+…+a 2n =________.解析 ∵a 2=2,S 3=7,由S 3=2q +2+2q =7,解得q =2或q =12,又∵q >1,∴q =2,故a 1=1,所以a n =2n -1∴a 2n =4n -1, ∴a 21+a 22+…+a 2n =1(1-4n )1-4=4n -13. 答案 2n -1 4n -13。
高三数学等比数列试题答案及解析
高三数学等比数列试题答案及解析1.设等不数列{an }的前n项和为Sn,若S2=3,S4=15,则S6=( )A. 31B.32C.63D. 64【答案】C【解析】由已知条件可得解得,所以,故选C. 【考点】等比数列的性质.2.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】(B)【解析】由等比数列的各项都是正数,且.所以.又公比为即.故选(B)【考点】1.等比数列的性质.2.等比数列的通项公式.3.已知等比数列{an }满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【答案】A【解析】由a2+a3=q(a1+a2)=3q=6,∴q=2∴a1(1+q)=3,∴a1=1,∴a7=26=64故选A4.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】设等比数列的通项公式为故答案为1【考点】等比数列的通项公式;等比数列的乘积运算.5.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】正项等比数列的首项为与公比,由【考点】等比数列的通项公式;等比数列的乘积运算.6.函数图像上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是()A.B.C.D.【答案】B【解析】函数图象上的点到原点的距离的最小值为1,最大值为3,故,即,而,因此选B.【考点】等比数列的性质.7.已知数列满足,,定义:使乘积为正整数的k叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .【答案】2035【解析】∵,∴,则“简易数”为使为整数的整数,即满足,∴,则在区间内所有“简易数”的和为.【考点】1.新定义题;2.等比数列的前n项和公式.8.已知等比数列的前项和为,若,,则的值是 .【答案】-2【解析】由得,∴,∴,.【考点】等比数列的通项公式与前项和.9.已知等比数列中,=1,=2,则等于( ).A.2B.2C.4D.4【答案】C【解析】,,,可见,,依旧成等比数列,所以,解得.【考点】等比数列的性质10.已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.【答案】(1) 所以;(2) .【解析】(1) 由①知②通过①②得整理得,根据得到所以为公差为的等差数列,由求得或.验证舍去.(2) 由得,利用符号表示不超过实数的最大整数知,当时,,将转化成应用“错位相减法”求和.试题解析:(1) 由①知② 1分由①②得整理得 2分∵为正项数列∴,∴ 3分所以为公差为的等差数列,由得或 4分当时,,不满足是和的等比中项.当时,,满足是和的等比中项.所以. 6分(2) 由得, 7分由符号表示不超过实数的最大整数知,当时,, 8分所以令∴① 9分② 10分①②得即. 12分【考点】等差数列的通项公式,对数运算,“错位相减法”.11.在各项均为正数的等比数列{an }中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn =log3an,求数列{anbn}的前n项和Sn.【答案】(1)3n,n∈N(2)Sn=【解析】(1)设{an}公比为q,由题意得q>0,且解得 (舍),所以数列{an }的通项公式为an=3·3n-1=3n,n∈N.(2)由(1)可得bn =log3an=n,所以anbn=n·3n.所以Sn=1·3+2·32+3·33+…+n·3n,所以3Sn=1·32+2·33+3·34+…+n·3n+1,两式相减得,2Sn=-3-(32+33+…+3n)+n·3n+1=-(3+32+33+…+3n)+n·3n+1=-+n·3n+1=,所以数列{an bn}的前n项和Sn=.12.已知两个数k+9和6-k的等比中项是2k,则k=________.【答案】3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13.已知等比数列{an }是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】因为等比数列{an }是递增数列,所以a1=1,a3=4,则q=2,故S6==63.14.已知数列{an }为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A.±B.-C.D.-【答案】C【解析】∵a1a13=,a2a12=,∴=,∴tan(a2a12)=tan=tan=,故选C.15.已知数列{an }是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn =,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.【答案】(1) an=2n+2 (2)见解析 (3) 2012【解析】(1)设{an }的公差为d,则a2=a1+d,a5=a1+4d.∵a2=6,a5=12,∴解得:a1=4,d=2.∴an=4+2(n-1)=2n+2.(2)当n=1时,b1=S1,由S1+b1=1,得b1=.当n≥2时,∵Sn =1-bn,Sn-1=1-bn-1,∴Sn -Sn-1=(bn-1-bn),即bn=(bn-1-bn).∴bn =bn-1.∴{bn}是以为首项,为公比的等比数列.(3)由(2)可知:bn=·()n-1=2·()n.∴cn====-,∴Tn=(1-)+(-)+(-)+…+(-)=1-<1,由已知得≥1,∴m≥2012,∴最小正整数m=2012.16.一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为()A.1B.2C.3D.4【答案】B【解析】设此数列的公比为q,根据题意得q>0且q≠1,由,解得q=2.17.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【答案】6【解析】设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.18.在等比数列{an }中,a1+a2=20,a3+a4=40,则a5+a6等于________.【答案】80【解析】q2==2,a5+a6=(a3+a4)q2=40×2=80.19.Sn 是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为________.【答案】5【解析】设等比数列的公比为q,故由9S3=S6,得9×,解得q=2,故=a n =×2n-1,易得当n≤5时,<1,即Tn<Tn-1;当n≥6时,Tn>Tn-1,据此数列单调性可得T5为最小值.20.已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6==63.21.已知公比为的等比数列的前项和为,则下列结论中:(1)成等比数列;(2);(3)正确的结论为()A.(1)(2).B.(1)(3).C.(2)(3).D.(1)(2)(3).【答案】C【解析】根据等比数列的性质,,则,,(2)(3)是正确的,但当时,(1)不正确,故选C.【考点】等比数列的前项和与等比数列的定义.22.在等比数列{an }中,a4=4,则a2·a6等于()A.4B.8C.16D.32【答案】C【解析】23.在等比数列{an }中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().A.2n+1-2B.3n C.2n D.3n-1【答案】C【解析】∵数列{an }为等比数列,设公比为q,∴an=2q n-1,又∵{an+1}也是等比数列,则(an+1+1)2=(a n+1)·(a n+2+1)⇒+2a n+1=a n a n+2+a n+a n+2⇒a n+a n+2=2a n+1⇒a n(1+q2-2q)=0⇒q=1.即an =2,所以Sn=2n.24.在等比数列{an }中,2a3-a2a4=0,则a3=________;{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于________.【答案】210【解析】在等比数列中2a3-a2a4=2a3-=0,解得a3=2.在等差数列中b3=a3=2,所以S5==5b3=5×2=10.25.设等比数列{an }的公比q=2,前n项和为Sn,若S4=1,则S8= ().A.17B.C.5D.【答案】A【解析】由于S4=a1+a2+a3+a4=1,S8=S4+a5+a6+a7+a8=S4+S4·q4,又q=2.所以S8=1+24=17.故选A26.已知数列为等比数列,,,,则的取值范围是( ) A.B.C.D.【答案】D【解析】①,②,③,由①②③得,,故选D.【考点】1.等比数列的定义;2.不等式求范围.27.数列{}的前n项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由,令可求,时,利用可得与之间的递推关系,构造等可证等比数列;(Ⅱ)由(Ⅰ)可求,利用错位相减法可求数列的和;(Ⅲ)由(Ⅰ)可求,进而可求,代入P中利用裂项求和即可求解试题解析:解:(Ⅰ) 因为,所以①当时,,则, .(1分)②当时,, .(2分)所以,即,所以,而, .(3分)所以数列是首项为,公比为的等比数列,所以. .(4分)(Ⅱ)由(Ⅰ)得.所以①② .(6分)②-①得: .(7分)(8分)(Ⅲ)由(Ⅰ)知(9分)而,(11分)所以,故不超过的最大整数为.(14分) .【考点】1.递推关系;2.等比数列的概念;3.数列求和.28.正项递增等比数列{}中,,则该数列的通项公式为()A.B.C.D.【答案】B【解析】由得,或(舍).【考点】等比数列的运算性质.29.若等比数列的第项是二项式展开式的常数项,则 .【答案】【解析】展开式的通项公式为,其常数项为,所以.【考点】1、二项式定理;2、等比数列.30.设Sn 为等比数列{an}的前n项和,若,则()A.B.C.D.【答案】B【解析】∵,∴,∴,∴.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式.31.在等比数列中,若,则 .【答案】.【解析】由于数列为公比数列,所以,由于,所以.【考点】等比数列的性质32.已知,数列是首项为,公比也为的等比数列,令(Ⅰ)求数列的前项和;(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.【答案】(1);(2).【解析】本题考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题解决问题的能力,考查分类讨论思想和转化思想.第一问,利用等比数列的通项公式先写出数列的通项公式,利用对数的性质得到的通项公式,从而列出,它符合错位相减法,利用错位相减法求和;第二问,有题意得,讨论的正负,转化为恒成立问题,求出.试题解析:(Ⅰ)由题意知,.∴..以上两式相减得.∵,∴.(Ⅱ)由.由题意知,而,∴. ①(1)若,则,,故时,不等式①成立;(2)若,则,不等式①成立恒成立.综合(1)、(2)得的取值范围为.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式;3.错位相减法;4.恒成立问题.33.已知等比数列前项和为()A.10B.20C.30D.40【答案】C【解析】等比数列中,依次3项和依然成等比数列,即,,,成等比数列,其值分别为2,4,8,16,故.【考点】等比数列的性质.34.设等比数列满足公比,,且{}中的任意两项之积也是该数列中的一项,若,则的所有可能取值的集合为.【答案】【解析】任取数列中两项和,则也是数列中的项,又,,所以可能为,即的值可能为.【考点】等比数列的通项公式和性质.35.已知公差不为零的等差数列与公比为的等比数列有相同的首项,同时满足,,成等比,,,成等差,则( )A.B.C.D.【答案】C【解析】设数列的首项为,等差数列的公差为,,将,,代入得,化简得,解得,代入(1)式得.【考点】1、等差数列的通项公式;2、等比数列的性质.36.等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(1)求r的值;(2)当b=2时,记求数列的前项和.【答案】(1);(2).【解析】(1)利用的关系求解;(2)由(1)和b=2求得,进而求得,利用错位相减法可得.试题解析:∵对任意的,点,均在函数且均为常数)的图像上. ∴得,当时,,当时,,又∵{}为等比数列,∴, 公比为, ∴.(2)当b=2时,,则相减,得=∴【考点】1.等比数列通项公式;2.数列求和;3.数列中的关系.37.在正项等比数列中,,则的值是( )A.10000B.1000C. 100D.10【答案】A【解析】因为,所以,所以,.【考点】1.对数的性质;2.等比数列的性质.38.若等比数列满足,,则公比__________;前项_____.【答案】2,【解析】,由,解得,故.考点定位:本题考查了等比数列的通项公式、前n项公式和数列的性质.39.已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式(Ⅲ)令,,求数列的前n项和.【答案】(Ⅰ);(Ⅱ) ;(Ⅲ).【解析】(Ⅰ)由①得② 1分由②—①,得即: 2分由于数列各项均为正数,3分即数列是首项为,公差为的等差数列,数列的通项公式是 4分(Ⅱ)由知,所以, 5分有,即, 6分而,故是以为首项,公比为2的等比数列. 7分所以 8分(Ⅲ), 9分所以数列的前n项和错位相减可得 12分【考点】等差数列、等比数列的通项公式,“错位相减法”。
2022版高考数学一轮复习第7章第3讲等比数列及其前n项和训练含解析
第七章 第3讲[A 级 基础达标]1.(2020年昆明模拟)已知正项等比数列{a n }中,a 2a 3=a 4,若S 3=31,则a n =( ) A .2·5n B .2·5n -1 C .5n D .5n -1【答案】D2.(2020年成都模拟)已知等比数列{a n }的各项均为正数,若log 3a 1+log 3a 2+…+log 3a 12=12,则a 6a 7=( )A .1B .3C .6D .9 【答案】D3.若等比数列{a n }的前n 项和为S n =3·⎝⎛⎭⎫12n +m (n ∈N *),则实数m 的取值为( ) A .-32 B .-1 C .-3 D .一切实数【答案】C4.(2021年吉林模拟)《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A .128127B .44 800127C .700127D .17532【答案】B5.设等比数列{a n }的前n 项和为S n ,若a 1=2,S 6S 2=21,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )A .516或1116B .516或716C .516或1516D .316或716【答案】C 【解析】设等比数列{a n }的公比为q ,则由a 1=2,S 6S 2=21,得2×(1-q 6)1-q 2×(1-q 2)1-q=1-q 61-q2=21,整理得q 4+q 2-20=0,解得q =2或q =-2,所以a n =2n 或a n =2·(-2)n -1.当a n =2n 时,数列⎩⎨⎧⎭⎬⎫1a n 的前4项和S 4=12+14+18+116=1516;当a n =2·(-2)n -1时,数列⎩⎨⎧⎭⎬⎫1a n 的前4项和S 4=12-14+18-116=516.6.记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.【答案】1213 【解析】设等比数列的公比为q ,由已知a 1=13,a 24=a 6,所以⎝⎛⎭⎫13q 32=13q 5,又q ≠0,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.7.等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.【答案】30 【解析】设等比数列{a n }的公比为q >0,由题意,得⎩⎪⎨⎪⎧2a 1(1+q +q 2)=a 1(8+3q ),a 1q 3=16,解得a 1=q =2,则S 4=2×(24-1)2-1=30.8.(2021年南通二模)在正项等比数列{a n }中,S n 为其前n 项和,已知2a 6=3S 4+1,a 7=3S 5+1,则该数列的公比q 为________.【答案】3 【解析】由2a 6=3S 4+1,a 7=3S 5+1,得a 7-2a 6=3(S 5-S 4)=3a 5,即a 5q 2-2a 5q =3a 5,则q 2-2q -3=0,解得q =-1或q =3.因为{a n }是正项等比数列,所以q =3.9.已知等比数列{a n }中,公比q =2,a 4是a 3+2,a 5-6的等差中项. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)因为等比数列{a n }中,公比q =2,a 4是a 3+2,a 5-6的等差中项,所以2a 4=(a 3+2)+(a 5-6).所以2(a 1×23)=(a 1×22+2)+(a 1×24-6),解得a 1=1. 所以数列{a n }的通项公式a n =2n-1.(2)因为等比数列{a n }中,公比q =2,首项a 1=1, 所以数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n-1.10.已知等比数列{a n },公比q >0,a n +2=a n +1+2a n ,5为a 1,a 3的等差中项.(1)求数列{a n }的通项; (2)求数列{a n }的前n 项和.解:(1)因为等比数列{a n }中,公比q >0,a n +2=a n +1+2a n ,5为a 1,a 3的等差中项, 所以⎩⎪⎨⎪⎧a n ≠0,a n q 2=a n q +2a n,a 1+a 1q 2=10,解得a 1=2,q =2,所以a n =2n .(2)数列{a n }的前n 项和S n =a 1(1-q n )1-q =2×(1-2n )1-2=2n +1-2.[B 级 能力提升]11.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36【答案】B 【解析】因为数列{a n }是等比数列,a 2·a 3=a 1·a 4=2a 1,所以a 4=2.因为a 4与2a 7的等差中项为54,所以12(a 4+2a 7)=54,故有a 7=14.所以q 3=a 7a 4=18,所以q =12,所以a 1=a 4q 3=16.所以S 5=16×⎣⎡⎦⎤1-⎝⎛⎭⎫1251-12=31. 12.(多选)(2020年淮安模拟)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( )A .⎩⎨⎧⎭⎬⎫1a nB .{log 2a n }C .{a n ·a n +1}D .{a n +a n +1+a n +2}【答案】ACD 【解析】由题意,可设等比数列{a n }的公比为q (q ≠0),则a n =a 1·q n -1.对于A ,1a n =1a 1q n -1=1a 1·⎝⎛⎭⎫1q n -1,所以数列⎩⎨⎧⎭⎬⎫1a n 是一个以1a 1为首项,1q 为公比的等比数列;对于B ,log 2a n =log 2(a 1·q n -1)=log 2a 1+(n -1)log 2q ,所以数列{log 2a n }是一个以log 2a 1为首项,log 2q 为公差的等差数列;对于C ,因为a n +1·a n +2a n ·a n +1=a n +2a n =a 1·q n +1a 1·q n -1=q 2,所以数列{a n ·a n +1}是一个以q 2为公比的等比数列;对于D ,因为a n +1+a n +2+a n +3a n +a n +1+a n +2=q (a n +a n +1+a n +2)a n +a n +1+a n +2=q ,所以数列{a n+a n +1+a n +2}是一个以q 为公比的等比数列.13.(2020年仙桃测试)各项均为正数的等比数列{a n }中,若a 1≥1,a 2≤2,a 3≥3,则a 4的取值范围是________.【答案】⎣⎡⎦⎤92,8 【解析】设{a n }的公比为q ,则根据题意得q =a 2a 1=a 3a 2,所以32≤q ≤2,a 4=a 3q ≥92,a 4=a 2q 2≤8,所以a 4∈⎣⎡⎦⎤92,8. 14.(一题两空)(2020年徐州模拟)已知正项等比数列{a n }满足a 2 020=2a 2 018+a 2 019,若存在两项a m ,a n 使得a m ·a n =4a 1,则n +4m mn的最小值是________,此时m 2+n 2=________.【答案】3220 【解析】设正项等比数列{a n }的公比为q ,若{a n }满足a 2 020=2a 2 018+a 2 019,则有q 2=2+q ,解得q =2或q =-1(舍去).由a m ·a n =4a 1,得a m ·a n =16a 21,得2m+n -2=16=24,则m +n =6.所以n +4m mn =1m +4n =16×(m +n )×⎝⎛⎭⎫1m +4n =16×⎝⎛⎭⎫5+n m +4m n .由nm +4m n≥2n m ·4m n =4,当且仅当n =2m ,即n =2m =4时等号成立.所以n +4m mn ≥16×(5+4)=32,此时m 2+n 2=20.15.(2020年北京二模)已知数列{a n }的前n 项和为S n ,a 1=1,________.是否存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列?若存在,求出k 的值;若不存在,说明理由.从①a n +1-2a n =0,②S n =S n -1+n (n ≥2),③S n =n 2这三个条件中任选一个,补充在上面问题中并作答.解:若选①a n +1-2a n =0,则由a 1=1,知a n ≠0,所以a n +1a n=2,所以{a n }是首项为1,公比为2的等比数列.所以a 1=1,a k =2k -1,S k +2=1-2k +21-2=2k +2-1.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(2k +2-1)=2k +2-1.左边为偶数,右边为奇数,即不存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列. 若选②S n =S n -1+n (n ≥2),即S n -S n -1=n ⇒a n =n (n ≥2).又a 1=1适合上式,所以{a n }是首项为1,公差为1的等差数列.所以a 1=1,a k =k ,S k +2=(k +2)(k +3)2.若a 1,a k ,S k +2成等比数列,则k 2=1×(k +2)(k +3)2,解得k =6(k =-1舍去).所以存在正整数k =6,使得a 1,a k ,S k +2成等比数列.若选③S n =n 2,则a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),又a 1=1适合上式, 所以{a n }是首项为1,公差为2的等左数列.所以a =1,a k =2k -1,S k +2=(k +2)2. 若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(k +2)2,解得k =3⎝⎛⎭⎫k =-13舍去. 所以存在正整数k =3,使得a 1,a k ,S k +2成等比数列.[C 级 创新突破]16.(2020年驻马店期末)若数列{a n }满足1a n +1-3a n =0(n ∈N *),则称{a n }为“梦想数列”,已知数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1+b 2+b 3=2,则b 3+b 4+b 5=( )A .18B .16C .32D .36【答案】A 【解析】若⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,则由题意得11b n +1-31b n=0,即b n +1-3b n =0,b n +1b n =3,即{b n }为公比为3的等比数列.由b 1+b 2+b 3=2,得b 3+b 4+b 5=32(b 1+b 2+b 3)=18.17.(2020年北京)已知{a n }是无穷数列.给出两个性质:①对于{a n }中任意两项a i ,a j (i >j ),在{a n }中都存在一项a m ,使得a 2ia j =a m ;②对于{a n }中任意一项a n (n ≥3),在{a n }中都存在两项a k ,a l (k >l ),使得a n =a 2ka l .(1)若a n =n (n =1,2,…),判断数列{a n }是否满足性质①,说明理由;(2)若a n =2n -1(n =1,2,…),判断数列{a n }是否同时满足性质①和性质②,说明理由; (3)若{a n }是递增数列,且同时满足性质①和性质②,求证:{a n }为等比数列. 解:(1)不满足,理由:a 23a 2=92∉N *,所以不存在一项a m ,使得a 23a 2=a m .(2)数列{a n }同时满足性质①和性质②,理由:a 2ia j =(2i -1)22j -1=22i -22j -1=22i -j -1,因为a 2i -j =22i-j -1,所以满足性质①.对于任意的n ≥3,欲满足a n =2n -1=a 2k a l=22k -l -1,只需满足n =2k -l 即可. 令l =n -2,则k =n -1,且符合k >l ≥1,所以满足性质②.所以{a n }同时满足性质①和性质②.(3)对于a 1>0,因为{a n }递增,所以a n >0.由性质②,取n =3,则存在a k ,a l (k >l ),使a 3=a 2ka l =a k a l ·a k >a k ,所以k <3.所以k =2,l =1. 所以a 3=a 22a 1.所以{a n }中a 1,a 2,a 3三项成等比.对于a 1<0,由性质①,取i =2,j =1,则存在a m ,使a m =a 22a 1.易证a m ≠a 2,即m ≠2.若a m =a 1,则只能a 21=a 22,此时a 2=-a 1>0.所以当n ≥2时,a n >0.取i >2,j =1,因为{a n }递增,a i >a 2>0,所以a m =a 2i a j =a 2i a 1<a 22a 1=a 1,显然不存在满足不等式的m ,矛盾.a m =a 1也不成立,所以m ≥3.而a m a 1=a 22>0,所以a m 与a 1同号,所以a m<0. 所以a 3<0,a 2<0.所以a 1,a 2,a 3同号. 如下证明,对任意k ≥2,a k <0时,则a k +1<0. 由性质①,取i =k ,j =k -1,则存在m ,使a m =a 2ka k -1.首先a m 与a k -1同号,由递增数列,知a k -1<a k <0,所以a m <0. 假设m ≤k ,则a m ≤a k <0.所以|a m |≥|a k |>0,结合a k -1<a k <0,有|a k -1|≥|a k |>0,显然|a m ||a k -1|>|a k |2与a m a k -1=a 2k矛盾,所以m ≥k +1,a m ≥a k +1.又a m <0,所以a k +1<0.所以{a n }同号且均为负数.所以对于{a n },a m >a 2ka l =a k a l ·a k >a k 恒成立.所以a 3=a 2ka l =a k a l ·a k >a k ,得3>k >1.所以k =2,l =1.所以a 3=a 22a 1.综上,当n ≤3时,{a n }为等比数列.假设当n ≤k (显然k ≥3)时,a 1,a 2,…,a m 成等比,设其通项公式为a n =a 1q n -1(n ≤k ),下证a k +1=a 1q k .由性质①,取i =k ,j =k -1,则存在m ,使a m =a 2ia j =(a 1q k -1)2a 1q k -2=a 1q k . 假设m ≠k +1,此时必有m ≥k +2. 由递增数列知,a k <a k +1<a m , 即a 1q k -1<a k +1<a 1q k .令a k +1=a 1q s ,此时k -1<s <k ,所以s ∈N *.另一方面,由性质②,对a k +1,存在u ,v (u >v ),使a k +1=a 2u a v =a ua v ·a u >a u,所以u <k +1,即u ≤k 且v ≤k .所以a k +1=a 2u a v =a 21q 2u -2a 1qv -1=a 1q 2u -v -1.而2u -v -1∈N *,s ∈N * ,a 1≠0, 所以a 1q 2u-v-1≠a 1q s .而这两个都是a k +1的表达式,矛盾. 所以m =k +1.所以a k +1=a 1q k .所以当n ≤k +1时,a 1,a 2,…,a k +1也成等比. 综上,{a n }为等比数列.。
等比数列及其前n项和-高考数学复习
2或
__________.
2
解析 由
2
a2=4.由 a1+a2+a3=14,得 +a2+a2q=14,
1
2
2q -5q+2=0,解得 q=2 或2.
a1a2a3=64,得23 =64,所以
1
所以+1+q=3.5,所以
题组三 连线高考
7.(2023·全国甲,理5)设等比数列{an}的各项均为正数,前n项和为Sn,若
量,可“知三求二”.
(2)整体思想:当所给条件只有一个时,可将已知和所求都用a1,q 表示,寻求
两者间的联系,整体代换即可求解.
(3)分类讨论思想:若题目中公比q 未知,则运用等比数列前n 项和公式时要
对q 分q=1和q≠1两种情况进行讨论.
[对点训练1](2023·天津,5)已知数列{an}的前n项和为Sn,a1=2,an+1=2Sn+2,则
所以数列{an+1-2an}是首项为3,公比为2的等比数列.
2
[对点训练2]已知数列{an}和{bn}满足:a1=λ,an+1= 3 an+n-4,bn=(-1)n(an-
3n+21),其中n∈N*,λ为实数.
(1)对于任意实数λ,证明:数列{an}不是等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论.
和Sn=A·qn-A(A≠0,q≠0,q≠1),则数列{an}必为等比数列.
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
1.G为a,b的等比中项⇔G2=ab.( × )
2.满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.( × )
2020届高考数学二轮教师用书:第五章第3节 等比数列及其前n项和 Word版含解析
第3节 等比数列及其前n 项和1.等比数列的概念(1)如果一个数列从第 2 项起,每一项与它的前一项的比等于 同一个非零 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 公比 ,公比通常用字母q (q ≠0)表示.数学语言表达式:a na n -1= q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N *,q 为非零常数).(2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的 等比中项 ,其中G = ±ab . 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n = a 1q n -1 ; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n = a 1(1-q n )1-q =a 1-a n q1-q .推广:当q ≠0,1时,{a n }是等比数列⇔S n =Aq n -A (A 为常数且A ≠0). 3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若m +n =p +q ,则a m a n = a p a q ,其中m ,n ,p ,q ∈N *,特别地,若2s =p +r ,则a p a r =a 2s ,其中p ,s ,r ∈N *.(2)等比数列{a n }的单调性当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是 递增 数列; 当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是 递减 数列; 当q =1时,数列{a n }是 常数列 .(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为 q m (k ,m ∈N *).(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为 q n .等比数列的主要性质设数列{a n }是首项为a 1,公比是q 的等比数列,S n 是其前n 项和.1.若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列.2.S m +n =S n +q n S m =S m +q m S n .3.若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3n T 2n,…成等比数列.4.若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .5.等比数列{a n }的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”. (1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) 答案:(1)× (2)× (3)× (4)× (5)× [小题查验]1.已知等比数列{a n }的公比为正数,且公比a 2·a 6=9a 4,a 2=1,则a 1的值为( ) A .3 B .-3 C .-13D.13解析:D [{a n }是公比为正数的等比数列,设公比为q , 则a 2·a 6=a 24,∴a 24=9a 4,∴a 4=9.∴q 2=a 4a 2=9. ∴q =3.∴a 1=a 2q =13.故选D.]2.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:B [设顶层灯数为a 1,q =2 ,S 7=a 1(1-27)1-2=381,解得a 1=3.]3.(2019·全国Ⅲ卷)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:C [应用等比数列前n 项和公式解题时,要注意公比是否等于1,防止出错.设正数的等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧ a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,,∴a 3=a 1q 2=4,故选C.]4.(教材改编)在等比数列{a n }中,已知a 1=-1,a 4=64,则q = ________ ,S 4= ________ .答案:-4 515.设等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 1=1,a 3=4,S k =63,则k = ________ .解析:设等比数列{a n }公比为q ,由已知a 1=1,a 3=4, 得q 2=a 3a 1=4,又{a n }的各项均为正数,∴q =2.而S k =1-2k1-2=63,∴2k -1=63,解得k =6.答案:6考点一 等比数列的基本运算(自主练透)[题组集训]1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:B [设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.]2.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= ________ .解:设{a n }的公比为q ,则1+q +q 2=34,解得q =-12,∴S 4=1-12+14-18=58.答案:583.(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= ________ .解析:由题意可得⎩⎪⎨⎪⎧ a 1(1+q )=-1,a 1(1-q 2)=-3,解得⎩⎪⎨⎪⎧a 1=1,q =-2,则a 4=a 1q 3=-8. 答案:-8解决等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.提醒:运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论.考点二 等比数列的判定与证明(师生共研)逻辑推理——等比数列判定与证明中的核心素养根据等比数列的定义、性质等对一个数列是否是等比数列作出判断与证明,是从一般到特殊的推理,使学生学会有逻辑地思考问题,形成合乎逻辑的思维品质,是高中生必须具备的最基础又应用最广的一种核心素养.[典例] (2018·全国Ⅰ卷)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.[思维导引] (1)由数列{a n }满足a 1=1,na n +1=2(n +1)a n ,的递推关系式先求出a 2,a 3,再利用b n =a nn 求b 1,b 2,b 3;(2)定义法判定并证明数列{b n }为等比数列;(3)先求出数列{b n }的通项公式.[解] (1)由条件可得a n +1=2(n +1)na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n =2n -1,所以a n =n ·2n -1.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.提醒:(1)前两种方法是判定等比数列的常用方法,常用于证明,而后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. [跟踪训练](2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.考点三 等比数列的性质及应用(师生共研)[典例]1.已知各项不为0的等差数列{a n }满足2a 2-a 27+2a 12=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 11等于( )A .16B .8C .4D .2[解析] A [由等差数列性质得a 2+a 12=2a 7,所以4a 7-a 27=0,又a 7≠0,所以a 7=4,b 7=4,由等比数列性质得b 3b 11=b 27=16,故选A.]2.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n = ________ .[解析] 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36, 所以n =14, [答案] 143.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = ________ .[解析] 由题意,得⎩⎪⎨⎪⎧ S 奇+S 偶=-240S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.[答案] 2等比数列性质应用中的常见题型与求解策略:[跟踪训练]1.在各项均为正数的等比数列{a n }中,(a 1+a 3)(a 5+a 7)=4a 24,则下列结论中正确的是( )A .数列{a n }是递增数列B .数列{a n }是递减数列C .数列{a n }是常数列D .数列{a n }有可能是递增数列也有可能是递减数列解析:C [各项均为正数的等比数列{a n }中,因为(a 1+a 3)(a 5+a 7)=4a 24成立,即a 1a 5+a 1a 7+a 3a 5+a 3a 7=4a 24成立.利用等比数列的定义和性质化简可得a 23+a 24+a 24+a 25=4a 24,进一步化简得a 23+a 25=2a 24. 设公比为q ,则得a 21q 4+a 21q 8=2a 21q 6,化简可得1+q 4=2q 2,即(q 2-1)2=0,所以q 2=1,故q =1(由于各项均为正数的等比数列,故q =-1舍去).故此等比数列是常数列.故选C.]2.等比数列{a n }的首项a 1=-1,前n 项和为Sn ,若S 10S 5=3132,则公比q = ________ .解析:由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:-121.(2020·石家庄市模拟)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( ) A .28 B .32 C .64D .14解析:B [设等比数列{a n }的公比为q ,∵a 2=2,a 5=16, ∴a 1q =2,a 1q 4=16,解得a 1=1,q =2.则a 6=25=32.]2.(2020·沈阳市模拟)已知数列{a n }为等比数列,且a 2a 3a 4=-a 27=-64,则tan ⎝⎛⎭⎫a 4a 63·π=( )A. 3 B .- 3 C .-33D .±3解析:B [数列{a n }为等比数列,且a 2a 3a 4=-a 27=-64=a 33,则a 3=-4,a 7=±8根据等比数列的性质可得a 7=8舍去, ∴a 7=-8,∴a 4a 6=a 3·a 7=32,∴tan ⎝⎛⎭⎫a 4a 63·π=tan ⎝⎛⎭⎫323π=tan ⎝⎛⎭⎫10π+π-π3 =-tan π3=- 3.]3.(2020·淮北市一模)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .25解析:D [根据题意,等比数列{a n }中,a 5=3,a 4a 7=45, 则有a 6=a 4a 7a 5=15,则q =a 6a 5=5,则a 7-a 9a 5-a 7=a 5·q 2-a 7·q 2a 5-a 7=q 2=25.] 4.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n )解析:C [∵a 2=2,a 5=14,∴a 1=4,q =12.∴a n a n +1=a 21q 2n -1=24⎝⎛⎭⎫122n -1=8⎝⎛⎭⎫14n -1, ∴a 1a 2+a 2a 3+…+a n a n +1=323(1-4-n ).] 5.(2020·大庆市一模)数列{a n }为正项递增等比数列,满足a 2+a 4=10,a 23=16,则log 2a 1+log 2a 2+…+log 2a 10等于( )A .-45B .45C .-90D .90解析:D [因为{a n }为正项递增等比数列,所以a n >a n -1>0,公比q >1. 因为a 2+a 4=10 ①,且a 23=16=a 3·a 3=a 2·a 4② 由①②解得a 2=2,a 4=8.又因为a 4=a 2·q 2,得q =2或q =-2(舍).则得a 5=16,a 6=32, 因为log2a 1+log2a 2+…+log2a 10=5log2a 5a 6=5log 216×32=5×9log 22=45×2log 22=90.]6.已知等比数列{a n }的前n 项和为S n ,且S n =m ·2n -1-3,则m = ________ . 解析:a 1=S 1=m -3,当n ≥2时,a n =S n -S n -1=m ·2n -2, ∴a 2=m ,a 3=2m ,又a 22=a 1a 3, ∴m 2=(m -3)·2m ,整理得m 2-6m =0, 则m =6或m =0(舍去). 答案:67.(2020·漳州市模拟)等比数列{a n }中,a 1=1,a n >0,其前n 项和为S n ,若a 2是-a 3,a 4的等差中项,则S 6的值为 ______ .解析:假设公比为q ,则可列方程2q =-q 2+q 3,解得q =0或2或-1, 其中满足条件的公比只有2.则S 6=1-261-2=63.答案:638.已知数列{a n }是等比数列,a 1,a 2,a 3依次位于表中第一行,第二行,第三行中的某一格内,又a 1,a 2,a 3中任何两个都不在同一列,则a n = ________ (n ∈N *).解析:观察题中的表格可知a 1,a 2,a 3分别为2,6,18,即{a n }是首项为2,公比为3的等比数列,∴a n =2·3n -1.答案:2·3n -19.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)∵a 5=4a 3,∴q 2=4,∴q =±2. 当q =2时,a n =2n-1当q =-2时,a n =(-2)n -1∴{a n }的通项公式为a n =2n -1或a n =(-2)n -1.(2)当q =2时,S m =1-2m1-2=63,解得m =6.当q =-2时,S m =1-(-2)m1+2=63.无解.∴m =6.10.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15,∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1,即a n=2×(-2)n-1+3n(n∈N*).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第三节 等比数列及其前n项和 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用等比数列有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.
突破点一 等比数列的基本运算
[基本知识] 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义
的表达式为an+1an=q. (2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab. 2.等比数列的有关公式 (1)通项公式:an=a1qn-1.
(2)前n项和公式:Sn= na1,q=1,a11-qn1-q=a1-anq1-q,q≠1. [基本能力] 一、判断题(对的打“√”,错的打“×”) (1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.( ) (2)G为a,b的等比中项⇔G2=ab.( ) (3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.( )
(4)数列{an}的通项公式是an=an,则其前n项和为Sn=a1-an1-a.( ) 答案:(1)× (2)× (3)√ (4)×
二、填空题 2
1.已知递增的等比数列{an}中,a2+a8=3,a3·a7=2,则a13a10=________. 答案:2 2.各项都为正数的等比数列{an}中,a1=2,a6=a1a2a3,则公比q的值为________. 答案:2 3.在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是________. 答案:4 4.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn等于________.
答案:32n-1
[典例感悟] 1.(2019·山东测试)已知正项数列{an}为等比数列,且5a2是a4与3a3的等差中项,若a2=2,则该数列的前5项和S5=( )
A.3312 B.31
C.314 D.以上都不正确 解析:选B 设{an}的公比为q,则q>0且q≠1.由已知得a4+3a3=2×5a2,即a2q2+3a2q=10a2,q2+3q-10=0,解得q=2或q=-5(舍去),又a2=2,则a1=1,所以S5=a11-q51-q
=1×1-251-2=31. 2.(2018·全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. (1)求{an}的通项公式; (2)记Sn为{an}的前n项和,若Sm=63,求m. 解:(1)设{an}的公比为q,由题设得an=qn-1. 由已知得q4=4q2,解得q=0(舍去)或q=-2或q=2. 故an=(-2)n-1或an=2n-1.
(2)若an=(-2)n-1,则Sn=1--2n3. 由Sm=63,得(-2)m=-188,此方程没有正整数解. 若an=2n-1,则Sn=1-2n1-2=2n-1. 由Sm=63,得2m=64,解得m=6. 综上,m=6. [方法技巧] 3
解决等比数列基本量计算问题的常用思想方法 (1)方程的思想:等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求关键量a1和q,问题可迎刃而解. (2)分类讨论的思想:等比数列的前n项和公式涉及对公比q的分类讨论,当q=1时,
{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn=a11-qn1-q=a1-anq1-q. [针对训练] 1.(2019·豫北重点中学联考)数列{an}满足a4=27,an+1=-3an(n∈N*),则a1=( ) A.1 B.3 C.-1 D.-3
解析:选C 由题意知数列{an}是以-3为公比的等比数列,∴a4=a1(-3)3=27,∴a1
=27-33=-1.故选C.
2.(2019·绵阳诊断性考试)设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4
=1,S3=7,则S5等于( )
A.152 B.314
C.334 D.172
解析:选B 设数列{an}的公比为q,则显然q≠1,由题意得 a1q·a1q3=1,a11-q31-q=7,解得
a1=4,q=12或 a1=9,q=-13(舍去),∴S5=a11-q51-q=41-1251-12=314.
3.(2019·兰州诊断性测试)设数列{an+1}是一个各项均为正数的等比数列,已知a3=7,a7=127. (1)求a5的值; (2)求数列{an}的前n项和. 解:(1)由题可知a3+1=8,a7+1=128,则有(a5+1)2=(a3+1)(a7+1)=8×128=1 024,可得a5+1=32,即a5=31.
(2)设数列{an+1}的公比为q,由(1)知 a3+1=a1+1q2,a5+1=a1+1q4,得 a1+1=2,q=2,所以数列{an
+1}是一个以2为首项,2为公比的等比数列,所以an+1=2×2n-1=2n,所以an=2n-1, 4
利用分组求和可得,数列{an}的前n项和Sn=21-2n1-2-n=2n+1-2-n. 突破点二 等比数列的性质
[基本知识] (1)若m+n=p+q,则aman=apaq,其中m,n,p,q∈N*.特别地,若2s=p+r,则apar
=a2s,其中p,s,r∈N*.对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项
的积即a1·an=a2·an-1=…=ak·an-k+1=…. (2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm(k,m∈N*).
(3)若数列{an},{bn}是两个项数相同的等比数列,则数列{ban},{pan·qbn}和panqbn(其中b,p,q是非零常数)也是等比数列. (4)当q≠-1或q=-1且k为奇数时,Sk,S2k-Sk,S3k-S2k,…是等比数列,其公比为qk.
(5)若a1·a2·…·an=Tn,则Tn,T2nTn,T3nT2n,…成等比数列. [基本能力] 1.在等比数列{an}中,a3=2,a7=8,则a5=________. 答案:4 2.(2019·长春调研)在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,则n=________. 答案:14 3.已知等比数列{an}中,a2+a3=1,a4+a5=2,则a6+a7等于________. 答案:4 4.设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9等于________.
答案:18
[典例感悟] 1.(2019·洛阳尖子生高三第一次联考)在等比数列{an}中,a3,a15是方程x2+6x+2=0
的根,则a2a16a9的值为( )
A.-2+22 B.-2 C.2 D.-2或2 5
解析:选B 设等比数列{an}的公比为q,因为a3,a15是方程x2+6x+2=0的根,所以a3·a15=a29=2,a3+a15=-6,所以a3<0,a15<0,则a9=-2,所以a2a16a9=a29a9=a9=-2,故选B. 2.(2019·丽水模拟)设各项都是正数的等比数列{an}的前n项和为Sn,且S10=10,S30
=70,那么S40等于( )
A.150 B.-200 C.150或-200 D.400或-50 解析:选A 易知S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30.又S20>0,所以S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,所以S40=150.故选A. [方法技巧] 应用等比数列性质解题时的2个注意点 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q(m,n,p,q∈N*),则am·an=ap·aq”,可以减少运算量,提高解题速度. (2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用. [针对训练] 1.(2019·惠州调研)等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2
+…+log3a10=( )
A.12 B.10 C.8 D.2+log35 解析:选B ∵a5a6+a4a7=18,∴a5a6=9,∴log3a1+log3a2+…+log3a10=log3(a1a2·…·a10)=log3(a5a6)5=5log39=10.
2.(2019·兰州一中测试)在等比数列{an}中,若a1+a2+a3+a4=158,a2a3=-98,则1a1+1a2+1a3+1a4
等于( )
A.35 B.53 C.-35 D.-53 解析:选D 1a1+1a2+1a3+1a4=a1+a4a1·a4+a2+a3a2·a3. ∵在等比数列{an}中,a1·a4=a2·a3, ∴原式=a1+a2+a3+a4a2·a3=158×-89=-53.故选D.