等比数列知识点总结与典型例题(精华word版)

等比数列知识点总结与典型例题(精华word版)
等比数列知识点总结与典型例题(精华word版)

等比数列知识点总结与典型例题

1、等比数列的定义:()()*1

2,n

n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:

()11110,0n n

n n a a a q q A B a q A B q

-==

=??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项:

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

-- 11''11n n n a a

q A A B A B A q q

=

-=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法:

(1)用定义:对任意的n ,都有1

1(0){}n n n n n n

a a qa q q a a a ++==≠?或

为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质:

(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(3)若*

(,,,)

m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=???

等差和等比数列比较:

经典例题透析

类型一:等比数列的通项公式

例1.等比数列{}n a 中,1964a a ?=, 3720a a +=,求11a .

思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和

q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出3a 、7a ,再求11a .

解析:

法一:设此数列公比为q ,则8

191126

371164

(1)20

(2)

a a a a q a a a q a q ??=?=??+=+=??

由(2)得:241(1)20a q q +=..........(3) ∴10a >.

由(1)得:421()64a q = , ∴418a q = (4)

(3)÷(4)得:421205

82q q +==,

∴422520q q -+=,解得22q =或21

2

q =

当22q =时,12a =,1011164a a q =?=; 当21

2

q =

时,132a =,101111a a q =?=. 法二:∵193764a a a a ?=?=,又3720a a +=,

∴3a 、7a 为方程220640x x -+=的两实数根,

∴???==4

1673a a 或

??

?==16

4

73a a ∵2

3117a a a ?=, ∴2

71131a a a ==或1164a =.

总结升华:

①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;

②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零). 举一反三:

【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。 【答案】±96

法一:设公比为q ,则768=a 1q 8,q 8=256,∴q=±2,∴a 6=±96; 法二:a 52=a 1a 9?a 5=±48?q=±2,∴a 6=±96。

【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。 【答案】64;

∵21894516a a a ==,又a n >0,∴a 45=4 ∴34445464564a a a a ==。

【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。 【答案】12n n a -=或32n n a -=;

法一:∵2132a a a =,∴312328a a a a ==,∴22a =

从而1313

5

,4a a a a +=??

=?解之得11a =,34a =或14a =,31a = 当11a =时,2q =;当14a =时,1

2

q =。 故12n n a -=或32n n a -=。

法二:由等比数列的定义知21a a q =,231a a q =

代入已知得2

1112

1117

8

a a q a q a a q a q ?++=????=?? 2

1331(1)7,

8

a q q a q ?++=???=??211(1)7,(1)2(2)a q q a q ?++=??=?

将12

a q

=

代入(1)得22520q q -+=, 解得2q =或12

q =

由(2)得112a q =??=?或1

4

12a q =???=?? ,以下同方法一。

类型二:等比数列的前n 项和公式

例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.

因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q≠1.

由3692S S S +=得,369111(1)(1)2(1)

111a q a q a q q q q ---+=

---, 整理得q 3(2q 6-q 3-1)=0,

由q≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0,

因q 3

≠1,故3

12q =-

,所以q =。

举一反三:

【变式1】求等比数列11

1,,,39

的前6项和。

【答案】

364

243

; ∵11a =,1

3

q =,6n =

∴66

6111331364112324313

S ?????-?? ???????????==?-=?? ???????-。 【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【答案】121

1219

; ∵32

2273a a =?=,31(1)1

13313

a q q q q -=?==-或,则a 1=1或a 1=9

∴5555191131213121S 113913

S ??? ?-??==--或==

-.

【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -?=,126n S =,求n 和q 。 【答案】1

2

q =

或2,6n =; ∵211n n a a a a -?=?,∴1128n a a =

解方程组11128

66n n a a a a =??+=?,得1642n a a =??=? 或1264n a a =??=?

①将1642

n a a =??=?代入11n n a a q S q -=-,得1

2q =,

由11n n a a q -=,解得6n =;

②将1264

n a a =??=?代入11n n a a q

S q -=-,得2q =,

由11n n a a q -=,解得6n =。 ∴1

2

q =

或2,6n =。 类型三:等比数列的性质

例3. 等比数列{}n a 中,若569a a ?=,求3132310log log ...log a a a +++. 解析:

∵{}n a 是等比数列,∴110293847569a a a a a a a a a a ?=?=?=?=?=

∴1032313log log log a a a +++ 553123103563log ()log ()log 910a a a a a a =??=?== 举一反三:

【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________. 【答案】100;

∵lga 1+lga 2+lga 3+……+lga 100=lg(a 1·a 2·a 3·……·a 100) 而a 1·a 100=a 2·a 99=a 3·a 98=……=a 50·a 51

∴原式=lg(a 1·a 100)50=50lg(a 1·a 100)=50×lg100=100。

【变式2】在83和272

之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为

________。 【答案】216;

法一:设这个等比数列为{}n a ,其公比为q ,

∵183

a =,445127823a a q q ===?,∴48116q =,29

4q =

∴233

62341111a a a a q a q a q a q ??=??=?3

3

389621634????

=?== ?

???

??

。 法二:设这个等比数列为{}n a ,公比为q ,则183

a =,527

2a =,

加入的三项分别为2a ,3a ,4a ,

由题意1a ,3a ,5a 也成等比数列,∴2

3

8273632

a =?=,故36a =, ∴23

234333216a a a a a a ??=?==。

类型四:等比数列前n 项和公式的性质

例4.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。

思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。 解析:

法一:令b 1=S n =48, b 2=S 2n -S n =60-48=12,b 3=S 3n -S 2n 观察b 1=a 1+a 2+……+a n ,

b 2=a n+1+a n+2+……+a 2n =q n (a 1+a 2+……+a n ), b 3=a 2n+1+a 2n+2+……+a 3n =q 2n (a 1+a 2+……+a n )

易知b 1,b 2,b 3成等比数列,∴2

2

23112348

b b b ===,

∴S 3n =b 3+S 2n =3+60=63. 法二:∵22n n S S ≠,∴1q ≠,

由已知得121(1)

481(1)601n n

a q q a q q

?-=?-?

?-?=?-?①② ②÷①得514n q +=,即1

4

n q = ③ ③代入①得

1

641a q

=-, ∴3133(1)1

64(1)6314

n n a q S q -==-=-。

法三:∵{}n a 为等比数列,∴n S ,2n n S S -,32n n S S -也成等比数列, ∴2232()()n n n n n S S S S S -=-,

∴22

232()(6048)606348n n n n n S S S S S --=+=+=。

举一反三:

【变式1】等比数列{}n a 中,公比q=2, S 4=1,则S 8=___________. 【答案】17;

S 8=S 4+a 5+a 6+a 7+a 8=S 4+a 1q 4+a 2q 4+a 3q 4+a 4q 4=S 4+q 4(a 1+a 2+a 3+a 4)=S 4+q 4S 4=S 4(1+q 4)=1×(1+24)=17 【变式2】已知等比数列{}n a 的前n 项和为S n , 且S 10=10, S 20=40,求:S 30=? 【答案】130;

法一:S 10,S 20-S 10,S 30-S 20构成等比数列,∴(S 20-S 10)2=S 10·(S 30-S 20) 即302=10(S 30-40),∴S 30=130. 法二:∵2S 10≠S 20,∴1q ≠, ∵101)1(10110

=--=q

q a S ,20120(1)

401a q S q -=

=-, ∴1020

11,14

q q -=-∴10

3q =,∴511-=-q a ∴ 130)31)(5(1)

1(330130

=--=--=q

q a S .

【变式3】等比数列{}n a 的项都是正数,若S n =80, S 2n =6560,前n 项中最大的一项为54,求n.

【答案】∵

6560802=

n n S S ,∴1q ≠(否则2

1

2=n n S S ) ∴1(1)

1n n a q S q -=-=80 (1)

212(1)

1n n a q S q -=

-=6560.........(2), (2)÷(1)得:1+q n =82,∴q n =81......(3) ∵该数列各项为正数,∴由(3)知q>1 ∴{a n }为递增数列,∴a n 为最大项54. ∴a n =a 1q n-1=54,∴a 1q n =54q, ∴81a 1=54q..........(4) ∴1542813a q q =

=代入(1)得2

(181)80(1)3

q q -=-, ∴q=3,∴n=4.

【变式4】等比数列{}n a 中,若a 1+a 2=324, a 3+a 4=36, 则a 5+a 6=_____________.

【答案】4;

令b 1=a 1+a 2=a 1(1+q),b 2=a 3+a 4=a 1q 2(1+q),b 3=a 5+a 6=a 1q 4(1+q),

易知:b 1, b 2, b 3成等比数列,∴b 3=122b b =324

362

=4,即a 5+a 6=4.

【变式5】等比数列{}n a 中,若a 1+a 2+a 3=7,a 4+a 5+a 6=56, 求a 7+a 8+a 9的值。 【答案】448;

∵{a n }是等比数列,∴(a 4+a 5+a 6)=(a 1+a 2+a 3)q 3,∴q 3=8, ∴a 7+a 8+a 9=(a 4+a 5+a 6)q 3=56×8=448. 类型五:等差等比数列的综合应用

例5.已知三个数成等比数列,若前两项不变,第三项减去32,则成等差数列.若再将此等差数列的第二项减去4,则又成等比数列.求原来的三个数.

思路点拨:恰当地设元是顺利解方程组的前提.考虑到有三个数,应尽量设较少的未知数,并将其设为整式形式. 解析:

法一:设成等差数列的三数为a-d, a,a+d.

则a-d, a, a+d+32成等比数列,a-d, a-4, a+d 成等比数列.

∴??

???+-=-++-=)2.().........)(()4()1.().........32)((2

2

d a d a a d a d a a 由(2)得a=8

162+d (3)

由(1)得32a=d 2+32d (4)

(3)代(4)消a ,解得8

3d =或d=8.

∴当83d =时,26

9

a =;当d=8时,a=10

∴原来三个数为92,926,9

338

或2,10,50.

法二:设原来三个数为a, aq, aq 2,则a, aq,aq 2-32成等差数列,a, aq-4, aq 2-32成等比数列

∴?????-=--+=)2)......(

32()4()1........(3222

22

aq a aq aq a aq 由(2)得2

4

a q =

-,代入(1)解得q=5或q=13 当q=5时a=2;当q=13时29

a =

.

∴原来三个数为2,10,50或

92,926,9

338. 总结升华:选择适当的设法可使方程简单易解。一般地,三数成等差数列,可设此三数为a-d, a, a+d ;若三数成等比数列,可设此三数为y

x

,x, xy 。但还要就问题而言,这里解法二中采用首项a ,公比q 来解决问题反而简便。 举一反三:

【变式1】一个等比数列有三项,如果把第二项加上4,,那么所得的三项就成为等差数列,如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列.

【答案】为2,6,18或21050

,,999

-;

设所求的等比数列为a ,aq ,aq 2; 则 2(aq+4)=a+aq 2,且(aq+4)2=a(aq 2+32); 解得a=2,q=3或2

9

a =

,q=-5; 故所求的等比数列为2,6,18或21050

,,999

-.

【变式2】已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。 【答案】1、3、9或―1、3、―9或9、3、1或―9、3、―1

设这三个数分别为,,a

a aq q

由已知得22222

27

91a

a aq q a a a q q ???=??

??++=??22

231(1)91a a q q =????++=?? 得4298290q q -+=,所以29q =或219

q =

, 即3q =±或1

3

q =±

故所求三个数为:1、3、9或―1、3、―9或9、3、1或―9、3、―1。

【变式3】有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求这四个数. 【答案】0,4,8,16或15,9,3,1; 设四个数分别是x,y,12-y,16-x

∴???-=--+=)2).......(

16()12()1.......(

1222

x y y y x y 由(1)得x=3y-12,代入(2)得144-24y+y 2=y(16-3y+12) ∴144-24y+y 2=-3y 2+28y, ∴4y 2-52y+144=0, ∴y 2-13y+36=0, ∴ y=4或9, ∴ x=0或15,

∴四个数为0,4,8,16或15,9,3,1. 类型六:等比数列的判断与证明

例6.已知数列{a n }的前n 项和S n 满足:log 5(S n +1)=n(n ∈N +),求出数列{a n }的通项公式,并判断{a n }是何种数列?

思路点拨:由数列{a n }的前n 项和S n 可求数列的通项公式,通过通项公式判断{a n }类型. 解析:∵log 5(S n +1)=n,∴S n +1=5n ,∴S n =5n -1 (n ∈N +), ∴a 1=S 1=51-1=4,

当n≥2时,a n =S n -S n-1=(5n -1)-(5n-1-1)=5n -5n-1=5n-1(5-1)=4×5n-1 而n=1时,4×5n-1=4×51-1=4=a 1, ∴n ∈N +时,a n =4×5n-1

由上述通项公式,可知{a n }为首项为4,公比为5的等比数列. 举一反三:

【变式1】已知数列{C n },其中C n =2n +3n ,且数列{C n+1-pC n }为等比数列,求常数p 。 【答案】p=2或p=3; ∵{C n+1-pC n }是等比数列,

∴对任意n ∈N 且n≥2,有(C n+1-pC n )2=(C n+2-pC n+1)(C n -pC n-1)

∵C n =2n +3n ,∴[(2n+1+3n+1)-p(2n +3n )]2=[(2n+2+3n+2)-p(2n+1+3n+1)]·[(2n +3n )-p(2n-1+3n-1)] 即[(2-p)·2n +(3-p)·3n ]2=[(2-p)·2n+1+(3-p)·3n+1]·[(2-p)·2n-1+(3-p)·3n-1]

整理得:1

(2)(3)2306

n n p p --??=,解得:p=2或p=3,

显然C n+1-pC n ≠0,故p=2或p=3为所求.

【变式2】设{a n }、{b n }是公比不相等的两个等比数列,C n =a n +b n ,证明数列{C n }不是等比数列. 【证明】设数列{a n }、{b n }的公比分别为p, q ,且p≠q

为证{C n }不是等比数列,只需证2

132C C C ?≠. ∵2222222111111()2C a p b q a p b q a b pq =+=++,

222222221311111111()()()C C a b a p b q a p b q a b p q ?=++=+++

∴2

213211()C C C a b p q ?-=-,

又∵ p≠q, a 1≠0, b 1≠0,

∴21320C C C ?-≠即2132

C C C ?≠ ∴数列{C n }不是等比数列. 【变式3】判断正误: (1){a n }为等比数列?a 7=a 3a 4; (2)若b 2=ac ,则a ,b ,c 为等比数列;

(3){a n },{b n }均为等比数列,则{a n b n }为等比数列;

(4){a n }是公比为q 的等比数列,则2{}n a 、1n a ??????

仍为等比数列;

(5)若a ,b ,c 成等比,则log m a ,log m b ,log m c 成等差. 【答案】

(1)错;a 7=a 1q 6,a 3a 4=a 1q 2·a 1q 3=a 12q 5,等比数列的下标和性质要求项数相同; (2)错;反例:02=0×0,不能说0,0,0成等比; (3)对;{a n b n }首项为a 1b 1,公比为q 1q 2;

(4)对;2

21

12

11,1n n n

n

a a q a q a ++==;

(5)错;反例:-2,-4,-8成等比,但log m (-2)无意义. 类型七:S n 与a n 的关系

例7.已知正项数列{a n },其前n 项和S n 满足2

1056n n n S a a =++,且a 1,a 3,a 15成等比数列,

求数列{a n }的通项a n .

解析:∵21056n n n S a a =++, ①

∴21111056a a a =++,解之得a 1=2或a 1=3.

又21111056(2)n n n S a a n ---=++≥, ②

由①-②得221110()5()n n n n n a a a a a --=-+-,即11()(5)0n n n n a a a a --+--=

∵a n +a n-1>0,∴a n -a n-1=5(n≥2).

当a 1=3时,a 3=13,a 15=73,a 1,a 3,a 15不成等比数列 ∴a 1≠3;

当a 1=2时,a 3=12,a 15=72,有a 32=a 1a 15, ∴a 1=2,∴a n =5n-3.

总结升华:等比数列中通项与求和公式间有很大的联系,它们是11(1)(2)n n n a

n a S S n -=?=?-≥?,尤

其注意首项与其他各项的关系. 举一反三:

【变式】命题1:若数列{a n }的前n 项和S n =a n +b(a≠1),则数列{a n }是等比数列;命题2:若数列{a n }的前n 项和S n =na-n ,则数列{a n }既是等差数列,又是等比数列。上述两个命题中,真命题为 个. 【答案】0;

由命题1得,a 1=a+b ,当n≥2时,a n =S n -S n-1=(a-1)·a n-1. 若{a n }是等比数列,则

2

1

a a a =,即

(1)a a a a b -=+, 所以只有当b=-1且a≠0时,此数列才是等比数列. 由命题2得,a 1=a-1,当n≥2时,a n =S n -S n-1=a-1, 显然{a n }是一个常数列,即公差为0的等差数列, 因此只有当a-1≠0,即a≠1时数列{a n }才又是等比数列.

集合的简单练习题 并集合的知识点归纳

必修1 集合复习 知识框架: 1.1.1 集合的含义与表示 1.下列各组对象 ①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体; ④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组 2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数}, P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( ) A .M 、N 、P B .M 、P 、Q C .N 、P 、Q D .M 、N 、Q 3.下列命题中正确的是( ) A .{x |x 2+2=0}在实数范围内无意义 B .{(1,2)}与{(2,1)}表示同一个集合 C .{4,5}与{5,4}表示相同的集合 D .{4,5}与{5,4}表示不同的集合 4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( ) A .第一象限内的点 B .第三象限内的点 C .第一或第三象限内的点 D .非第二、第四象限内的点 5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( ) A .x +y ∈M B .x +y ∈X C .x +y ∈Y D .x +y ?M 6.下列各选项中的M 与P 表示同一个集合的是( ) A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0} B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R } C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R } D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z } 7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个. 8.集合{3,x ,x 2-2x }中,x 应满足的条件是______. 9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______. 10.用符号∈或?填空: ①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②2 1______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______. 12.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______. 13.方程组?? ???=+=+=+321x z z y y x 的解集为______. 14.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______. 15.用描述法表示下列各集合:

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

等比数列例题解析

等比数列·例题解析 【例1】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}. [ ] A.是等比数列 B.当p≠0时是等比数列 C.当p≠0,p≠1时是等比数列 D.不是等比数列 分析由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时, a n=S n-S n-1=p n-p n-1=(p-1)p n-1 但满足此条件的实数p是不存在的,故本题应选D. 说明数列{a n}成等比数列的必要条件是a n≠0(n∈N*),还要注 【例2】已知等比数列1,x1,x2,…,x2n,2,求x1·x2·x3·…·x2n.解∵1,x1,x2,…,x2n,2成等比数列,公比q ∴2=1·q2n+1 x1x2x3...x2n=q.q2.q3...q2n=q1+2+3+ (2) 式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值. ∴a4=2 【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数x1,x2,…,x n,使得a,x1,x2,…,x n,b成等比数列,求 证明设这n+2个数所成数列的公比为q,则b=aq n+1 【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2. 证法一∵a、b、c、d成等比数列 ∴b2=ac,c2=bd,ad=bc

∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2 =2(b2-ac)+2(c2-bd)+(a2-2bc+d2) =a2-2ad+d2 =(a-d)2=右边 证毕. 证法二∵a、b、c、d成等比数列,设其公比为q,则: b=aq,c=aq2,d=aq3 ∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2 =a2-2a2q3+a2q6 =(a-aq3)2 =(a-d)2=右边 证毕. 说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性. 【例6】求数列的通项公式: (1){a n}中,a1=2,a n+1=3a n+2 (2){a n}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0 思路:转化为等比数列. ∴{a n+1}是等比数列 ∴a n+1=3·3n-1∴a n=3n-1 ∴{a n+1-a n}是等比数列,即 a n+1-a n=(a2-a1)·2n-1=3·2n-1 再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,a n-a n-1=3·2n-2,

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

集合知识点+练习题

第一章集合 §1.1集合 基础知识点: ⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合, 也简称集。 2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3.集合相等:构成两个集合的元素完全一样。 4.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;N内排除0的集. 整数集,记作Z;有理数集,记作Q;实数集,记作R; 5.关于集合的元素的特征 ⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大 发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性; 而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元 素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为{1, 2},而不是{1, 1, 2} ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。 练1:判断以下元素的全体是否组成集合,并说明理由: ⑴大于3小于11的偶数;⑵我国的小河流; ⑶非负奇数;⑷方程x2+1=0的解; ⑸徐州艺校校2011级新生;⑹血压很高的人; ⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 6.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作a∈A; ⑵若a不是集合A的元素,则称a不属于集合A,记作a?A。 例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4?A,等等。 (2)A={2,4,8,16},则4∈A,8∈A,32?A.

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

集合知识点总结及习题培训资料

集合知识点总结及习 题

集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ?????????????????????? ??????????????????????=??????? 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=L 则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L = A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______. 16.已知 n n a ??? ???=312,把数列}{n a 的各项排成三角形状:Λ Λ9 87654321 ,,,,,,a a a a a a a a a

高中数学必修一集合知识点总结资料

高中数学必修一 第一章集合与函数概念 课时一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 课时二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系, A?(或B?A) 称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C

相关文档
最新文档