等比数列及其前n项和考点与题型归纳

合集下载

高三数学等比数列及其前n项和

高三数学等比数列及其前n项和

考点三
例 2
等比数列的性质及应用
(1)在各项不为零的等差数列{an}中,2a2 019-
b2 020=a2 020,则 log2(b2 019·b2 021)的值为(
+2a2
)
A.1 B.2 C.4 D.8
解析:(1)因为在等差数列{an}中,a2 019+a2 021=2a2 020,
an+2k,an+3k,…为等比数列,公比为qk.
(5)在等比数列{an}中,若Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n也成等比数列(n为偶数且
q≠-1).
释疑
(1)任意两个实数不一定都有等比中项,只有同号的两个非零实数才有等比中项.

n
n
(2)an= ·q ,当 q>0 且 q≠1 时,可以看成函数 y=cq ,其是一个不为 0 的常数与指数
(- ) -
na1;当 q≠1 时,{an}的前 n 项和 Sn=
-
=
-
.
考点二
等比数列的判定与证明
例1 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a2,a3的值;
(1)解:因为a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),
第3节
等比数列及其前n项和
课程标准要求
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解

.
4.了解等比数列与指数函数的关系.

高中数学《等比数列前n项和公式》知识点讲解及重点练习

高中数学《等比数列前n项和公式》知识点讲解及重点练习

4.3.2 等比数列的前n 项和公式第1课时 等比数列前n 项和公式学习目标 1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.知识点一 等比数列的前n 项和公式已知量首项、公比与项数首项、公比与末项求和公式S n =Error!S n =Error!知识点二 等比数列前n 项和的性质1.数列{a n }为公比不为-1的等比数列(或公比为-1,且n 不是偶数),S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 仍构成等比数列.2.若{a n }是公比为q 的等比数列,则S n +m =S n +q n S m (n ,m ∈N *).3.若{a n }是公比为q 的等比数列,S 偶,S 奇分别是数列的偶数项和与奇数项和,则:①在其前2n 项中,S 偶S 奇=q ;②在其前2n +1项中,S 奇-S 偶=a 1-a 2+a 3-a 4+…-a 2n +a 2n +1=a 1+a 2n +1q 1-(-q )=a 1+a 2n +21+q(q ≠-1).1.等比数列前n 项和S n 不可能为0.( × )2.若首项为a 的数列既是等比数列又是等差数列,则其前n 项和等于na .( √ )3.若a ∈R ,则1+a +a 2+…+a n -1=1-a n 1-a.( × )4.若某数列的前n 项和公式为S n =-aq n +a (a ≠0,q ≠0且q ≠1,n ∈N *),则此数列一定是等比数列.( √ )一、等比数列前n 项和公式的基本运算例1 在等比数列{a n }中,(1)S2=30,S3=155,求S n;(2)a1+a3=10,a4+a6=54,求S5;(3)a1+a n=66,a2a n-1=128,S n=126,求公比q.解 (1)由题意知Error!解得Error!或Error!从而S n=14×5n+1-54或S n=1 080×[1-(-56)n]11.(2)方法一 由题意知Error!解得Error!从而S5=a1(1-q5)1-q=312.方法二 由(a1+a3)q3=a4+a6,得q3=18,从而q=12.又a1+a3=a1(1+q2)=10,所以a1=8,从而S5=a1(1-q5)1-q=312.(3)因为a2a n-1=a1a n=128,所以a1,a n是方程x2-66x+128=0的两个根.从而Error!或Error!又S n=a1-a n q1-q=126,所以q=2或1 2 .反思感悟 等比数列前n项和运算的技巧(1)在等比数列的通项公式和前n项和公式中,共涉及五个量:a1,a n,n,q,S n,其中首项a1和公比q为基本量,且“知三求二”,常常列方程组来解答.(2)对于基本量的计算,列方程组求解是基本方法,通常用约分或两式相除的方法进行消元,有时会用到整体代换,如q n,a11-q都可看作一个整体.(3)在解决与前n项和有关的问题时,首先要对公比q=1或q≠1进行判断,若两种情况都有可能,则要分类讨论.跟踪训练1 在等比数列{a n}中.(1)若a 1=2,a n =162,S n =112,求n 和q ;(2)已知S 4=1,S 8=17,求a n .解 (1)由S n =a 1-a n q1-q 得,112=2-162q 1-q,∴q =-2,又由a n =a 1q n -1得,162=2(-2)n -1,∴n =5.(2)若q =1,则S 8=2S 4,不符合题意,∴q ≠1,∴S 4=a 1(1-q 4)1-q=1,S 8=a 1(1-q 8)1-q=17,两式相除得1-q 81-q 4=17=1+q 4,∴q =2或q =-2,∴a 1=115或a 1=-15,∴a n =115·2n -1或-15·(-2)n -1.二、利用错位相减法求数列的前n 项和例2 求数列{n 2n }的前n 项和.解 设S n =12+222+323+…+n 2n ,则有12S n =122+223+…+n -12n +n2n +1,两式相减,得S n -12S n =12+122+123+…+12n -n 2n +1,即12S n =12(1-12n )1-12-n 2n +1=1-12n -n 2n +1.∴S n =2-12n -1-n 2n =2-n +22n (n ∈N *).反思感悟 错位相减法的适用范围及注意事项(1)适用范围:它主要适用于{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和.(2)注意事项:①利用“错位相减法”时,在写出S n 与qS n 的表达式时,应注意使两式交错对齐,以便于作差,正确写出(1-q )S n 的表达式.②利用此法时要注意讨论公比q 是否等于1的情况.跟踪训练2 已知等比数列{a n }满足:a 1=12,a 1,a 2,a 3-18成等差数列,公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和S n .解 (1)设等比数列{a n }的公比为q ,a 1=12,因为a 1,a 2,a 3-18成等差数列,所以2a 2=a 1+a 3-18,即得4q 2-8q +3=0,解得q =12或q =32,又因为q ∈(0,1),所以q =12,所以a n =12·(12)n -1=12n.(2)根据题意得S n =1×12+3×122+…+(2n -1)×12n ,12S n =1×122+3×123+…+(2n -3)×12n +(2n -1)×12n +1,两式相减得12S n =1×12+2×122+…+2×12n -(2n -1)×12n +1=12+12×1-12n -11-12-(2n -1)×12n +1=32-12n -1-2n -12n +1,所以S n =3-42n -2n -12n =3-2n +32n ,n ∈N *.三、等比数列前n 项和的性质例3 (1)在等比数列{a n }中,若S 2=7,S 6=91,则S 4=________.(2)已知等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =________.(3)若数列{a n }是等比数列,且其前n 项和为S n =3n +1-2k ,则实数k =________.答案 (1)28 (2)2 (3)32解析 (1)∵数列{a n }是等比数列,且易知公比q ≠-1,∴S 2,S 4-S 2,S 6-S 4也构成等比数列,即7,S 4-7,91-S 4构成等比数列,∴(S 4-7)2=7(91-S 4),解得S 4=28或S 4=-21.又S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0,∴S 4=28.(2)由题意知S 奇+S 偶=-240,S 奇-S 偶=80,∴S 奇=-80,S 偶=-160,∴q =S 偶S 奇=2.(3)∵S n =3n +1-2k =3·3n -2k ,且{a n }为等比数列,∴3-2k =0,即k =32.延伸探究本例(3)中,若将条件改为“若数列{a n }是等比数列,且其前n 项和为S n =a ·(13)n -1+5”,再求实数a 的值.解 由S n =a ·(13)n -1+5,可得S n =3a ·(13)n +5,依题意有3a +5=0,故a =-53.反思感悟 处理等比数列前n 项和有关问题的常用方法(1)运用等比数列的前n 项和公式,要注意公比q =1和q ≠1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元.(2)灵活运用等比数列前n 项和的有关性质.跟踪训练3 (1)已知等比数列{a n }的前n 项和为S n ,S 4=1,S 8=3,则a 9+a 10+a 11+a 12等于( )A .8B .6C .4D .2答案 C解析 S 4,S 8-S 4,S 12-S 8成等比数列.即1,2,a 9+a 10+a 11+a 12成等比数列.∴a 9+a 10+a 11+a 12=4.(2)一个项数为偶数的等比数列{a n },全部各项之和为偶数项之和的4倍,前3项之积为64,求数列的通项公式.解 设数列{a n }的首项为a 1,公比为q ,所有奇数项、偶数项之和分别记作S奇,S偶,由题意可知,S奇+S偶=4S偶,即S奇=3S偶.因为数列{a n}的项数为偶数,所以有q=S偶S奇=13.又因为a1·a1q·a1q2=64,所以a31·q3=64,即a1=12,故所求通项公式为a n=12×(13)n-1,n∈N*.1.在数列{a n}中,已知a n+1=2a n,且a1=1,则数列{a n}的前5项的和等于( ) A.-25 B.25 C.-31 D.31答案 D解析 因为a n+1=2a n,且a1=1,所以数列{a n}是首项为1,公比为2的等比数列,所以数列{a n}的前5项的和为25-12-1=31.2.等比数列1,x,x2,x3,…的前n项和S n等于( )A.1-x n1-xB.1-x n-11-xC.Error!D.Error!答案 C解析 当x=1时,S n=n;当x≠1且x≠0时,S n=1-x n 1-x.3.设等比数列{a n}的前n项和为S n,若S10∶S5=1∶2,则S15∶S5等于( )A.3∶4 B.2∶3C.1∶2 D.1∶3答案 A解析 在等比数列{a n}中,S5,S10-S5,S15-S10,…成等比数列,因为S10∶S5=1∶2,所以S5=2S10,S15=34S5,得S15∶S5=3∶4,故选A.4.已知在等比数列{a n }中,a 3=32,S 3=92,则a 1=________.答案 32或6解析 方法一 当q =1时,a 1=a 2=a 3=32,满足S 3=92.当q ≠1时,依题意,得Error!解得Error!综上可得a 1=32或a 1=6.方法二 Error!所以a 1+a 2=3,所以a 1+a 2a 3=1+q q 2=2,所以q =1或q =-12.所以a 1=32或a 1=6.5.若等比数列{a n }的公比为13,且a 1+a 3+…+a 99=60,则{a n }的前100项和为________.答案 80解析 令X =a 1+a 3+…+a 99=60,Y =a 2+a 4+…+a 100,则S 100=X +Y ,由等比数列前n 项和性质知YX =q =13,所以Y =20,即S 100=X +Y =80.1.知识清单:(1)等比数列前n 项和公式.(2)利用错位相减法求数列的前n 项和.(3)等比数列前n 项和的性质.2.方法归纳:错位相减法、方程(组)思想、分类讨论.3.常见误区:(1)忽略q =1的情况而致错.(2)错位相减法中粗心出错.(3)忽略对参数的讨论.1.在等比数列{a n }中,a 1=2,a 2=1,则S 100等于( )A .4-2100 B .4+2100 C .4-2-98 D .4-2-100答案 C 解析 q =a 2a 1=12.S 100=a 1(1-q 100)1-q =2[1-(12)100]1-12=4(1-2-100)=4-2-98.2.设等比数列{a n }的前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18 B .-18 C.578 D.558答案 A解析 易知q ≠-1,因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.3.若等比数列{a n }的前n 项和S n =2n -1+a ,则a 3a 5等于( )A .4 B .8 C .16 D .32答案 C解析 等比数列{a n }的前n 项和S n =2n -1+a ,n ≥2时,a n =S n -S n -1=2n -1+a -(2n -2+a ),化简得a n =2n -2.则a 3a 5=2×23=16.4.设S n 为等比数列{a n }的前n 项和,若27a 4+a 7=0,则S 4S 2等于( )A .10B .9C .-8D .-5答案 A解析 设数列{a n }的公比为q ,由27a 4+a 7=0,得a 4(27+q 3)=0,因为a 4≠0,所以27+q 3=0,则q =-3,故S 4S 2=1-q 41-q 2=10.5.已知{a n }是首项为1的等比数列,S n 是其前n 项和,且9S 3=S 6,则数列{1a n}的前5项和等于( )A.158或5B.3116或5C.3116D.158答案 C解析 设数列{a n }的公比为q ,显然q ≠1,由已知得9(1-q 3)1-q=1-q 61-q,解得q =2,∴数列{1a n}是以1为首项,12为公比的等比数列,前5项和为1×[1-(12)5]1-12=3116.6.若等比数列{a n }的前n 项和S n =2·3n +r ,则r =________.答案 -2解析 S n =2·3n +r ,由等比数列前n 项和的性质得r =-2.7.已知S n 为等比数列{a n }的前n 项和,S n =93,a n =48,公比q =2,则项数n =________,a 1=________.答案 5 3解析 由S n =93,a n =48,公比q =2,得Error!解得Error!8.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.答案 -2解析 由题意知2S n=S n+1+S n+2,若q=1,则S n=na1,式子显然不成立,若q≠1,则有2a1(1-q n) 1-q=a1(1-q n+1)1-q +a1(1-q n+2)1-q,故2q n=q n+1+q n+2,即q2+q-2=0,∴q=-2.9.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列.(1)求数列{a n}的公比q;(2)若a1-a3=3,求S n.解 (1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2),由于a1≠0,故2q2+q=0.又q≠0,从而q=-1 2 .(2)由已知可得a1-a1(-12)2=3,故a1=4.从而S n=4[1-(-12)n]1-(-12)=83[1-(-12)n].10.已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+12b2+13b3+…+1nb n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解 (1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时,1nb n=b n+1-b n.整理得b n+1n+1=b nn,又b22=b11,所以b n=n(n∈N*).(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).11.在等比数列{a n}中,a1=4,q=5,则使S n>107的最小正整数n的值是( ) A.11 B.10C.12 D.9答案 A解析 由题意可知在等比数列{a n}中,a1=4,q=5,∴S n=4·(1-5n)1-5=5n-1.∵S n>107,∴5n-1>107,∴n>10.01,∵n为正整数,∴n≥11,故n的最小值为11.12.等比数列{a n}的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,这个等比数列前n项的积为T n(n≥2),则T n的最大值为( )A.14B.12C.1 D.2答案 D解析 设数列{a n}共有(2m+1)项,由题意得S奇=a1+a3+…+a2m+1=85 32,S偶=a2+a4+…+a2m=21 16,因为项数为奇数时,S奇-a1S偶=q,即2+2116q=8532,所以q=1 2 .所以T n=a1·a2·…·a n=a n 1q 1+2+…+n -1=23222,n -故当n =1或2时,T n 取最大值,为2.13.设数列{a n }的前n 项和为S n ,称T n =S 1+S 2+…+S n n为数列a 1,a 2,a 3,…,a n 的“理想数”,已知数列a 1,a 2,a 3,a 4,a 5的理想数为2 014,则数列2,a 1,a 2,…,a 5的“理想数”为( )A .1 673B .1 675 C.5 0353 D.5 0413答案 D解析 因为数列a 1,a 2,…,a 5的“理想数”为2 014,所以S 1+S 2+S 3+S 4+S 55=2 014,即S 1+S 2+S 3+S 4+S 5=5×2 014,所以数列2,a 1,a 2,…,a 5的“理想数”为2+(2+S 1)+(2+S 2)+…+(2+S 5)6=6×2+5×2 0146=5 0413.14.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1-1,则S n =________.答案 3n -12解析 当n =1时,则有2S 1=a 2-1,∴a 2=2S 1+1=2a 1+1=3;当n ≥2时,由2S n =a n +1-1得出2S n -1=a n -1,上述两式相减得2a n =a n +1-a n ,∴a n +1=3a n ,得a n +1a n =3且a 2a 1=3,∴数列{a n }是以1为首项,以3为公比的等比数列,∴S n =1-3n1-3=3n -12.15.设数列{a n }的前n 项和为S n ,点(n ,S n n )(n ∈N *)均在直线y =x +12上.若b n =123,n a +则数列{b n }的前n 项和T n =________.答案 9n +1-98解析 依题意得S n n =n +12,即S n =n 2+12n .当n ≥2时,a n =S n -S n -1=(n 2+12n )-[(n -1)2+12(n -1)]=2n -12;当n =1时,a 1=S 1=32,符合a n =2n -12,所以a n =2n -12(n ∈N *),则1223,3n n n a b +==由b n +1b n =32(n +1)32n=32=9,可知{b n }为公比为9的等比数列,b 1=32×1=9,故T n =9(1-9n )1-9=9n +1-98.16.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列{a n2n -1}的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得Error!解得Error!故数列{a n }的通项公式为a n =2-n ,n ∈N *.(2)设数列{a n2n -1}的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①S n 2=a 12+a 24+…+a n -12n -1+a n 2n .②所以,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n 2n -1,所以数列{a n 2n -1}的前n 项和S n =n2n -1,n ∈N *.。

高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习专题4 等比数列的前n项和公式【考点梳理】考点一等比数列的前n项和公式考点二等比数列前n项和的性质1.数列{a n}为公比不为-1的等比数列(或公比为-1,且n不是偶数),S n为其前n项和,则S n,S2n-S n,S3n-S2n仍构成等比数列.2.若{a n}是公比为q的等比数列,则S n+m=S n+q n S m(n,m∈N*).3.若{a n}是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则:①在其前2n项中,S偶S奇=q;②在其前2n+1项中,S奇-S偶=a1-a2+a3-a4+…-a2n+a2n+1=a1+a2n+1q1-(-q)=a1+a2n+21+q(q≠-1).考点三:等比数列前n项和的实际应用1.解应用问题的核心是建立数学模型.2.一般步骤:审题、抓住数量关系、建立数学模型.3.注意问题是求什么(n ,a n ,S n ). 注意:(1)解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答. (2)在归纳或求通项公式时,一定要将项数n 计算准确. (3)在数列类型不易分辨时,要注意归纳递推关系.(4)在近似计算时,要注意应用对数方法,且要看清题中对近似程度的要求.【题型归纳】题型一:等比数列前n 项和公式的基本运算1.(2022·江苏南通·高二期末)已知等比数列{}n a 的前6项和为1894,公比为12,则6a =( ) A .738B .34C .38D .242.(2022·河南商丘·高二期中(理))已知正项等比数列{}n a 中,22a =,48a =,数列{}2n n a a ++的前n 项和为n S ,则62SS =( )A .32B .21C .16D .83.(2022·全国·高二课时练习)设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q 等于( ).A .1B .2C .3D .4题型二:等比数列的判断和性质的应用4.(2022·全国·高二课时练习)设等比数列{}n a 前n 项和为S n ,若S 3=8,S 6=24,则a 10+a 11+a 12=( ) A .32B .64 C .72D .2165.(2022·广西·田东中学高二期末(理))已知数列{}n a 是等比数列,n S 为其前n 项和,若1234a a a ++=,4568a a a ++=,则12S =( ) A .40B .60C .32D .506.(2020·四川·双流中学高二期中(理))设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73C .310D .12或题型三:等比数列奇偶项和的性质7.(2020·河南·高二月考(理))已知等比数列{}n a 共有32项,其公比3q =,且奇数项之和比偶数项之和少60,则数列{}n a 的所有项之和是( ) A .30B .60C .90D .1208.(2022·全国·高二课时练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( )A .2B .3C .4D .59.(2022·全国·高二课时练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比和项数分别为( ) A .8,2B .2,4C .4,10D .2,8题型四:等比数列中an 与Sn 的关系10.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,21n n S a =-,则2020S =( )A .202021-B .202121-C .2020122⎛⎫- ⎪⎝⎭D .2021122⎛⎫- ⎪⎝⎭11.(2022·宁夏·六盘山高级中学高二月考(理))已知数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,那么数列{}n a ( ) A .是等差数列但不是等比数列 B .或者是等差数列,或者是等比数列 C .是等比数列但不是等差数列D .既不可能是等差数列,也不可能是等比数列12.(2020·江苏·高二专题练习)设数列{}n a 的前n 项和为n S ,若11a =,121n n S S +=+,则6S =( )A .63B .127C .128D .256题型五:等比数列的简单应用13.(2022·甘肃·西北师大附中高二期中(理))中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.那么请问此人前两天所走的里程为( ) A .189里B .216里C .288里D .192里14.(2022·全国·高二课时练习)为全力抗战疫情,响应政府“停课不停学”的号召,某市中小学按照教学计划,开展在线课程教学和答疑.某高一学生家长于3月5日在某购物平台采用分期付款的形式购买了一台价值m 元的平板电脑给学生进行网上学习使用,该平台规定:分12个月还清,从下个月5日即4月5日开始偿还,每月5日还款,且每个月还款钱数都相等.若购物平台的月利率为p ,则该家长每月的偿还金额是( )A .12m 元B .()()1212111mp p p ++-元C .()12112m p +元D .()()1313111mp p p ++-元 15.(2022·北京朝阳·高二期末)光圈是一个用来控制光线透过镜头,进入机身内感光面的光量的装置.表达光圈的大小我们可以用光圈的F 值表示,光圈的F 值系列如下:F 1,F 1.4,F 2,F 2.8,F 4,F 5.6,F 8,…,F 64.光圈的F 值越小,表示在同一单位时间内进光量越多,而且上一级的进光量是下一级的2倍,如光圈从F 8调整到F 5.6,进光量是原来的2倍.若光圈从F 4调整到F 1.4,则单位时间内的进光量为原来的( ) A .2倍B .4倍C .8倍D .16倍【双基达标】一、单选题16.(2022·河南·高二期中(文))n S 为等比数列{}n a 的前n 项和,且33a =,26S =,则5a 的值为( )A .34B .3或12C .3或34D .12或3417.(2022·河南商丘·高二期中(理))在正项等比数列{}n a 中,512a =,673a a +=,{}n a 的前n 项和为n S ,前n 项积为n T ,则满足1n n S a T +>的最大正整数n 的值为( ) A .11B .12 C .13D .1418.(2022·江西·九江市第三中学高二期中(理))若{}n a 是等比数列,已知对任意*n N ∈,2121n n a a a ++=-,则2222123n a a a a ++++=( )A .2(21)n -B .121(2)3n -C .41n -D .1(41)3n -19.(2022·全国·高二课时练习)等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( )A .2n-1B .413n -C .()143--nD .()123n--20.(2022·江西·景德镇一中高二期中(文))已知数列{}n a 满足11a =,若1114()n n nn N a a ++-=∈,则数列{}n a 的通项n a =( ) A .341n -B .431n -C .413n -D .314n -21.(2022·河南洛阳·高二期中(文))已知等比数列{}n a 的前n 项和为21nn S a b =⋅+-,则44a b +的最小值为( ) A .2B..4D .522.(2022·全国·高二课时练习)在等比数列{}n a 中,已知42S =,86S =,17181920a a a a +++=( )A .32B .16C .35D .16223.(2022·全国·高二课时练习)已知n S 是等比数列{}n a 的前n 项和,若存在*m ∈N ,满足29m mS S =,2511m m a m a m +=-,则m 的值为( )A .-2B .2C .-3D .324.(2022·全国·高二课时练习)某人于2020年6月1日去银行存款a 元,存的是一年定期储蓄,2022年6月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的6月1日他都按照同样的方法在银行取款和存款.设银行定期储蓄的年利率r 不变,则到2025年6月1日他将所有的本息全部取出时,取出的钱共有( )A .()41a r +元B .()51a r +元C .()61a r +元D .()()611a r r r⎡⎤+-+⎣⎦元 25.(2022·江苏·高二单元测试)设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【高分突破】一:单选题26.(2022·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2B .()1213n -C .4n ﹣1D .()1413n - 27.(2022·全国·高二学业考试)已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ) A .1B .4 C .12D .3628.(2022·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3B .13C .2D .1229.(2022·全国·高二单元测试)在正项数列{}n a 中,首项12a =,且()()22*12,,2n n a a n n -∈≥N 是直线80x y -=上的点,则数列{}n a 的前n 项和n S =( ) A .()122n--B .122n +-C .12n +D .122n-30.(2022·江苏·苏州市苏州高新区第一中学高二月考)公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟领先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.001米时,乌龟爬行的总距离为( )A .61019000-米B .410190-米C .510990-米D .5101900-米31.(2022·全国·高二课时练习)等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .29B .31C .33D .3632.(2022·全国·高二课时练习)若正项等比数列{}n a 满足13116a a =,4322a a a +=,则()1121111n n nS a a a +=-++-=( )A .()2123n ⎡⎤+-⎣⎦B .()2123n -C .()2123n +D .()2123n⎡⎤--⎣⎦33.(2022·广西·崇左高中高二月考)已知{}n a 是公比不为1的等比数列,n S 为其前n 项和,满足2021201920192020a a a a -=-,则下列等式成立的是( )A .2202020212019S S S =B .2020202120192S S S +=C .2201920212020S S S =D .2019202120202S S S +=34.(2022·全国·高二课时练习)如图,画一个边长为2的正三角形,再将这个正三角形各边的中点相连得到第二个正三角形,依此类推,一共画了5个正三角形.那么这五个正三角形的面积之和等于( )A . 3. 213. 853D . 3413二、多选题35.(2022·江苏苏州·高二期中)已知等比数列{}n a 的各项均为正数,其前n 项和为n S ,若5432a a a +=,且存在两项m a ,n a ,使得14m n a a a =,则( ) A .12n n a a +=B .12n n S a a =-C .5mn =D .6m n +=36.(2022·全国·高二课时练习)n S 是数列{}n a 的前n 项的和,且满足11a =,12n n a S +=,则下列说法正确的是( ) A .{}n a 是等比数列 B .1123n n a -+=⨯C .{}n a 中能找到三项p a ,q a ,r a 使得p q r a a a =D .1n a ⎧⎫⎨⎬⎩⎭的前n 项的和74n T <37.(2022·江苏·高二单元测试)已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( )A .若2q ,则n n T S =B .若2q >,则n n T S >C .若14q =-,则n n T S >D .若34q =-,则n n T S <38.(2022·全国·高二单元测试)已知等比数列{}n a 的前n 项和为n S ,且214S a =,2a 是11a +与312a 的等差中项,数列{}n b 满足1n n n n a b S S+=⋅,数列{}n b 的前n 项和为n T ,则下列命题正确的是( )A .数列{}n a 的通项公式为13-=n n aB .31n n S =-C .数列{}n b 的通项公式为()()1233131nn nn b +⨯=--D .n T 的取值范围是11,86⎡⎫⎪⎢⎣⎭39.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,若存在实数H ,使得对任意的*n ∈N ,都有n S H <,则称数列{}n a 为“和有界数列”.下列说法正确的是( ) A .若数列{}n a 是等差数列,且公差0d =,则数列{}n a 是“和有界数列” B .若数列{}n a 是等差数列,且数列{}n a 是“和有界数列”,则公差0d = C .若数列{}n a 是等比数列,且公比q 满足1q <,则数列{}n a 是“和有界数列” D .若数列{}n a 是等比数列,且数列{}n a 是“和有界数列”,则公比q 满足1q <40.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()*1N 23n n naa n a +=∈+,则下列结论正确的是( )A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为1123n n a -=- C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--三、填空题41.(2022·全国·高二课时练习)数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =________.42.(2022·全国·高二课时练习)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.43.(2022·全国·高二课时练习)已知等比数列{a n }的公比为12-,则135246a a a a a a ++++的值是________.44.(2022·江西·景德镇一中高二期中)在数列{}n a 及{}n b中,1n n n a a b +=+1n n n b a b +=+11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2022项和为__________.45.(2022·全国·高二课时练习)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=______.四、解答题46.(2022·河南商丘·高二期中(文))已知正项数列{}n a 满足19a =,()12n n n a a a +=+,设()lg 1n n b a =+.(1)求数列{}n b 的通项公式;(2)设1n n c a =+,数列{}n c 的前n 项积为n S ,若lg n n S b λ<恒成立,求实数λ的取值范围.47.(2022·河南商丘·高二期中(文))设公差不为0的等差数列{}n a 的前n 项和为n S ,已知636S =,且2a 是1a ,5a 的等比中项. (1)求{}n a 的通项公式;(2)设2nn n b a =⨯,求数列{}n b 的前n 项和n T .48.(2022·陕西·延安市宝塔区第四中学高二月考)已知数列{}n a 的前n 项和S n =2n +1+A ,若{}n a 为等比数列.(1)求实数A 及{}n a 的通项公式;(2)设b n =log 2a n ,求数列{a n b n }的前n 项和T n .49.(2022·河南洛阳·高二期中(理))已知正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=,数列{}n b 满足12b =,2112na n nb b ++⋅=. (1)求证{}n a 为等差数列;(2)求证:12122n na a ab bb ++⋅⋅⋅+<.50.(2022·甘肃省民乐县第一中学高二期中(文))已知数列{}n a 的前n 项和为n S ,111,1(*)n n a a S n N +==+∈,数列{}n b 满足11b =,12n n n b a b +=+.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足1nn n n ac b b +=,求证:1212n c c c +++<.【答案详解】1.B解:根据题意,等比数列{}n a 的前6项和为1894,公比为12,则有616(1)18914a q S q -==-,解可得124a =,则56134a a q ==; 故选:B . 2.B 【详解】设正项等比数列{}n a 的公比为q,则2q ==, 所以,()()()()()()()66111263486421234112412635121221151212a a a a a a a a SS a a a a a --++++++++⨯--====+++--. 故选:B. 3.B解:由题意,正项等比数列{}n a 中, 因为23S =,3412a a +=,所以()121221234331212a a a a q a a a a +=+=⎧⎧⇒⎨⎨+=+=⎩⎩,解得24q =. 因为0q >,所以2q .故选:B 4.B【详解】由于S 3、S 6-S 3、S 9-S 6,S 12-S 9成等比数列,S 3=8,S 6-S 3=16,故其比为2, 所以S 9-S 6=32,a 10+a 11+a 12=S 12-S 9=64. 故选:B . 5.B 【详解】由等比数列的性质可知,数列36396129,,,S S S S S S S ---是等比数列,即数列4,8,96129,S S S S --是等比数列,因此9661291216,12,32,32161260S S S S S S -==-==++=.故选:B. 6.B 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 7.D 【详解】设等比数列{}n a 的奇数项之和为1S ,偶数项之和为2,S则311531a a S a a =++++,()2463213531123a a a a q a a a a S S ++++=++++==又1260S S +=,则11603S S +=,解得1230,90S S ==, 故数列{}n a 的所有项之和是3090120+=. 故选:D 8.B 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 9.D解:设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶, 根据题意得:S 奇=85,S 偶=170, ∴q S S ==偶奇2,又a 1=1,∴S 奇()21211na q q -==-85,整理得:1﹣4n =﹣3×85,即4n =256,解得:n =4,则这个等比数列的项数为8.故选D . 10.A 【详解】依题意21n n S a =-,当n=1时,a 1=2a 1-1,解得a 1=1; 当2n ≥时,由21n n S a =-得1121n n S a --=-,两式相减,得1122n n n n S S a a ---=-,即12n n a a -=,所以12nn a a -=()2n ≥, 所以数列{}n a 是首项为1,公比为2的等比数列, 所以12n na ,202020202020122112S -==--. 故选:A . 11.C解:数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,∴当2n 时,1111112212nn nn n n a S S -- ⎡⎤=-=--=-⎢⎥⎢⎭⎛⎫⎛⎫⎛⎫- ⎪⎪⎪⎝⎝⎭⎝⎣⎭⎥⎦,当1n =时,1111122a S ==-=-,上式也成立.∴12nn a ⎛⎫=- ⎪⎝⎭可得112n n a a -=,∴数列{}n a 是首项为12-,公比为12的等比数列,但不是等差数列. 故选:C .12.A在121n n S S +=+中,令1n =,得23S =,所以22a =. 由121n n S S +=+得2121n n S S ++=+,两式相减得212n n a a ++=,即212n n a a ++=,又11a =,212a a =,所以数列{}n a 是以1为首项,2为公比的等比数列,所以66126312S -==-. 故选:A . 13.C 【详解】由题意,记每天走的路程为{}n a 是公比为12的等比数列,又由6161[1()]2378112-==-a S ,解得1192a =, 所以11192()2-=⨯n n a ,则21192()962a =⨯= 故前两天所走的路程为:192+96=288 故选:C 14.B 【详解】设每月的偿还金额都是a 元, 则()()()()122111111m p a a p a p a p +=+++++++,即()()()121211111a p m p p ⎡⎤-+⎣⎦+=-+,解得()()1212111mp p a p +=+-.故选:B 15.C 【详解】由题可得单位时间内的进光量形成公比为12的等比数列{}n a ,则F 4对应单位时间内的进光量为5a ,F 1.4对应单位时间内的进光量为2a ,从F 4调整到F 1.4,则单位时间内的进光量为原来的258a a =倍.故选:C. 16.C 【详解】设公比为q ,则211136a q a a q ⎧=⎨+=⎩解得12q =-或1q =,故25334a a q ==或53a =.故选:C. 17.B 【详解】设正项等比数列{}n a 的公比为q ,则()25267556a q q a a q qa a ++==+=,即260q q +-=,0q >,则2q,514132a a q ∴==, 所以,()11221321232n n nS --==-,()()211112122121122232nn n n n n n n n T a a a a --+++-⎛⎫=⋅⋅⋅=⋅=⋅= ⎪⎝⎭,因为1n n S a T +>,即211221123232n nn--+>,即2115222n n n -->,即213100n n -+<,n <,因为1112<,则25122<<, 因此,满足条件的正整数n 的最大值为12. 故选:B. 18.D 【详解】因为对任意*n N ∈,2121n n a a a ++=-①,当1n =时,11a =, 当2n ≥时,211121n n a a a --++=-②,①-②得11222n n n n a ---==,满足11a =,则()221124n n n a --==,即{}2n a 是首项为1,公比为4的等比数列,所以()22221231141(41)143n n n a a a a ⨯-++++==--. 故选:D. 19.B 【详解】由a 1a 2a 3=1得321,a =∴a 2=1,又a 4=4,故q 2=4,所以a 2+a 4+a 6+…+a 2n =1414n--=413n -. 故选:B20.A 【详解】根据题意,由1114n n n aa +-=, 得12121321111111444n nn a a a a a a --⎛⎫⎛⎫⎛⎫-+-++-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得()114141144143n n n a a -⨯---==-,因11a =,所以1413n n a -=,即341n n a =-.故选:A. 21.C 【详解】当1n =时,1121a S a b ==+-,当2n ≥时,11121221n n n n n n a S S a b a a b ---==⋅+--⋅⋅--+=从而22a a =,34a a = 因为{}n a 是等比数列所以公比322a q a ==,且212a a a ==,即21ab a +-=,即1a b += 所以444a b ≥==+,当且仅当44a b =,即12a b ==时,等号成立所以44a b +的最小值为4 故选:C 22.A 【详解】解:由等比数列前n 项和的性质知,当数列依次每k 项和不为0时,则依次每k 项和仍成等比数列,所以4S ,84S S -,128S S -,1612S S -,2016S S -成等比数列,且公比为4q .又441232S a a a a =+++=,484567844S S a a a a S q -=+++==,所以42q =,所以16201617181920432S S a a a a S q -=+++==.故选:A 23.D 【详解】设等比数列{}n a 的公比为q . 当1q =时,21122m m S ma S ma ==与29m m S S =矛盾,不合乎题意;当1q ≠时,()()2122111119111m m m m m m m a q S q q q S qa q q---===+=---,则8mq =, 又2511m mma m q a m +==-,即5181m m +=-,解得3m =. 故选:D. 24.D设此人2020年6月1日存入银行的钱为1a 元,2022年6月1日存入银行的钱为2a 元,以此类推,则2025年6月1日存入银行的钱为6a 元,那么此人2025年6月1日从银行取出的钱有()6a a -元.由题意,得1a a =,()21a a r a =++,()()2311a a r a r a =++++,……,()()()()()5432611111a a r a r a r a r a r a =++++++++++,所以()()()256111a a a r r r ⎡⎤-=++++++⎣⎦()()()()()561111111r r a r r r a r ⎡⎤+-+⎣⎦⎡⎤=+-++⋅⎣-=⎦. 故选:D . 25.A 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n n n n dd S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221bd d a q q -====--,解得111,2,5,4a d q b ====, 所以3d q -=-. 故选:A 26.D 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --===由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列a 12+a 22+⋯+a n 2=1(14)41143nn ⋅--=-故选:D 27.C 【详解】由题意可得所有项之和S S +奇偶是所有偶数项之和S 偶的4倍,所以,4S S S +=奇偶偶,故13S S =奇偶设等比数列{}n a 的公比为q ,设该等比数列共有()2k k N *∈项,则()242132113k k S a a a q a a a qS S -=+++=+++==奇奇偶,所以,13q =,因为3212364a a a a ==,可得24a =,因此,2112aa q ==.故选:C. 28.B解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=, ∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n n a --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn nn n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n n n na S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13. 故选:B. 29.B 【详解】在正项数列{}n a 中,12a =,且()2212,n n a a -是直线80x y -=上的点,可得22128n n a a -=,所以12n n a a -=,可得数列{}n a 是首项为2,公比为2的等比数列, 则{}n a 的前n 项和()12122212n n n S +-==--.故选:B 30.A由题意,乌龟每次爬行的距离构成等比数列{}n a , 其中11100,10a q ==,且30.00110n a -==, 所以乌龟爬行的总距离为3611110010(1)101101119000110nn n a a qa q S q q---⨯---====---. 故选:A. 31.B 【详解】由题意,231136112522a q a a q a q ⎧=⎪⎨+=⎪⎩,则3161214a q a q ⎧=⎪⎨=⎪⎩,可得q 3=18, ∴q =12,a 1=16,∴S 5=551116[1()](1)231112a q q--==-. 故选:B 32.D 【详解】由题意,2132116a a a ==,得214a =.令{}n a 的公比为0q >,由4322a a a +=,得2210q q +-=,得12q =,∴112a =,∴12n na =,令()111n n n b a +=-,则()2nn b =--,∴()()()12212212123nn n n S b b b ⎡⎤--⎣⎦⎡⎤=++⋅⋅⋅+==--⎣⎦--, 故选:D. 33.B 【详解】设等比数列{}n a 的公比为q (q ≠1),又2021201920192020a a a a -=-,即201920129290120a a q a q -=+,而20190a ≠,则220q q +-=,解得2q =-,则201911201923a a S +⋅=,2019112020223a a S -⋅=,2019112021423a a S +⋅=,10a ≠,20192019201922111111202020212019(22)(42)(2)99a a a a a a S S S -⋅⋅+⋅+⋅=≠=,A 不正确;20192020202120192019201911111122422223323a a a a S a S a S -⋅+⋅+⋅=+==+,B 正确;20192019201922111111201920212020(2)(42)(22)99a a a a a a S S S +⋅⋅+⋅-⋅=≠=,C 不正确;2019201920191111201920212020112422523323a a a a a a S S S +⋅+⋅+⋅=+=+≠,D 不正确.故选:B 34.D 【详解】根据三角形中位线的性质可知:这五个正三角形的边长形成等比数列{}n a :前5项分别为:2,1,12,14,18, 所以这五个正三角形的面积之和为22222222461111112121248222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦51414114⎛⎫⨯- ⎪⎝⎭==-,故选:D . 35.BD 【详解】解:设等比数列{}n a 的公比为q ,且0q >因为5432a a a +=,即4321112a q a q a q +=化简得:221q q +=解得:12q =或1q =-(舍去)对A ,因为12q =,所以112n n a a +=,故A 错误;对B ,1111112211112nn n n n a a a a q a a q S a a q q ---====----,故B 正确; 对C,因为1a,即1a =,化简得:2214m n q+-=,又12q =解得6m n +=,当2m =,4n =时,8mn =,故C 错误; 对D ,由C 知,6m n +=,故D 正确. 故选:BD. 36.BD 【详解】当1n =时,211222a S a ===;当2n ≥时,由12n n a S +=可得12n n a S -=, 两式相减得12n n n a a a +=-,所以13n n a a +=,且2123aa =≠, 则数列{}n a 从第二项开始成以3为公比的等比数列,则222323n n n a a --=⋅=⨯,所以21,1,23,2,n n n a n -=⎧=⎨⨯≥⎩则1123n n a -+=⨯,所以A 选项错误,B 选项正确. 由题意可知,数列{}n a 为单调递增数列,设p q <,若在数列{}n a 中能找到三项p a ,q a ,r a ,使得p q r a a a =, 则r q p >>且p ,q ,*r ∈N ,若1p =,则p r a a =,这与数列{}n a 单调递增矛盾, 若2p ≥,则224323292p q p q p q a a --+-=⨯⨯⨯=⨯,232r r a -=⨯,由p q r a a a =,可得42322p q r +--⨯=,由于432b q +-⨯能被3整除,22r -不能被3整除,故C 选项错误;因为21,1,11,2,23n n n a n -=⎧⎪=⎨≥⎪⨯⎩所以11T =;当2n ≥时,122111111113137231111112232323434413n n n n T ---⎛⎫- ⎪⎛⎫⎝⎭=++++⋅⋅⋅+=+=+-<+= ⎪⨯⨯⨯⎝⎭-,故选项D 正确. 故选:BD 37.AB 【详解】由于{}n a 是等比数列,0n S >,所以110a S =>,0q ≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q->-, 等价于1010n q q ⎧->⎨->⎩或1010n q q ⎧-<⎨-<⎩,对于1010n q q ⎧->⎨->⎩,由于n 可能是奇数,也可能是偶数,所以(1,0)(0,1)q ∈-⋃,对于1010n q q ⎧-<⎨-<⎩可得:1q >.综上所述,q 的取值范围是(1,0)(0,)-+∞;因为2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以2311(2)22n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,因为0n S >,且(1,0)(0,)q ∈-⋃+∞,所以,当12q =-或2q 时,0n n T S -=,即n n T S =,故A选项正确.当112q -<<-或2q >时,0n n T S ->,即n n T S >,故B 选项正确,D 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <,故C 选项错误; 故选:AB. 38.BD 【详解】A :由214S a =可得213a a =,所以等比数列{}n a 的公比3q =,所以113n n a a -=⨯. 由2a 是11a +与312a 的等差中项,可得2131212a a a =++,即()2111123132a a a ⨯=++⨯,解得12a =,所以123n n a -=⨯,所以A 不正确; B :()()1121331113nnnn a q S q-⨯-===---,所以B 正确;C :()()111123111331313131n n n n n n n n n a b S S -+++⨯⎛⎫===- ⎪⋅----⎝⎭,所以C 不正确;D :12n n T b b b =++⋅⋅⋅+1223111111111111113333231313131313131n n n ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭所以数列{}n T 是递增数列,得11110326n T T ⎛⎫≤<⨯-= ⎪⎝⎭,所以1186n T ≤<,所以D 正确.故选:BD. 39.BC【详解】若数列{}n a 是公差为d 的等差数列,则211(1)()222n n n d d dS na n a n -=+=+-, 当0d =时,若10a ≠,则1n S a n =⋅,n S 是n 的一次函数,不存在符合题意的H ,A 错误; 数列{}n a 是“和有界数列”,当0d ≠时,n S 是n 的二次函数,不存在符合题意的H ,当0d =,10a =时,存在符合题意的H ,B 正确;若数列{}n a 是公比为(1)≠q q 的等比数列,则1(1)1-=-n n a q S q,因q 满足1q <,则||1n q <,即|1|2nq -<,11|||||1|2||11n n a a S q qq=⋅-<--,则存在符合题意的实数H ,即数列{}n a 是“和有界数列”,C 正确;若等比数列{}n a 是“和有界数列”,当1q =-时,若n 为偶数,则0n S =,若n 为奇数,则1n S a =,即1=n S a ,从而存在符合题意的实数H ,D 错误. 故选:BC 40.AD 【详解】因为123nn n a a a +=+,所以112323n nn n a a a a ++==+, 所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,且11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n na +=-,可得1123n n a +=-,故选项A 正确,选项B 不正确;因为1231n na +=-单调递增,所以1123n n a +=-单调递减,即{}n a 为递减数列,故选项C 不正确;1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2312132323232223n n n T n ++=-+-+⋅⋅⋅+-=++⋅⋅⋅+- 22122323412nn n n +-=⨯-=---.故选项D 正确;故选:AD . 41.2n -1(n ∈N *) 【详解】a n -a n -1=a 1q n -1=2n -1,即21232112,2,2n n n a a a a a a ---=⎧⎪-=⎪⎨⎪⎪-=⎩ 各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1(n ∈N *). 又1n =时,11a =符合a n =2n -1 故答案为:2n -1(n ∈N *). 42.12 【详解】由210S 30-(210+1)S 20+S 10=0, 得210(S 30-S 20)=S 20-S 10.∴302010201012S S S S -=-,∵数列{a n }是等比数列∴10302021222330201011121320S S a a a a q S S a a a a -++++==-++++ 故101012q =,解得:12q =± 因为等比数列{a n }为正项数列,所以0q >,故12q = 故答案为:12 43.2- 【分析】由等比数列的通项公式与性质求解即可 【详解】∵等比数列{a n }的公比为12-,则()1351352461352a a a a aa a a a q a a a ++++==-++++.故答案为:2-44.4042. 【详解】由1n n n a a b +=+1n n n b a b +=+ 两式相加可得:()112n n n n a b a b +++=+,故数列{}n n a b +是以2为首项,2为公比的等比数列, 所以2nn n a b +=;两式相乘可得:()()222112n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,故数列{}n n a b ⋅是以1为首项,2为公比的等比数列, 所以12n n n a b -⋅=, 故112n nn nn n n a b c a b a b ⎛⎫+=+==⎪⋅⎝⎭, 故数列{}n c 的前2022项和为2021202124042S =⨯=, 故答案为:4042 45.32 【详解】当q =1时,显然不符合题意;当q ≠1时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,∴a 8=14×27=32. 故答案为:32 46.(1)12n n b -=(2)[)2,+∞ (1)由已知可得()2111++=+n n a a ,所以()()1lg 12lg 1++=+n n a a ,即12n n b b +=, 又()()11lg 1lg 191b a =+=+=,所以{}n b 是首项为1,公比为2的等比数列,所以12n n b -=.(2)由(1)可知()1lg 12n n n a b -=+=,所以12101n n a -=-,12110n n n c a -=+=.所以021112222122212122101011010100n nn n n S c c c --+++⋅⋅⋅+-⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==⋅=⋅.lg n n S b λ<即1212n n λ--<,即1122n λ->-, 因为1122n --关于n 单调递增,而11222n --<且无限接近于2, 所以实数λ的取值范围是[)2,+∞. 47.(1)21n a n =-(2)()12326n n T n +=-⨯+(1)设{}n a 的公差为d (0d ≠).由题可知()()1211165636,24,a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩解得11,2,a d =⎧⎨=⎩所以{}n a 的通项公式为()12121n a n n =+-=-. (2)由(1)可知()212nn b n =-⨯,所以()()231123252232212n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…②①-②得()()23122222212n n n T n +-=+⨯++⋅⋅⋅+--⨯()()()211121222212322612n n n n n -++⨯-=+⨯--⨯=-⨯--,所以()12326n n T n +=-⨯+.48.(1)A =-2,2nn a =.(2)()1122n n T n ++=-(1)根据题意,数列{}n a 的前n 项和S n =2n +1+A , 则a 1=S 1=22+A =4+A ,a 2=S 2-S 1=(23+A )-(22+A )=4, a 3=S 3-S 2=(24+A )-(23+A )=8,又由{}n a 为等比数列,则a 1×a 3=(a 2)2,即(4+A )×8=42=16, 解可得A =-2,则a 1=4-2=2,即数列{}n a 是首项为2,公比为2的等比数列, 则2nn a =, (2)设2n n b log a =,则设222nn n b log a log n ===, 则2nn n a b n ⨯=,故231222322nn T n ⨯⨯⨯⋯⋯⨯=++++,①则有()23121222122n n n T n n ⨯+⨯+⋯⋯+⨯⨯+=-+,② ①-②可得:()231122222122n n n n T n n +++++⋯⋯+⨯-=-=--,变形可得:()1122n n T n ++=-,故()1122n n T n ++=-.49. (1)证明:由题意有22111,(2)n n n n n n S S a S S a n ++-+=+=≥,两式相减得2211n n n n a a a a +++=-,即()22110n n n n a a a a ++--+=,所以()()1110n n n n a a a a ++--+=,因为数列{}n a 为正项数列,所以10n n a a ++>, 所以11(2)n n a a n +-=≥,又因为2212S S a +=,即22122a a a +=,解得22a =,且11a =, 所以211a a -=也满足上式,所以*11()n n a a n N +-=∈,所以数列{}n a 为以1为首项1为公差的等差数列; (2)证明:由(1)有()111n a n n =+-⨯=,又2112na n nb b ++⋅=,所以2112n n n b b ++⋅=,()21122n n n b b n --⋅=≥,两式相除有()2112112422n n n n b n b ++--==≥,又12b =,24b =, 所以135721,,,,,n b b b b b -是以12b =为首项,公比为4的等比数列,24682,,,,,n b b b b b 是以24b =为首项,公比为4的等比数列,所以数列{}n b 是以12b =为首项,公比为2的等比数列,所以2nn b =,所以2n n na nb =,令1212n n na a a Tb b b =++⋅⋅⋅+, 则()2111111212222n n nT n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, ()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减可得231111111111111222112222222212nn n n n n n T n n +++⎛⎫- ⎪+⎝⎭=++++-⨯=-⨯=--,所以222n nn T +=-, 因为n N ∈,所以2222n nn T +=-<,从而得证原不等式成立. 50. (1)解:由11n n a S +=+,得11(2)n n a S n -=+≥, 所以11(2)2(2)n n n n n a a a n a a n ++-=≥=≥,即 又由11a =,得22a =,满足12n n a a +=,所以12n n a ,而122n n n n b b a +-==,所以1211222n n n b b ---=++⋯+,所以()1211212221=2121n n n nn b --⨯-=++++=--…;(2) 证明:因为11+12111()2(21)(21)2121n nn n n n c -+==-----, 所以121223111111111111()=(1)22221212121212121n n n n c c c ++++=-+-+--<-------.。

等比数列的前n项和数列总结教学提纲

等比数列的前n项和数列总结教学提纲

等比数列的前n 项和一、等比数列的前n 项和公式1.乘法运算公式法∵S n =a 1+a 2+a 3+…+a n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1(1+q +q 2+…+q n -1)=a 1·1-q 1+q +q 2+…+q n -11-q =a 11-q n1-q, ∴S n =a 11-q n1-q. 2.方程法∵S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -2)=a 1+q (a 1+a 1q +…+a 1q n -1-a 1q n -1)=a 1+q (S n -a 1q n -1),∴(1-q )S n =a 1-a 1q n .∴S n =a 11-q n1-q. 3.等比性质法∵{a n }是等比数列,∴a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . ∴a 2+a 3+…+a n a 1+a 2+…+a n -1=q , 即S n -a 1S n -a n =q 于是S n =a 1-a n q 1-q =a 11-q n1-q. 二、等比数列前n 项和公式的理解(1)在等比数列的通项公式及前n 项和公式中共有a 1,a n ,n ,q ,S n 五个量,知道其中任意三个量,都可求出其余两个量.(2)当公比q ≠1时,等比数列的前n 项和公式是S n =a 11-q n 1-q ,它可以变形为S n =-a 11-q ·q n +a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数).等比数列前n 项和性质(1)在等比数列{a n }中,连续相同项数和也成等比数列,即:S k ,S 2k -S k ,S 3k -S 2k ,…仍成等比数列.(2)当n 为偶数时,偶数项之和与奇数项之和的比等于等比数列的公比,即S 偶S 奇=q . (3)若一个非常数列{a n }的前n 项和S n =-Aq n +A (A ≠0,q ≠0,n ∈N *),则数列{a n }为等比数列,即S n =-Aq n +A ⇔数列{a n }为等比数列.题型一 等比数列前n 项和公式的基本运算(在等比数列{a n }的五个量a 1,q ,a n ,n ,S n 中,a 1与q 是最基本的元素,当条件与结论间的联系不明显时,均可以用a 1和q 表示a n 与S n ,从而列方程组求解,在解方程组时经常用到两式相除达到整体消元的目的,这是方程思想与整体思想在数列中的具体应用;在解决与前n 项和有关的问题时,首先要对公比 q =1或q ≠1进行判断,若两种情况都有可能,则要分类讨论.)1、在等比数列{a n}中,(1)若S n=189,q=2,a n=96,求a1和n;(2)若q=2,S4=1,求S8.2、设等比数列{a n}的前n项和为S n,若S3+S6=2S9,求数列的公比q.题型二等比数列前n项和性质的应用3、一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项和为170,求出数列的公比和项数.4、等比数列{a n}中,若S2=7,S6=91,求S4.题型三等比数列前n项和的实际应用5、借贷10 000元,以月利率为1%,每月以复利计息借贷,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元?(1.016≈1.061,1.015≈1.051)[规范解答] 方法一设每个月还贷a元,第1个月后欠款为a0元,以后第n个月还贷a元后,还剩下欠款a n元(1≤n≤6),则a0=10 000,a1=1.01a0-a,a2=1.01a1-a=1.012a0-(1+1.01)a,……a6=1.01a5-a=……=1.016a0-[1+1.01+…+1.015]a.由题意,可知a6=0,即1.016a0-[1+1.01+…+1.015]a=0,a=1.016×1021.016-1.因为1.016=1.061,所以a=1.061×1021.061-1≈1 739.故每月应支付1 739元.方法二一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S1=104(1+0.01)6=104×(1.01)6(元).另一方面,设每个月还贷a元,分6个月还清,到贷款还清时,其本利和为S2=a(1+0.01)5+a(1+0.01)4+…+a=a[1+0.016-1]1.01-1=a[1.016-1]×102(元).由S1=S2,得a=1.016×1021.016-1. 以下解法同法一,得a≈1 739.故每月应支付1 739元.方法技巧错位相减法求数列的和若数列{a n}为等差数列,数列{b n}为等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以公比q,并向后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.6、已知等差数列{a n}的前3项和为6,前8项和为-4.(1)求数列{a n}的通项公式;(2)设b n=(4-a n)q n-1(q≠0,n∈N*),求数列{b n}的前n项和S n.数列归纳整合一、数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、图象法、通项公式法和递推公式法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为递增数列、递减数列、摆动数列和常数列.(4)a n 与S n 的关系:a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2.二、等差数列、等比数列性质的对比 等差数列 等比数列性质 ①设{a n }是等差数列,若s +t =m +n ,则a s+a t =a m +a n ;②从等差数列中抽取等距离的项组成的数列是一个等差数列;③等差数列中连续m 项的和组成的新数列是等差数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等差数列 ①设{a n }是等比数列,若s +t =m +n ,则a s ·a t =a m ·a n ; ②从等比数列中抽取等距离的项组成的数列是一个等比数列; ③等比数列中连续m 项的和组成的新数列是等比数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等比数列(注意:当q =-1且m 为偶数时,不是等比数列)函数特性 ①等差数列{an}的通项公式是n 的一次函数,即an =an +b(a≠0,a =d ,b =a1-d); ②等差数列{an}的前n 项和公式是一个不含常数项的n 的二次函数,即Sn =an2+bn(d≠0) ①等比数列{an}的通项公式是n 的指数型函数,即an =c·qn ,其中c≠0,c =a1q ; ②等比数列{an}的前n 项和公式是一个关于n 的指数型函数,即Sn =aqn -a(a≠0,q≠0,q≠1)三、等差数列、等比数列的判断方法(1)定义法:a n +1-a n =d (常数)⇔{a n }是等差数列;a n +1a n=q (q 为常数,q ≠0)⇔{a n }是等比数列. (2)中项公式法:2a n +1=a n +a n +2⇔{a n }是等差数列;a n +12=a n ·a n +2(a n ≠0)⇔{a n }是等比数列.(3)通项公式法:a n =an +b (a ,b 是常数)⇔{a n }是等差数列;a n =c ·q n (c ,q 为非零常数)⇔{a n }是等比数列.(4)前n 项和公式法:S n =an 2+bn (a ,b 为常数,n ∈N *)⇔{a n }是等差数列;S n =aq n -a (a ,q 为常数,且a ≠0,q ≠0,q ≠1,n ∈N *)⇔{a n }是等比数列.专题一 数列通项公式的求法数列的通项公式是数列的核心之一,它如同函数中的解析式一样,有解析式便可研究函数的性质,而有了数列的通项公式,便可求出数列中的任何一项及前n 项和.常见的数列通项公式的求法有以下几种:(1)观察归纳法求数列的通项公式就是观察数列的特征,横向看各项之间的关系结构,纵向看各项与序号n 的内在联系,结合常见数列的通项公式,归纳出所求数列的通项公式.(2)利用公式法求数列的通项公式数列符合等差数列或等比数列的定义,求通项时,只需求出a 1与d 或a 1与q ,再代入公式a n =a 1+(n -1)d 或a n =a 1q n -1中即可.(3)利用a n 与S n 的关系求数列的通项公式如果给出的条件是a n 与S n 的关系式,可利用a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2,先求出a 1=S 1,再通过计算求出a n (n ≥2)的关系式,检验当n =1时,a 1是否满足该式,若不满足该式,则a n 要分段表示.(4)利用累加法、累乘法求数列的通项公式形如:已知a 1,且a n +1-a n =f (n )(f (n )是可求和数列)的形式均可用累加法;形如:已知a 1,且a n +1a n=f (n )(f (n )是可求积数列)的形式均可用累乘法. (5)构造法(利用数列的递推公式研究数列的通项公式)若由已知条件直接求a n 较难,可以通过整理变形等,从中构造出一个等差数列或等比数列,从而求出通项公式.1、已知数列{a n }满足a n +1=a n +3n +2且a 1=2,求a n .2、数列{a n }中,若a 1=1,a n +1=n +1n +2a n(n ∈N *),求通项公式a n . 3、已知数列{a n }满足a n +1=3a n +2(n ∈N *),a 1=1,求通项公式.4、设S n 为数列{a n }的前n 项的和,且S n =32(a n -1)(n ∈N *),求数列{a n }的通项公式. 专题二 数列求和求数列的前n 项和S n 通常要掌握以下方法:1、公式法:直接由等差、等比数列的求和公式求和,注意对等比数列q ≠1的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列再求和.4、裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.5、倒序相加法:把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广).1、求数列214,418,6116,…,2n +12n +1的前n 项和S n . 2、在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项的和. 3、求和S n =x +2x 2+3x 3+…+nx n .专题三 数列的交汇问题数列是高中代数的重点内容之一,也是高考的必考内容及重点考查的范围,它始终处在知识的交汇点上,如数列与函数、方程、不等式等其他知识交汇进行命题.1、已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且 a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围. 2、数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a n 2·b n ,证明:当且仅当n ≥3时,c n +1<c n .。

等比数列及其前n项和知识点大全、经典高考题解析

等比数列及其前n项和知识点大全、经典高考题解析

等比数列及其前n 项和【考纲说明】(1)理解的等比数列的概念,掌握等比数列的性质; (2)探索并掌握等比数列的通项公式和前n 项和公式;(3)体会等比数列与指数函数的关系,并能够运用指数函数的性质解决数列问题;【知识梳理】考点一:等比数列的相关概念 二、等比数列的概念如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数,则这个数列称为 等比数列,这个常数称为等比数列的公比.通常用字母q 表示。

2、等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(它们互为相反数) (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅3、等比数列的通项公式若等比数列{}n a 的首项是1a ,公差是q ,则()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,推广:n mn m n n n m m a a a qq q a --=⇔=⇔= 4、等比数列的前n 项和公式等比数列的前n 项和的公式: (1)当1q =时,1nS na = (2)当1q ≠时,()11111n n n a q a a qS qq--==--11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).考点二:等比数列的性质 1、通项之间的性质(1)对任何*,m n N ∈,在等比数列{}n a 中,有n mn m a a q-=特别的,当1m =时,便得到等比数列的通项公式。

一、若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。

6.3 等比数列及其前n项和

6.3  等比数列及其前n项和

题型二
等比数列的判定与证明
【例 2】 ( 2008·湖北文, 21 )已知数列 {an} 和 {bn}
2 满 足 : a1 = ,an+1= an+n-4,bn=(-1)n(an-3n+21), 3 其中 为实数,n为正整数.
(1)证明:对任意实数 ,数列{an}不是等比数列; (2)证明:当 ≠-18时,数列{bn}是等比数列.
§6.3 等比数列及其前n项和
要点梳理
基础知识
自主学习
1.等比数列的定义 如果一个数列 从第二项起,后项与相邻前项的比是 一个确定的常数(不为零) ,那么这个数 公比 列叫做等比数列,这个常数叫做等比数列的 q 通常用字母 表示. 2.等比数列的通项公式 设等比数列 {an} 的首项为 a1 ,公比为 q ,则它的通 n-1 项 an = a1 ·q .
1 【例3】在等比数列{an}中,a1+a2+a3+a4+a5=8且 a1 1 1 1 1 =2,求a3. a2 a3 a4 a5 思维启迪 ( 1 )由已知条件可得 a1 与公比 q 的方程
组,解出a1、q,再利用通项公式即可得a3. (2)也可利用性质 a3 =a1·a5=a2·a4直接求得a3.
2 (1)∵a3a11= a7 =4a7,
∵a7≠0,∴a7=4,∴b7=4,
∵{bn}为等差数列,∴b5+b9=2b7=8.
(2)方法一
a1a2a3a4=a1a1qa1q2a1q3= a14 q6=1.① ②
a13a14a15a16=a1q12·a1q13·a1q14·a1q15
= a14 ·q54=8. 54 a4 q 1 ②÷①: 4 6 =q48=8q16=2, a1 q 又a41a42a43a44=a1q40a1q41·a1q42·a1q43 = a14·q166= a14 ·q6·q160=( a14 ·q6)·(q16)10

等比数列常考题型归纳总结很全面

等比数列常考题型归纳总结很全面

等比数列及其前n 项和教学目标:1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。

2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。

知识回顾: 1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。

用递推公式表示为)2(1≥=-n q a a n n 或q a ann =+1。

注意:等比数列的公比和首项都不为零。

(证明数列是等比数列的关键) 2.通项公式:等比数列的通项为:11-=n n q a a 。

推广:m n m n q a a -= 3.中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。

4.等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n5.等比数列项的性质(1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2。

(2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。

n q q ='。

(其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。

4、证明等比数列的方法(1)证:q a a nn =+1(常数);(2)证:112·+-=n n na a a (2≥n ). 考点分析考点一:等比数列基本量计算 例1、已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为54,求5S 。

例2、成等差数列的三项正数的和等于15,且这三个数加上2、5、13后成等比数列{}n b 中的543,,b b b 。

等比数列及其前n项和 高考考点精讲

等比数列及其前n项和  高考考点精讲

1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12.2.(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 3.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64 答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 (1)C (2)2n -1解析 (1)由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.故选C.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×[1-(12)n ]1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 (1)B (2)3n -1解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1q n -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1. 由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q=12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.13.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .[3分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n(2n-1),n 为偶数.[6分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[8分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[10分]故对于n ∈N *,有S n +1S n ≤136.[12分]1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( ) A .4 B .6 C .8 D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.(2016·珠海模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23D.23或-23答案 C解析 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.*4.(2015·福建)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .9 答案 D解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2,解得⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里 答案 B解析 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1(1-126)1-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.6.(2016·铜仁质检)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32C .1D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以a 4=π33. log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 3π33=7π3, 所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4, 则q =a 4a 3=4.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150. 9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案12n解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×(12)n -1=12n .10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2,∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3,∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1, ∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1) =n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).12.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n-1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n, ∴a n +1·a n +2=⎝⎛⎭⎫12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12,∴a 2=12⇒b 1=a 1+a 2=32.∴{b n }是首项为32,公比为12的等比数列.∴b n =32×⎝⎛⎭⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(5)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离答案 B解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34 C. 3 D .2答案 A解析 由圆的方程x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a 2=1,解之得a =-43.3.(2016·西安模拟)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.4.(2016·黑龙江大庆实验中学检测)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A .6-2 2 B .52-4 C.17-1 D.17答案 B解析 圆C 1关于x 轴对称的圆C 1′的圆心为C 1′(2,-3),半径不变,圆C 2的圆心为(3,4),半径r =3,|PM |+|PN |的最小值为圆C 1′和圆C 2的圆心距减去两圆的半径,所以|PM |+|PN |的最小值为(3-2)2+(4+3)2-1-3=52-4.5.已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1外切,则ab 的最大值为________. 答案 94解析 由两圆外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和, 即(a +b )2=(2+1)2,即9=a 2+b 2+2ab ≥4ab , 所以ab ≤94,当且仅当a =b 时取等号,即ab 的最大值是94.题型一 直线与圆的位置关系的判断例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离D .不确定(2)(2016·江西吉安月考)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A .相离 B .相切C .相交D .以上都有可能答案 (1)B (2)C解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x2+y2-2x+4y=0内.直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交,故选C.思维升华判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知方程x2+xtan θ-1sin θ=0有两个不等实根a和b,那么过点A(a,a2),B(b,b2)的直线与圆x2+y2=1的位置关系是________.答案相切解析由题意可知过A,B两点的直线方程为(a+b)x-y-ab=0,圆心到直线AB的距离d=|-ab| (a+b)2+1,而a+b=-1tan θ,ab=-1sin θ,因此d=⎪⎪⎪⎪1sin θ⎝⎛⎭⎫-1tan θ2+1,化简后得d=1,故直线与圆相切.题型二圆与圆的位置关系例2(1)(2016·山东)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2017·重庆调研)如果圆C:x2+y2-2ax-2ay+2a2-4=0与圆O:x2+y2=4总相交,那么实数a的取值范围是______________________.答案(1)B(2)(-22,0)∪(0,22)解析(1)∵圆M:x2+(y-a)2=a2(a>0),∴圆心坐标为M(0,a),半径r1为a,圆心M到直线x+y=0的距离d=|a|2,由几何知识得⎝⎛⎭⎫|a|22+(2)2=a2,解得a=2.∴M(0,2),r1=2.又圆N的圆心坐标N(1,1),半径r2=1,∴|MN|=(1-0)2+(1-2)2=2,r1+r2=3,r1-r2=1. ∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.(2)圆C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22).思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切; (2)m 取何值时两圆内切;(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6),半径分别为11和61-m . (1)当两圆外切时,(5-1)2+(6-3)2=11+61-m , 解得m =25+1011.(2)当两圆内切时,因为定圆的半径11小于两圆圆心间距离5, 故只有61-m -11=5,解得m =25-1011. (3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0,所以公共弦长为 2(11)2-(|4×1+3×3-23|42+32)2=27.题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2016·全国丙卷)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,|AB |=23,所以|OM |=3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3), BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4. 命题点2 直线与圆相交求参数范围例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2. 命题点3 直线与圆相切的问题例5 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0,则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A .2 6B .8C .4 6D .10(2)若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是( ) A .-33 B .- 3 C.33D. 3 答案 (1)C (2)A解析 (1)由已知,得AB →=(3,-1),BC →=(-3,-9), 则AB →·BC →=3×(-3)+(-1)×(-9)=0, 所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径, 得其方程为(x -1)2+(y +2)2=25, 令x =0,得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以|MN |=|y 1-y 2|=46,选C.(2)依题意得,圆心到直线的距离等于半径, 即|cos θ+sin 2θ-1|=14,|cos θ-cos 2θ|=14,所以cos θ-cos 2θ=14或cos θ-cos 2θ=-14(不符合题意,舍去).由cos θ-cos 2θ=14,得cos θ=12,又θ为锐角,所以sin θ=32, 故该直线的斜率是-cos θsin θ=-33,故选A.7.高考中与圆交汇问题的求解考点分析 与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.一、与圆有关的最值问题典例1 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 解析 (1)∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆的直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37, ∴当x =-1时有最大值49=7,故选B. (2)∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 答案 (1)B (2)B二、直线与圆的综合问题典例2 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( )A .2B .4 2C .6D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45πB.34π C .(6-25)π D.54π 解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36.∴|AB |=6.(2)∵∠AOB =90°,∴点O 在圆C 上.设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |.又|OD |=|2×0+0-4|5=45, ∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π. 答案 (1)C (2)A1.(2017·广州调研)若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( )A .1条B .2条C .3条D .4条答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.依题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( )A .21B .19C .9D .-11答案 C解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m .又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9.3.(2016·南昌二模)若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .2 2答案 B解析 圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1, ∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2016·泰安模拟)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0答案 A 解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定答案 A解析 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.6.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,那么△P AB 面积的最大值是( )A .3- 2B .4C .3+ 2D .6 答案 C解析 依题意得圆x 2+y 2+kx =0的圆心(-k 2,0)位于直线x -y -1=0上, 于是有-k 2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1. 由题意可得|AB |=22,直线AB 的方程是x -2+y 2=1, 即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322, 点P 到直线AB 的距离的最大值是322+1,∴△P AB 面积的最大值为12×22×32+22=3+2,故选C. 7.(2016·全国乙卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.8.(2016·天津四校联考)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.答案 22 解析 ∵(1-2)2+(2)2=3<4,∴点(1,2)在圆(x -2)2+y 2=4的内部.当劣弧所对的圆心角最小时,圆心(2,0)与点(1,2)的连线垂直于直线l . ∵2-01-2=-2,∴所求直线l 的斜率k =22. 9.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|P A |=|PB |= 3.∴△POA 为直角三角形,其中|OA |=1,|AP |=3,则|OP |=2,∴∠OP A =30°,∴∠APB =60°.∴P A →·PB →=|P A →||PB →|·cos ∠APB =3×3×cos 60°=32. 10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程;(2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1), 即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4,|PO |2=x 2+y 2,∵|PM |=|PO |,∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由|OO ′|=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由|OO ′|=2=2a -a ,求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2.*13.(2016·湖南六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解 (1)设圆心C (a,0)(a >-52), 则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1. 若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0 ⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t=0 ⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4, 所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列及其前n 项和考点与题型归纳一、基础知识1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列与指数型函数的关系当q >0且q ≠1时,a n =a 1q ·q n 可以看成函数y =cq x ,其是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上;对于非常数列的等比数列{a n }的前n 项和S n =a 1(1-q n )1-q =-a 11-q q n +a 11-q ,若设a =a 11-q ,则S n =-aq n +a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x +a 图象上一系列孤立的点.对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点.二、常用结论汇总——规律多一点设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *.(3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(4)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n 也是等比数列.(5)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .考点一 等比数列的基本运算[典例] (2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . [解] (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1. (2)若a n=(-2)n -1,则S n =1-(-2)n3.由S m =63,得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =1-2n1-2=2n -1.由S m =63,得2m =64,解得m =6. 综上,m =6. [题组训练]1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C.2D .22解析:选B 由题意,设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2q=4. 2.(2019·长春质检)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )A .4B .10C .16D .32解析:选C 设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.3.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:32考点二 等比数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.[证明] 因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以b n +1b n =a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a n a n +1-2a n =2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法]1.掌握等比数列的4种常用判定方法 定义法 中项公式法 通项公式法前n 项和公式法2.等比数列判定与证明的2点注意(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n 项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.(2)证明一个数列{a n }不是等比数列,只需要说明前三项满足a 22≠a 1·a 3,或者是存在一个正整数m ,使得a 2m +1≠a m ·a m +2即可.[题组训练]1.数列{a n }的前n 项和为S n =2a n -2n ,证明:{a n +1-2a n }是等比数列. 证明:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,由a 1+a 2=2a 2-4得a 2=6.由于S n =2a n -2n ,故S n +1=2a n +1-2n +1,后式减去前式得a n +1=2a n +1-2a n -2n ,即a n+1=2a n +2n,所以a n +2-2a n +1=2a n +1+2n +1-2(2a n +2n )=2(a n +1-2a n ), 又a 2-2a 1=6-2×2=2,所以数列{a n +1-2a n }是首项为2、公比为2的等比数列.2.(2019·西宁月考)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上.在数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1. ∴数列{a n }是一个以2为首项,1为公差的等差数列. ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.①∴T n -1=-12b n -1+1(n ≥2).②①②两式相减,得b n =-12b n +12b n -1(n ≥2).∴32b n =12b n -1,∴b n =13b n -1. 由①,令n =1,得b 1=-12b 1+1,∴b 1=23.∴数列{b n }是以23为首项,13为公比的等比数列.考点三 等比数列的性质考法(一) 等比数列项的性质[典例] (1)(2019·洛阳联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A .-2+22B .-2 C.2D .- 2 或2(2)(2018·河南四校联考)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8D .16[解析] (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)由分数的性质得到1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2a 7a 2+…+a 4+a 5a 4a 5.因为a 8a 1=a 7a 2=a 3a 6=a 4a 5,所以原式=a 1+a 2+…+a 8a 4a 5=4a 4a 5,又a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,∴1a 1+1a 2+…+1a 8=2.故选A. [答案] (1)B (2)A考法(二) 等比数列前n 项和的性质[典例] 各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16[解析] 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ), 解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30. [答案] B [解题技法]应用等比数列性质解题时的2个关注点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[题组训练]1.(2019·郑州第二次质量预测)已知等比数列{a n }中,a 2a 5a 8=-8,S 3=a 2+3a 1,则a 1=( )A.12 B .-12C .-29D .-19解析:选B 设等比数列{a n }的公比为q (q ≠1),因为S 3=a 1+a 2+a 3=a 2+3a 1,所以a 3a 1=q 2=2.因为a 2a 5a 8=a 35=-8,所以a 5=-2,即a 1q 4=-2,所以4a 1=-2,所以a 1=-12,故选B.2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.解析:由题意,得⎩⎪⎨⎪⎧ S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.答案:2[课时跟踪检测]A 级1.(2019·合肥模拟)已知各项均为正数的等比数列{a n }满足a 1a 5=16,a 2=2,则公比q =( )A .4 B.52C .2D.12解析:选C 由题意,得⎩⎪⎨⎪⎧ a 1·a 1q 4=16,a 1q =2,解得⎩⎪⎨⎪⎧ a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-1,q =-2(舍去),故选C.2.(2019·辽宁五校协作体联考)已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4解析:选C 由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,∴log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.3.在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±2解析:选A 因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,则a 1=a 3q2=1,故选A.4.(2018·贵阳适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 019=( )A .22 018-12B .1-⎝⎛⎭⎫12 2 018C .22 019-12D .1-⎝⎛⎭⎫12 2 019解析:选A 由等比数列的性质及a 2a 6=8(a 4-2),得a 24=8a 4-16,解得a 4=4.又a 4=12q 3,故q =2,所以S 2 019=12(1-22 019)1-2=22 018-12,故选A.5.在等比数列{a n }中,a 1+a 3+a 5=21,a 2+a 4+a 6=42,则S 9=( ) A .255 B .256 C .511D .512解析:选C 设等比数列的公比为q ,由等比数列的定义可得a 2+a 4+a 6=a 1q +a 3q +a 5q =q (a 1+a 3+a 5)=q ×21=42,解得q =2.又a 1+a 3+a 5=a 1(1+q 2+q 4)=a 1×21=21,解得a 1=1.所以S 9=a 1(1-q 9)1-q =1×(1-29)1-2=511.故选C.6.已知递增的等比数列{a n }的公比为q ,其前n 项和S n <0,则( ) A .a 1<0,0<q <1 B .a 1<0,q >1 C .a 1>0,0<q <1D .a 1>0,q >1解析:选A ∵S n <0,∴a 1<0,又数列{a n }为递增等比数列,∴a n +1>a n ,且|a n |>|a n +1|, 则-a n >-a n +1>0,则q =-a n +1-a n ∈(0,1),∴a 1<0,0<q <1.故选A.7.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为________. 解析:设等比数列{a n }的公比为q (q >0), 由a 5=a 1q 4=16,a 1=1,得16=q 4,解得q =2, 所以S 7=a 1(1-q 7)1-q =1×(1-27)1-2=127.答案:1278.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,489.(2018·江西师范大学附属中学期中)若等比数列{a n }满足a 2a 4=a 5,a 4=8,则数列{a n }的前n 项和S n =________.解析:设等比数列{a n }的公比为q ,∵a 2a 4=a 5,a 4=8,∴⎩⎪⎨⎪⎧ a 1q ·a 1q 3=a 1q 4,a 1q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1×(1-2n )1-2=2n -1.答案:2n -110.已知等比数列{a n }为递减数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设公比为q ,由a 25=a 10, 得(a 1q 4)2=a 1·q 9,即a 1=q . 又由2(a n +a n +2)=5a n +1, 得2q 2-5q +2=0, 解得q =12()q =2舍去,所以a n =a 1·q n -1=12n .答案:12n11.(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.解:(1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1, 而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a nn=2n -1,所以a n =n ·2n -1.12.(2019·甘肃诊断)设数列{a n +1}是一个各项均为正数的等比数列,已知a 3=7,a 7=127.(1)求a 5的值;(2)求数列{a n }的前n 项和.解:(1)由题可知a 3+1=8,a 7+1=128, 则有(a 5+1)2=(a 3+1)(a 7+1)=8×128=1 024, 可得a 5+1=32,即a 5=31. (2)设数列{a n +1}的公比为q ,由(1)知⎩⎪⎨⎪⎧ a 3+1=(a 1+1)q 2,a 5+1=(a 1+1)q 4,得⎩⎪⎨⎪⎧a 1+1=2,q =2,所以数列{a n +1}是一个以2为首项,2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n -1,利用分组求和可得,数列{a n }的前n 项和S n =2(1-2n )1-2-n =2n +1-2-n .B 级1.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( )A .3n-1 B.1-(-3)n 2C.1+3n 2D.3n 2+n 2解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a na n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =2(1-3n )1-3=3n -1.2.(2019·郑州一测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.解析:因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.答案:1003.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解:(1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12,∴b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。

相关文档
最新文档