集合知识点及题型

集合知识点及题型
集合知识点及题型

集合

本章框架

123412n x A x B A B A B A n A ∈???

?????

∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ???????????

???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ?????

??

??

??

??

??????????

????????

??????????????????????

??????????????????????=???????

集合的含义与表示

(1)集合的概念

把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法

N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.

(3)集合与元素间的关系

对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法

①自然语言法:用文字叙述的形式来描述集合.

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类

①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?).

集合间的基本关系

(7)已知集合A 有(1)n n ≥个元素,则它有2n

个子集,它有21n

-个真子集,它有21n

-个非空子集,它有22n

-非空真子集.

集合的基本运算

(8)交集、并集、补集 B

{x A A = ?=? B A ?

A B B ?

B

{x A A = A ?= B A ?

B B ?

⑴ (

交换律:.;A B B A A B B A ==

结合律:)()();()(C B A C B A C B A C B A ==

分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U

反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)

例1:全集U R =,集合{|112},{|21,},M x Z x N x x k k N +

=∈-≤-≤==+∈则图中阴影部分所示集合的元素共有__________个。

例2:设全集U={2,3,2

a +2a-3},A={|a+1|,2},A C U ={5},则a 的值为____________。 例3:已知集合{1,2}{21}M N a a M ==∈-,,则M N ?=__________。

例4:记全集},,111|{N x x x U ∈<≤=则满足}9,7,5,1{}10,97531{=?P C U ,,,,

的所有集合P 的个数是__________。

例5:已知集合{

}{

}

2

2

1,,20R A y y x x B x x x =+=+-∈=>,则下列说法中正确的有_____________。 ① .{}1,A

B y y => ②.{}2A B y y => ③.{}21A B y y ?=-<< ④.{}21A B y y y ?=<>-或

例6:设全集为R ,}3x 3|x {B }5x 3x |x {A <<-=><=,或,则下列说法中正确的有_____________。

.

R B A R C = ②. R B A R C = ③. R B A R R C C =

④ R B A =

例7:设[2,4)A =-,2{40}B x x ax =--≤,若B A ?,则实数a 的取值范围为____________。 例

8:03)1(4)54(2

2>+-+-+x k x k k 对任何实数x 都能成立,则关于x 的方程

0108)2(2232=-+-+k x k x 的根分布情况为______________。(填:两个相等的实根或两个不等的实根或

无实根或不确定)

例9:满足)3,}(,,,,,{},{132121≥∈??-≠

n N n a a a a a P a a n n 21,a a 21,a a 的集合P 共有__________个。

例10:已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.

例11:2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==??=B C A C B A I B I A I }8,6,4{)(1=B A C ,则

=)(1B C A ___________。

例12:已知集合}121{},0310{2-≤≤+=≥-+=m x m x B x x x A ,当?=B A 时,实数m 的取值范围是___________。

例13:}02{},01{},023{2

22=+-==-+-==+-=mx x x C a ax x x B x x x A ,若C C A A B A == ,,则a =_____________,m=___________。

例14:给定集合},,1{2

x x x -,则实数x 的取值范围是___________。

例15:若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________。

例16:已知集合M 与P 满足},,{c b a P M =?,当P M ≠时,),(P M 与),(M P 看作不同的一对,则这样的

),(P M 对的个数是 .

例17:. 已知集合},,023|{2

R x x ax x A ∈=+-=,

(1)若A 是空集,则实数a 的取值范围是 .

例18:设集合M={x │m ≤x ≤m+

43},N={x │n-3

1

≤x ≤n},且M ,N 都是集合I={x │0≤x ≤1}的子集。如果把b-a 称为集合{x │a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度“的最小值是______________

例19:已知集合},,2|{2

R x x x y y A ∈--==},,122|{2

R x x x y y B ∈++==则=?B A . 例20:定义集合A 与B 的新运算:}|{B A x B x A x x B A ??∈∈=*且或,则=**A B A )( .

例21:如图所示,

的三个子集,则阴影部分所表示的集合是___________

例22:集合{23,-34,57,

17

18,86,-75,73

,-1}每一个非空子集的元素乘积(单元素集取元

素本身)之和为__________。

例23:1.(1){1,2,3,4,5,6,7,8,9,10}A =,求集合A 的所有子集的元素的和的和. (2) {1,2,3,4,5,,100}A =,求集合A 的所有子集的元素的和的和.

例24:若集合},4,1{a A =,},1{2

a B =,问是否存在这样的实数a 使得},2,1{2

a a B A =?与},,1{a B A =?同时成立?

例25:设集合},2|{a x x A ≤≤-=},32|{A x x y y B ∈+==,},|{2

A x x z z C ∈==,若,

B

C ?求a 的取值范围.

例26:设集合}2][|{2

=-=x x x A ,}2|{<=x x B ,求B A ?与B A ?(其中][x 表示不超过实数x 之值的最大整数)

例27:向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各有多少人?

技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系

.

解:赞成A 的人数为50×

5

3

=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .

设对事件A 、B 都赞成的学生人数为x ,则对A 、B 都不赞成的学生人数为3

x

+1,赞成A 而不赞成B 的人数为30

-x ,赞成B 而不赞成A 的人数为33-x .

依题意(30-x )+(33-x )+x +(3

x

+1)=50,解得x =21.

所以对A 、B 都赞成的同学有21人,都不赞成的有8人.

例28:设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =?,证明此结论..

解:∵(A ∪B )∩C =?,∴A ∩C =?且B ∩C =?

∵???+=+=b

kx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =?

∴Δ1=(2bk -1)2-4k 2(b 2-1)<0

∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1

∵???+==+-+b

kx y y x x 052242 ∴4x 2+(2-2k )x +(5+2b )=0

∵B ∩C =?,∴Δ2=(1-k )2-4(5-2b )<0

∴k 2-2k +8b -19<0,从而8b <20,即b <2.5 ② 由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得

?????<--<+-0

32,

01842

2k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =?.

练习:

1. 集合A ={x -1≤x ≤2},B ={x x <1},则A ∩B =______________

2. 已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A =________________

3.

若集合{}A=|1x x x R ≤∈,,{}2

B=|y y x x R =∈,,则A B ?=_____________ 4. 设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈?=?若,则实数a 的取值范围是__________ 5. 已知集合A={1,2,3,},B={2,m ,4},A∩B={2,3},则m= 6. 设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a =___________. 7. 集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为____________

8. 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有________个。

9. 若集合{}21|21|3,0,3x A x x B x x ?+?=-<=

10. 若集合

,则{}

1,2A

B =___________

11. 已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合 A (uB 等于___________

12. 设集合M={m ∈Z |-3<m <2},N={n ∈Z |-1≤n≤3},则M N=__________

13.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ?=,则实数a 的取值范围是___________ . 14. 设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。

15. 非空集合}5,4,3,2,1{?S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有____________个 16. 集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =____________. 17. 已知集合A={x|x 2+(m +2)x +1=0,x ∈R},若A∩R *=?,则实数m 的取值范围是_________. 18. 满足{1,2}{1,2,3,4,5}M ??≠集合M 有___________个。

19. 设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =________,B =_________

20. 设全集U={x|0

22. 若关于x 的不等式02<++c bx ax 的解集为),(),(+∞-∞n m ,其中0<

02<+-a bx cx 的解集为________

23.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -?且1k A +?,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_______个。 24.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人。

25. 某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为___________人。

26. 设1a >,集合103x A x x -??

=>??-??

,(){}210B x x a x a =-++<。

若A B ?,则a 的取值范围是________. 27. 若集合2{|(3)50,},A x x k x k x R A R +=+-++=∈≠Φ,则实数k 的取值范围为___________

28. 设集合A={(,)|46},{(,)|327}x y x y B x y x +==+=,则满足()C A B ??的集合C 的个数是

__________个。

29. 已知{}4||<-=a x x A ,{}3|2|>-=x x B . (I )若1=a ,求B A ;

(II )若=B A R ,求实数a 的取值范围.

30. 已知集合{}{

}22230,0

A x x x

B x x ax b =-->=++≤,且{}

,34A

B R A B x x =<≤,{}

,34A

B R A B x x ==<≤,

求a ,b 的值。

答案:1.{x -1≤x <1} 2.{}3,9 3.{}|01x x ≤≤

4.{}|0,6a a ≤≥或a

5. 3

6. 1

7. 4

8. 2个 9.

112x x ??-<<-??

?

? 10. {1,2} 11.{}|13x x -≤≤ 12. {}101-,, 13. a≤1 14. 8

个 15.7个 16. 1

0,1,2

a = 17. m>-4 18. 7个 19. {2,3}A =,{2,4}B =

20. A={1,3,5,7},B={2,3,4,6,8} 21. [4,)+∞ 22. ),1

()1,(+∞---∞n

m

23. 6个 24. 8人 25. 12人 26. 3a ≥ 27. (,1]-∞- 28. 2个

29.解 (I )当1a =时,{}35A x x =-<<.{}15B x x x 或=<->. ∴{}13|-<<-=x x B A (II )

{}44A x a x a =-<<+. {}15B x x x 或=<->. 且R B A = ,31541

4<

?

?>+-<-a a a ,实数a 的取值范围是()1,3. 30. a=-3,b=-4

最全集合知识点归纳梳理大全集

集合的基础知识点梳理大全集 一、重点知识归纳及讲解 1.集合的有关概念 一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素 ⑴集合中的元素具有以下的特性 ①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素; 而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的. ②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}. ③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合. (2)集合的元素 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ. (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和图示法. 列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集. 使用描述法时,应注意六点: ①写清集合中元素的代号;②说明该集合中元素的性质; ③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”; ⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示. 如:A={1,2,3,4}

高中数学集合历届高考题及答案解析

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3} (C) { x -1≤ x ≤1} (D) { x -1≤ x < 1} 3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A 7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 2 4 0 ,则 C U M = A. x 2 x 2 B. x 2 x 2 C . x x 2或 x 2 D. x x 2或 x 2 2 8. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 2 9},则 PI M = 第一章 集合与常用逻辑用 语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2 <4},则 A ) p Q B )Q P ( C ) p CR Q (D ) Q CR P 2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1} B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9 C ) 3,5,9 D ) 3,9 4. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, x R , A. x| 1 x 1 B. x|x 0 C. x|0 x 1 D. 6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 2 4},则 P Q (A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4} (D) {x| 2 x 1}

集合-基础知识点汇总与练习-复习版

集合知识点总结 一、集合的概念 教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问 题,掌握集合问题的常规处理方法. 教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.: 一)主要知识: 1.集合、子集、空集的概念; 2.集合中元素的3个性质,集合的3 种表示方法; 3. 若有限集A有n个元素,则A的子集有2n个,真子集有2n 1,非空子集有2n 1个,非空真子集有2n 2个. 二、集合的运算 教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性 质,能利用数轴或文氏图进行集合的运算,进一步掌握 集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 一)主要知识: 1. 交集、并集、全集、补集的概念; 2. AI B A A B,AUB A A B; 3. C U AI C U B C U (AUB),C U AUC U B C U(AI B). 二)主要方法: 1. 求交集、并集、补集,要充分发挥数轴或文氏图的作用;

2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出 问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 考点要点总结与归纳 一、集合有关概念 1. 集合的概念:能够确切指定的一些对象的全体。 2. 集合是由元素组成的 集合通常用大写字母A、B、C,…表示,元素常用小写字母a b、c, …表示。 3. 集合中元素的性质:确定性,互异性,无序性。 (1)确定性:一个元素要么属于这个集合,要么不属于这个集 合,绝无模棱两可的情况。如:世界上最高的山 (2)互异性:集合中的元素是互不相同的个体,相同的元素只能 出现一次。如:由HAPPY 的字母组成的集合{H,A,P,Y} ( 3)无 序性:集合中的元素在描述时没有固定的先后顺序。 女口:{a,b,c}和{a,c,b}是表示同一个集合 4. 元素与集合的关系 (1)元素a是集合A中的元素,记做a€ A,读作“ a属于集合A”; (2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。 5. 集合的表示方法:自然语言法, 列举法,描述法,图示法。 ( 1)自然语言法:用文字叙述的形式描述集合。如大于等于2 且小于等于8 的偶数

数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位 置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就 叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211 ,,,,… 数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1 n (n N +∈)。 说明: ① {}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列 实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 (1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1 (1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式

集合与简易逻辑知识点归纳(1)

{}9B =,;B A =B B = )()(); U U B A B =? )()()U U B A B =? ()()card A B card A =+ ()()card B card A B - ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有两相)(,2121x x x x <有两相等a b x x 221- ==无实根 有意义的

①一个命题的否命题为真,它的逆 命题一定为真. (否命题?逆命 题.)②一个命题为真,则它的逆 否命题一定为真.(原命题?逆 否命题.) 4.反证法是中学数学的重要方法。 会用反证法证明一些代数命题。 充分条件与必要条件 答案见下一页

数学基础知识与典型例题(第一章集合与简易逻辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=,则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3a =±①当3 a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集 合中元素用字母表示,检验必不可少。 例4C 例5C 例6①?,②ü,③ü,④ 例7填2 例8C 例9? 例10解:∵M={y|y =x 2+1,x ∈R}={y |y ≥1},N={y|y =x +1,x ∈R}={y|y ∈R}∴ M∩N=M={y|y ≥1} 注:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M 、N 均为数集,不能误认为是点集,从而解方程组。其次要化简集合。实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。一般地,集合{y |y =f (x ),x ∈A}应看成是函数y =f (x )的值域,通过求函数值域化简集合。此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y =x 2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例如{y|y ≥1}={x |x ≥1}。 例11填?注:点集与数集的交集是φ. 例12埴?,R 例13解:∵C U A = {1,2,6,7,8} ,C U B = {1,2,3,5,6}, ∴(C U A)∩(C U B) = {1,2,6} ,(C U A)∪(C U B) = {1,2,3,5,6,7,8}, A ∪ B = {3,4,5,7,8},A∩B = {4},∴ C U (A ∪B) = {1,2,6} ,C U (A∩B) = {1,2,3,5,6,7,8} 例145,6a b ==-; 例15原不等式的解集是{}37|<<-x x 例16 53|332 2x R x x ??∈-<-+-->+?? ≥或,即3344123x x x x ? 2或x <31,∴原不等式的解集为{x | x >2或x <31}.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x < 31,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1-x ,∴}32 1 |{<2 1}. 方法2:数形结合:从形的方面考虑,不等式|x -3|-|x +1|<1表示数轴上到3和-1两点的距离之差小于1的点 ∴原不等式的解集为{x |x > 2 1 }. 例19答:{x |x ≤0或1??????????-<>-<>≤≤--≠????? ? ? ???>+-<+-≤-+≠+13 21 0121 0)1(2230)1(24020 12k k k k k k k k k k k k k 或或. 1 3 212<<-<<-?k k 或∴实数k 的取值范围是{k|-2?=+-R 的解集为函数在上恒大于 22,2, |2||2|2. 2,2,1|2|121.,,2 11 0.,, 1.(0,][1,). 22 x c x c x x c y x x c c c x c x x c R c c P c P c c -?+-=∴=+-??>?> <≥?+∞R ≥函数在上的最小值为不等式的解集为如果正确且Q 不正确则≤如果不正确且Q 正确则所以的取值范围为 例26答:552x x x >?><或. 例27答既不充分也不必要 解:∵“若 x + y =3,则x = 1或y = 2”是假命题,其逆命题也不成立. ∴逆否命题: “若12x y ≠≠或,则3x y +≠”是假命题, 否命题也不成立. 故3≠+y x 是12x y ≠≠或的既不充分也不必要条件. 例28选B 例29选A

(完整版)集合历年高考题.docx

圆学子梦想铸金字品牌 1.( 2013 ·重庆高考文科·T 1)已知全集U1,2,3,4 ,集合 A1,2 ,B2,3 ,则 C U A B() A .1,3,4 B.3,4 C.3 D.4 2、( 2013 ·四川高考文科·T 1)设集合A{1,2,3} ,集合 B {2,2} ,则A I B() A. B. {2} C. {2,2} D. {2,1,2,3} 3.(2013 ·福建高考文科·T3) 若集合A=1,2,3 ,B= 1,3,4 ,,则A∩B的子集个数为() A.2 B.3 C.4 D.16 4.( 2013 ·湖北高考文科·T 1)已知全集U{1,2,3,4,5} ,集合A{1,2} , B{2,3,4},则 B C u A ()A. {2} B . {3,4}C. {1,4,5} D . {2,3,4,5} 5.( 2013 ·新课标Ⅰ高考文科·T 1)已知集合A{1,2,3,4} , B{ x | x n2 , n A} ,则A∩B= A. {1,4} B. { 2,3} C.{ 9,16} D. {1,2} 6.( 2013 ·大纲版全国卷高考文科·T 1)设集合U1,2,3,4,5, 集合 A1,2 ,e u A() 则C U A A.1,2 B.3,4,5 C.1,2,3,4,5 D. 7.( 2013 ·湖南高考文科)已知集合 U{2,3,6,8},A{2,3}, B{2,6,8},则(C U A)B________ 8.设集合A1,2,3 , B4,5, M x | x a b, a A, b B, 则 M 中元素的个数为() A.3 B.4 C.5 D.6 9. (2013 江·苏高考数学科·T4) 集合 {-1,0,1} 共有个子集 . 10.( 2013 ·四川高考理科·T 1)设集合A{ x | x20} ,集合 B { x | x240} ,则AI B() A. {2} B. {2} C. { 2,2} D. 11.(2013 浙·江高考文科·T1) 设集合 S={x|x>-2},T={x|- 4≤ x≤ 1},则 S∩ T= () A.[- 4,+ ∞) B.(- 2,+ ∞ ) C.[ -4,1] D.(-2,1] 12.( 2013 ·安徽高考文科·T2)已知A= { x|x+1>0 }, B= { -2, -1, 0, 1},则( C 错误!未找到引用源。R A )∩ B=( ) A. { -2, -1} B.{-2} C.{-2 , 0, 1} D.{0 , 1} 13.( 2013 ·北京高考文科·T1)已知集合A={ - 1, 0, 1} ,B={ x|- 1≤x< 1} ,则 A∩ B= () A.{0} B.{ - 1, 0} C.{0 , 1} D.{ - 1,0,1} 14.( 2013 ·广东高考理科)设集合M={x|x 2+2x=0,x∈R},N={x|x2-2x=0,x∈ R},则M∪ N=() A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}

集合知识点归纳定稿版

集合知识点归纳精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

集合的基础知识 一、重点知识归纳及讲解 1.集合的有关概念 一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素 ⑴集合中的元素具有以下的特性 ①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素; 而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的. ②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}. ③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合. (2)集合的元素 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ. (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和图示法.

列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集. 使用描述法时,应注意六点: ①写清集合中元素的代号;②说明该集合中元素的性质; ③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”; ⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元 素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示. 如:A={1,2,3,4} 例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值. 分析: 欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况. 解析: (1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但 c=1时,B中的三个元素也相同,舍去c=1,此时无解.

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

集合知识点归纳

集合的基础知识 一、重点知识归纳及讲解 1.集合的有关概念 一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素 ⑴集合中的元素具有以下的特性 ①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素; 而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的. ②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}. ③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合. (2)集合的元素 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ. (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和图示法. 列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集. 使用描述法时,应注意六点: ①写清集合中元素的代号;②说明该集合中元素的性质; ③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”; ⑤所有描述的容都要写在大括号;⑥用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.

历年高考题集合汇总

高考试题分类解析汇编:集合 一、选择题 1 ?(新课标)已知集合A {123,4,5} ,B {(x,y)x A,y A,x y A};,则B中所含元素的个数 为() A. 3 B. 6 C. D. 1 .(浙江)设集合A={x|1

集合知识点归纳

高中数学第一章-集合 考试内容: 集合、子集、补集、交集、并集. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 集合知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一)集合 1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2.集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A?; ②空集是任何集合的子集,记为A φ; ? ③空集是任何非空集合的真子集; 如果B B?,那么A = B. A?,同时A 如果C ? A? ,. ?,那么 A B C B [注]:①Z= {整数}(√)Z ={全体整数} (×) ②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=+ N,则C s A= {0}) ③空集的补集是全集. ④若集合A=集合B,则C B A=?,C A B =?C S(C A B)=D(注:C A B =?). 3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集. ②{(x,y)|xy<0,x∈R,y∈R}二、四象限的点集. ③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集. 高中数学高考总复习高三数学总复习一—集合— 1 —

高中数学高考总复习 高三数学总复习一—集合 — 2 — [注]:①对方程组解的集合应是点集. 例: ?? ?=-=+1 323y x y x 解的集合{(2,1)}. ②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =?) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个. 5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题. 解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ② 且21≠≠y x 3≠+y . 解:逆否:x + y =3 x = 1或y = 2. 2 1≠≠∴y x 且3≠+y x ,故3≠+y x 是2 1≠≠y x 且的既不是充分,又不是必要条件. ⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,?. 4. 集合运算:交、并、补. 【并集】 在集合论和数学的其他分支中,一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。 基本定义 : 若 A 和 B 是集合,则 A 和 B 并集是有所有 A 的元素和所有 B 的元素,而没有其他元素的集合。 A 和 B 的并集通常写作 "A ∪B"。 形式上:x 是 A ∪B 的元素,当且仅当 x 是 A 的元素,或 x 是 B 的元素。 举例:集合 {1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不 属于素数集合 {2, 3, 5, 7, 11, …} 和偶数集合 {2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。 更通常的,多个集合的并集可以这样定义:例如,A , B 和 C 的并集含有所有 A 的元素,所有 B 的元素和所有 C 的元素,而没有其他元素。 形式上:x 是 A ∪B ∪C 的元素,当且仅当 x 属于 A 或 x 属于 B 或 x 属于 C 。 代数性质: 二元并集(两个集合的并集)是一种结合运算,即 A ∪(B ∪C) = (A ∪B) ∪C 。事实上,A ∪B ∪C 也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。 相似的,并集运算满足交换率,即集合的顺序任意。 空集是并集运算的单位元。即 {} ∪A = A ,对任意集合 A 。可以将空集当作零个集合的并集。 结合交集和补集运算,并集运算使任意幂集成为布尔代数。例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。若将并集运算换成对称差运算,可以获得相应的布尔环。 【交集】 数学上,两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。 A 和 B 的交集写作 "A ∩B"。形式上: x 属于 A ∩B 当且仅当 x 属于 A 且 x 属于 B 。 例如:集合 {1, 2, 3} 和 {2, 3, 4} 的交集为 {2, 3}。数字 9 不属于素数集合 {2, 3, 5, 7, 11} 和奇数集合 {1, 3, 5, 7, 9, 11}的交集。 若两个集合 A 和 B 的交集为空,就是说他们没有公共元素,则他们不相交。 更一般的,交集运算可以对多个集合同时进行。例如,集合 A ,B ,C 和 D 的交集为 A ∩B ∩C ∩D =A ∩(B ∩(C ∩D))。交集运算满足结合律,即 A ∩(B ∩C)=(A ∩B) ∩C 。

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

全国卷近五年高考真题汇总---1.集合(理)

集合专题---五年全国卷高考题 【2017全国3,理1】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A ∩B 中元 素的个数为( ) A .3 B .2 C .1 D .0 【2017全国1,理1】已知集合A ={x |x <1},B ={x |31x <},则( ) A .{|0}A B x x =U D .A B =?I 【2017全国2,理】设集合{}1,2,4A =,{} 240x x x m B =-+=。若{}1A B =I ,则B =( ) A.{}1,3- B.{}1,0 C.{}1,3 D.{}1,5 【2016全国1,理】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2 【2016全国2,理】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = U ( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, 【2016全国3,理】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S ∩ T= ( ) (A) [2,3] (B)(-∞2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【2015全国2,文】已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =U ( ) A .()1,3- B .()1,0- C .()0,2 D .()2,3 【2015全国2,理】已知集合A={-2,-1,0,1,2},B={x|(x -1)(x+2)<0},则A∩B=( ) (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2} 【2014全国2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A.{1} B.{2} C.{0,1} D.{1,2} 【2014全国1,理1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ?=

集合知识点总结

集合知识点总结 Prepared on 22 November 2020

辅导讲义:集合与常用逻辑用语 1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。 集合的常用表示法:列举法、描述法。 集合元素的特征:确定性、互异性、无序性。 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为 A ? B ,或B ?A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。 即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B 或B ?A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作 U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作 B A ?(读作“A 交B ”),即:B A ?=}{B x A x x ∈∈且,|。 B A ?=A B ?,B A ?B B A A ???,。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作 B A ?(读作“A 并B ”),即:B A ?=}{B x A x x ∈∈或,|。 B A ?=A B ?,?A B A ?,?B B A ?。 8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含

(完整版)一元一次不等式组知识点及题型总结(可编辑修改word版)

x 一元一次不等式与一元一次不等式组 一、不等式 考点一、不等式的概念 不等式:用不等号表示不等关系的式子,叫做不等式。不等号包括 . 题型一 会判断不等式 下列代数式属于不等式的有 . ① -x≥5 ② 2x -y <0 ③ 2 + 5 ≥ 3 ④ -3<0 ⑤ x=3 ? x 2 + xy + y 2 ⑦ x≠5 ⑧ x 2 - 3x + 2>0 ⑨x + y ≥ 0 题型二 会列不等式 根据下列要求列出不等式 ①.a ②.m 的 5 倍不大于 3 可表示为 . ③.x 与 17 的和比它的 2 倍小可表示为 . ④.x 和 y 的差是正数可表示为 . ⑤. x 的3 5 与 12 的差最少是 6 可表示为 . 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数. 基本训练:若 a >b ,ac >bc ,则 c 0. 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。 基本训练:若 a >b ,ac <bc ,则 c 0. 4、如果不等式两边同乘以 0,那么不等号变成等号,不等式变成等式。 练习:1、指出下列各题中不等式的变形依据 ①.由 3a>2 得 a> 2 理 3 由: . ②. 由 a+7>0 得 a>-7 理 由: -1 . 5 ③.由-5a<1 得 a> 理

由:. ④.由 4a>3a+1 得 a>1 理 由:. 2、若x>y,则下列式子错误的是() A.x-3>y-3 B.x > y 3 3 3、判断正误 ①. 若a>b,b<c 则a>c. () ②.若a>b,则ac>bc. () ③.若ac2>bc2,则a>b. () ④.若a>b,则ac2>bc2. () ⑤.若 a>b,则a(c2+1)>b(c2+1) C. x+3>y+3 D.-3x>-3y () ?. 若a>b,若c 是个自然数,则ac>bc. () 考点三、不等式解和解集 1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 练习:1、判断下列说法正确的是() A.x=2 是不等式x+3<2 的解 B.x =3 是不等式3x<7 的解。 C.不等式3x<7 的解是x<2 D.x=3 是不等式3x≥9的解 2.下列说法错误的是() A.不等式 x<2 的正整数解只有一个 B.-2 是不等式 2x-1<0 的一个解 C. 不等式-3x>9 的解集是 x>-3 D.不等式 x<10 的整数解有无数个 2、不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 题型一会求不等式的解集 练习:1、不等式x-8>3x-5 的解集是. 2、不等式x≤4的非负整数解是. 3、不等式2x-3≤0的解集为. 题型二知道不等式的解集求字母的取值范围 2、如果不等式(a-1)x<(a-1)的解集是x<1,那么a 的取值范围是. x< 1

相关文档
最新文档