等比数列知识点总结及题型归纳(5.17)
等比数列知识点总结

等比数列知识点总结等比数列知识点总结等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,下面是小编收集整理的等比数列知识点总结,请参考!等比数列知识点总结篇11、等比数列的定义:2、通项公式:a n =a 1q n -1=a 1n q =A B n (a 1q ≠0, A B ≠0),首项:a 1;公比:qa n q =n a m a n =q (q ≠0)(n ≥2, 且n ∈N *),q 称为公比 a n -1推广:a n =a m q n -m q n -m =3、等比中项:(1)如果a , A , b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2=ab 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列{a n }是等比数列a n 2=a n -1a n +14、等比数列的前n 项和S n 公式:(1)当q =1时,S n =na 1(2)当q ≠1时,S n ==a 1(1-q n )1-q =a 1-a n q 1-q a 1a -1q n =A -A B n =A B n -A (A , B , A , B 为常数) 1-q 1-q5、等比数列的判定方法:(1)用定义:对任意的n ,都有a n +1=qa n 或a n +1=q (q 为常数,a n ≠0) {a n }为等比数列 a n(2)等比中项:a n 2=a n +1a n -1(a n +1a n -1≠0) {a n }为等比数列(3)通项公式:a n =A B n (A B ≠0){a n }为等比数列6、等比数列的证明方法: a 依据定义:若n =q (q ≠0)(n ≥2, 且n ∈N *)或a n +1=qa n {a n }为等比数列 a n -17、等比数列的性质:(2)对任何m , n ∈N *,在等比数列{a n }中,有a n =a m q n -m 。
等比数列知识点总结与题型分类

等比数列的性质及题型分类一、等比数列的定义及性质1. 等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比. 2. 通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q . 推广:n m n m a a q -=,从而得n m n m a q a -=或n q =3. 等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅4. 等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5. 等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列. (2)等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列. (3)通项公式:()0n n a A B A B =⋅⋅≠⇔{}n a 为等比数列.(4)前n 项和公式:()'',,','n n n n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为等比数列 6. 等比数列的证明方法 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列. 7. 注意(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。
等比数列定义知识点归纳总结

等比数列定义知识点归纳总结等比数列是数学中常见的一种数列形式,它在各个领域都有广泛的应用。
本文将对等比数列的定义、性质和应用进行归纳总结,以帮助读者更好地理解和运用等比数列。
一、等比数列的定义等比数列是指一个数列中,从第二项起,每一项与前一项的比值都相等的数列。
比值常用字母q表示,称为公比。
换言之,一个数列满足an+1 = an * q的关系,其中an表示第n项,an+1表示第n+1项,q表示公比。
二、等比数列的性质1. 公比的影响:公比q的绝对值决定了等比数列的性质。
当|q|<1时,等比数列的值越来越小;当|q|>1时,等比数列的值越来越大;当q=1时,等比数列的值保持不变。
2. 通项公式:对于等比数列an,第n项的通项公式为an = a1 *q^(n-1),其中a1为首项。
3. 公式推导:可以通过递归或数学归纳法得到等比数列的通项公式,进而求解数列中任意一项的值。
4. 前n项和:等比数列的前n项和(部分和)可用以下公式表示:Sn = a1 * (1 - q^n)/(1 - q),其中a1为首项,q为公比。
三、等比数列的应用等比数列在诸多领域有广泛的应用,如金融、物理、工程等。
以下列举几个常见的应用场景:1. 财务投资:与利率相关的问题往往可以转化为等比数列问题,如计算定期存款每年的本息总额。
2. 自然科学:许多自然界的现象或物理规律可以用等比数列来描述,如累积衰减、分裂增殖等。
3. 几何问题:等比数列广泛应用于几何问题中,如计算等比数列构成的等边三角形的面积。
4. 数据分析:等比数列可用于分析一些数据序列或随机变量的增长规律,如人口增长、疾病传播等。
综上所述,等比数列是一种重要的数列形式,具有较广泛的应用价值。
通过对等比数列的定义、性质和应用的归纳总结,读者可更好地理解等比数列,并能在实际问题中灵活运用。
在解决问题时,读者可以根据题目给定的条件,利用等比数列的相关公式和性质进行推导和计算,以得到准确的结果。
等比数列知识点概念归纳总结

等比数列知识点概念归纳总结等比数列是数学中的重要概念,它在很多领域中都有广泛的应用。
本文将对等比数列的基本概念、性质和常见问题进行归纳总结。
一、基本概念等比数列是指一个数列中,每一项与它前一项的比值都相等的数列。
这个比值称为等比数列的公比,用字母q表示。
设等比数列的首项为a1,公比为q,则数列的通项公式可以表示为:an = a1 * q^(n-1)二、性质1. 等比数列的公比q必须为非零实数。
如果q大于1,则数列呈递增趋势;如果0<q<1,则数列呈递减趋势。
2. 等比数列的前n项和可以通过以下公式计算:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数。
3. 当q大于1时,等比数列趋于正无穷;当0<q<1时,等比数列趋于零。
4. 若一个数列既是等差数列又是等比数列,则这个数列必为常数数列,即a1 = an = a。
三、常见问题1. 如何判断一个数列是否是等比数列?若一个数列中,每一项与它前一项的比值都相等,则这个数列为等比数列。
2. 如何确定等比数列的公比?等比数列的公比可以通过任意两项的比值来确定。
选择两项,例如第n项和第n+1项,计算它们的比值,如果得到的结果对于数列中的任意两项都相等,则该结果即为等比数列的公比。
3. 如何求等比数列的第n项?可以通过数列的通项公式an = a1 * q^(n-1),将首项和公比代入公式,计算得到第n项的值。
4. 如何求等比数列的前n项和?可以利用等比数列的前n项和公式Sn = a1 * (1 - q^n) / (1 - q)计算前n项和的值。
等比数列在数学中有着广泛的应用,特别是在金融、自然科学和工程领域。
例如在金融领域,等比数列可以用来描述复利计算中的本金增长;在自然科学中,等比数列可以用来描述物种繁衍的规律;在工程领域,等比数列可以用来描述扩大或缩小的比例关系。
总结:等比数列是一种重要的数列概念,它具有一些基本概念、性质和常见问题。
等比数列知识点总结及题型归纳

等比數列知識點總結及題型歸納1、等比數列の定義:()()*12,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m ma a a a qq q a a ---=⇔=⇔= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =±注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個(2)數列{}n a 是等比數列211n n n a a a -+⇔=⋅4、等比數列の前n 項和n S 公式:(1)當1q =時,1n S na =(2)當1q ≠時,()11111n n n a q a a q S q q--==-- 11''11n n n a a q A A B A B A q q=-=-⋅=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠⇔為等比數列(3)通項公式:()0{}n n n a A B A B a =⋅⋅≠⇔為等比數列6、等比數列の證明方法: 依據定義:若()()*12,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔為等比數列 7、等比數列の性質:(2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t mn st N +=+∈,則n m s t a a a a ⋅=⋅。
等比数列知识点归纳及总结公式

等比数列知识点归纳及总结公式等比数列是数学中常见的一种数列形式,它的定义是指一个数列中,从第二项起,每一项都是前一项与一个固定的非零常数的乘积。
在学习等比数列时,我们需要了解其定义、性质、求和公式等相关知识点。
本文将对等比数列的常见知识点进行归纳总结,并提供相应的公式。
一、等比数列的定义等比数列可以通过以下定义来进行理解:在数列$a_1,a_2,a_3,...,a_n$ 中,若对于任意的正整数 $n$ ,都有$\frac{{a_{n+1}}}{{a_n}}=r$ 成立(常数 $r$ 称为等比数列的公比),则称这个数列为等比数列。
通常我们用 $a_1$ 表示等比数列的首项。
二、等比数列的性质1. 公比与首项的关系:等比数列的公比 $r$ 与首项 $a_1$ 之间存在以下关系:$a_2=a_1 \cdot r$,$a_3=a_2 \cdot r=a_1 \cdot r^2$,以此类推,可得第 $n$ 项为 $a_n=a_1 \cdot r^{n-1}$。
2. 通项公式:根据等比数列的性质1,可推导出等比数列的通项公式为 $a_n=a_1 \cdot r^{n-1}$。
3. 首项与公比的关系:若已知等比数列的首项 $a_1$ 和第 $n$ 项$a_n$,则公比 $r$ 可以通过 $r=\sqrt[n-1]{\frac{{a_n}}{{a_1}}}$ 来求解。
4. 等比数列的倒数列:等比数列的倒数列也是一个等比数列,其公比为原数列公比的倒数。
即若 $a_1,a_2,a_3,...,a_n$ 是一个等比数列,且公比为 $r$,则其倒数列为$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3},...,\frac{1}{a_n}$,且其公比为 $\frac{1}{r}$。
5. 前 $n$ 项和公式:等比数列的前 $n$ 项和可以通过以下公式来求解:$S_n=a_1\frac{{1-r^n}}{{1-r}}$,其中 $S_n$ 表示前 $n$ 项和。
等比数列知识点归纳总结图文

等比数列知识点归纳总结图文在数学中,等比数列是一种特殊的数列。
它是指从第二项开始,每一项与它的前一项的比相等的数列。
本文将对等比数列的相关知识点进行归纳总结,并以图文形式展示,帮助读者更好地理解和掌握等比数列的概念和性质。
1. 等比数列的定义等比数列是指从第二项开始,每一项与它的前一项的比相等的数列。
设等比数列的首项为a,公比为r,数列的通项公式为an=a×r^(n-1)。
其中,n表示数列中的第n项。
2. 等比数列的性质(1)通项公式:等比数列的通项公式是an=a×r^(n-1),其中a表示首项,r表示公比,n表示项数。
(2)前n项和公式:等比数列的前n项和公式是Sn=a×(1-r^n)/(1-r),其中a表示首项,r表示公比,n表示项数。
(3)比值性质:等比数列中,任意两项的比值都为常数,即an/an-1=r。
(4)倒数性质:等比数列中,任意两项互为倒数,即an与1/an-1互为倒数。
3. 等比数列的图文示例下面通过图文形式对等比数列进行示例,以加深对等比数列的理解和记忆。
(插入示例图片)图1是一个等比数列的示例图,首项a=2,公比r=3/2。
根据等比数列的通项公式an=a×r^(n-1),我们可以计算出数列的前几个项如下:a1=2a2=2×(3/2)^1=3a3=2×(3/2)^2=4.5a4=2×(3/2)^3=6.75...由此可见,该数列每一项与前一项的比相等,且比值为3/2。
(插入示例图片)图2展示了等比数列的前n项和的计算过程,首项a=10,公比r=0.5。
根据等比数列的前n项和公式Sn=a×(1-r^n)/(1-r),我们可以计算出数列的前几项和如下:S1=10S2=10×(1-(0.5)^2)/(1-0.5)=15S3=10×(1-(0.5)^3)/(1-0.5)=19.5S4=10×(1-(0.5)^4)/(1-0.5)=21.75...可以看出,数列的前n项和随着项数的增加而增加。
(完整版)等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q 推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab =A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当时,1q =1n S na =(2)当时,1q ≠()11111n n n a q a a qS q q--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列n 11(0){}n n n n n na a qa q qa a a ++==≠⇔或为常数,(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明方法:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。
*,m n N ∈{}n a n m n m a a q -=(3)若,则。
特别的,当时,得*(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k +=注:2n m k a a a ⋅=12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1a q 和,可得;或注意到下标,可以利用性质可求出、,再求.1a q 11a 1937+=+3a 7a 11a 解析:法一:设此数列公比为,则q 8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:..........(3) 241(1)20a q q +=∴.10a >由(1)得: , ∴ (4)421()64a q =418a q =(3)÷(4)得:,42120582q q +==∴,解得或422520q q -+=22q =212q =当时,,;22q =12a =1011164a a q =⋅=当时,,.21q =132a =101111a a q =⋅=定义da a n n =-+1)0(1≠=+q q a a nn 递推公式da a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅法二:∵,又,193764a a a a ⋅=⋅=3720a a += ∴、为方程的两实数根,3a 7a 220640x x -+= ∴ 或⎩⎨⎧==41673a a ⎩⎨⎧==16473a a ∵, ∴或.23117a a a ⋅=271131a a a ==1164a =总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列知识点总结及题型归纳
1、等比数列的定义:()()*1
2,n
n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:
()11110,0n n
n n a a a q q A B a q A B q
-==
=⋅⋅≠⋅≠,首项:1a ;公比:q
推广:n m n m n n n m m a a a q q q a --=⇔=
⇔=3、等比中项:
(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =
或
A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:
(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q
S q
q
--=
=
-- 11''11n n n a a
q A A B A B A q q
=
-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:
(1)用定义:对任意的n ,都有1
1(0){}n n n n n n
a a qa q q a a a ++==≠⇔或
为常数,为等比数列
(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列
(3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列
6、等比数列的证明方法:
依据定义:若()()*12,n n a
q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列
7、等比数列的性质:
(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅
(4)数列{}n a ,{}n b 为等比数列,则数列{}n
k
a ,{}n k a ⋅,{}k n a ,{}n n k a
b ⋅⋅,{}
n n a b (k 为非零常数)均为等比数列。
(5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++⋅⋅⋅仍为等比数列
(6)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -⋅⋅⋅,成等比数列 (8)若{}n a 为等比数列,则数列12n a a a ⋅⋅⋅⋅⋅⋅,122n n n a a a ++⋅⋅⋅⋅⋅⋅,21223n n n a a a ++⋅⋅⋅⋅⋅⋅⋅成等比数列
(9)①当1q >时,110{}0{}{
n n a a a a ><,则为递增数列,则为递减数列
②当1q <0<时,110{}0{}{n n a a a a ><,则为递减数列,则为递增数列
③当1q =时,该数列为常数列(此时数列也为等差数列); ④当0q <时,该数列为摆动数列.
(10)在等比数列{}n a 中,当项数为*2()n n N ∈时,
1
S S q
=奇偶 二、 考点分析
考点一:等比数列定义的应用
1、数列{}n a 满足()1123
n n a a n -=-≥,14
3a =,则4a =_________.
2、在数列{}n a 中,若11a =,()1211n n a a n +=+≥,则该数列的通项
n a =______________.
考点二:等比中项的应用
1、已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( ) A .4- B .
6- C .8- D .10- 2、若a 、b 、c 成等比数列,则函数2
y ax bx c =++的图象与x 轴交点的个数为( ) A .0
B .1
C .2
D .不确定
3、已知数列{}n a 为等比数列,32a =,2420
3
a a +=,求{}n a 的通项公式.
考点三:等比数列及其前n 项和的基本运算
1、若公比为23的等比数列的首项为98,末项为1
3
,则这个数列的项数是( )
A .3
B .4
C .5
D .6 2、已知等比数列{}n a 中,33a =,10384a =,则该数列的通项
n a =_________________.
3、若{}n a 为等比数列,且4652a a a =-,则公比q =________.
4、设1a ,2a ,3a ,4a 成等比数列,其公比为2,则
12
34
22a a a a ++的值为( )
A .14
B .12
C .18
D .1
考点四:等比数列及其前n 项和性质的应用
1、在等比数列{}n a 中,如果66a =,99a =,那么3a 为( )
A .4
B .32
C .16
9
D .2
2、如果1-,a ,b ,c ,9-成等比数列,那么( ) A .3b =,9ac = B .3b =-,9ac = C .3b =,9ac =- D .3b =-,9ac =-
3、在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a 等于( )
A .81 B
.C
D .243
4、在等比数列{}n a 中,()9100a a a a +=≠,1920a a b +=,则99100a a +等于( )
A .98b a
B .9
b a ⎛⎫ ⎪⎝⎭ C .109
b a D .10
b a ⎛⎫ ⎪⎝⎭
5、在等比数列{}n a 中,3a 和5a 是二次方程250x kx ++=的两个根,则246a a a 的
值为( ) A .25 B
.C
.- D
.±6、若{}n a 是等比数列,且0n a >,若243546225a a a a a a ++=,那么35a a +的值等
于
考点五:公式11,(1)
,(2)n n
n S n a S S n -=⎧=⎨-≥⎩的应用
1.等比数列前n 项和S n =2n -1,则前n 项的平方和为( )
A.(2n -1)2
B.31(2n -1)2
C.4n
-1 D.3
1(4n -1)
2. 设等比数列{a n }的前n 项和为S n =3n +r ,那么r 的值为______________.
3.设数列{a n }的前n 项和为S n 且S 1=3,若对任意的n ∈N *都有S n =2a n -3n. (1)求数列{a n }的首项及递推关系式a n+1=f(a n ); (2)求{a n }的通项公式;
(3)求数列{a n }的前n 项和S n .
考点六:数列求和
方法:(1)公式法;(2)分组求和法;(3)错位相减法
23n 1.1+2+3+2+5+2++[2-1+2]
2.{a }, a =+12, {a }n
3.{b }, b =(2-1)3, {b }n n n n n n n n n n n ⋅⋅求和()()()(n )已知数列()求数列的前项和。
已知数列求数列的前项和。