等比数列及其前n项和(作业)

合集下载

等比数列的前n项和公式专题练习(解析版)

等比数列的前n项和公式专题练习(解析版)

等比数列的前n 项和公式一、单选题 1.(2021·内蒙古宁城·高三月考(文))已知{}n a 是等比数列,若12a =,528a a =,数列{}n a 的前n 项和为n S ,则n S 为( ) A .22n - B .121n +- C .122n +- D .21n -【答案】C 【分析】设公比为q ,根据528a a =求得公比,再利用等比数列前n 项和的公式即可得出答案. 【详解】 解:设公比为q ,因为528a a =,所以3528a q a ==,所以2q ,所以()12122212nn n S +⨯-==--.故选:C.2.(2021·河北·高三月考)已知正项等比数列{}n a 的前n 项和为n S ,42S =,810S =,则{}n a 的公比为( ) A.1 B C .2 D .4【答案】B 【分析】利用等比数列的性质求解即可. 【详解】因为42S =,810S =,{}n a 为正项等比数列,所以4845678412344S S a a a a q S a a a a -+++===+++,解得q 故选:B .3.(2021·西藏·拉萨那曲第二高级中学高三月考(文))记等比数列{}n a 的前n 项和为n S ,若214a =,378S =,则公比q = ( ) A .12-B .12C .2D .12或2【答案】D 【分析】根据等比数列的性质可得2132116a a a ==,再由378S =,可得1358a a +=,分别求出13,a a ,即可得出答案. 【详解】解:在等比数列{}n a 中,若214a =,则2132116a a a ==,312378S a a a =++=,所以1358a a +=, 由13116a a =,1358a a +=,解得131218a a ⎧=⎪⎪⎨⎪=⎪⎩,或131812a a ⎧=⎪⎪⎨⎪=⎪⎩,当131218a a ⎧=⎪⎪⎨⎪=⎪⎩时,2112a a q ==, 当131812a a ⎧=⎪⎪⎨⎪=⎪⎩时,212a q a ==, 所以q =12或2.故选:D.4.(2021·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3 B .13C .2D .12【答案】B 【分析】 由已知得()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭.再求得13a =,从而有数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,由等比数列的通项公式求得n a ,再利用分组求和的方法,以及等比数列求和公式求得n S ,从而求得n T 得答案. 【详解】解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=,∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n na --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn n n n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n nn n a S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13.故选:B.5.(2021·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2 B .()1213n- C .4n ﹣1 D .()1413n- 【答案】D 【分析】根据等比数列定义,求出214n n n b a -==,可证明{}n b 是以1为首项,4为公比的等比数列,利用等比数列的求和公式,可得解 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --=== 由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列 a 12+a 22+⋯+a n 2=1(14)41143n n ⋅--=- 故选:D6.(2021·河南郑州·高二期中(理))设n A ,n B 分别为等比数列{}n a ,{}n b 的前n 项和.若23n n n n A aB b+=+(a ,b 为常数),则74a b =( )A .12881B .12780C .3227D .2726【答案】C 【分析】设(2),(3)n nn n A a m B b m =+=+,项和转换776a A A =-,443b B B =-求解即可【详解】由题意,23n n n n A a B b+=+ 设(2),(3)n nn n A a m B b m =+=+则76776[(2)(2)]64a A A a a m m =-=+-+=()()434433354b B B b b m m ⎡⎤=-=+-+=⎣⎦7464325427a mb m ∴== 故选:C7.(2021·河南郑州·高二期中(理))设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【答案】A 【分析】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,然后利用分求出,n n A B ,再利用n n n S A B =+列方程,由对应项的系数相等可求出结果 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则 ()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n nn n d d S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221b d da q q-====--, 解得111,2,5,4a d q b ====, 所以3d q -=-.8.(2021·福建·泉州科技中学高三月考)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列233464510105,,,,,,,,,,,则此数列的前35项和为( )A .994B .995C .1003D .1004【答案】B 【分析】没有去掉“1”之前,可得每一行数字和为首项为1,公比为2的等比数列,可求出其前n 项和为21n n S =-,每一行的个数构成一个首项为1,公差为1的等差数列,从而可求出前n 项总个数为(1)2n n n T +=,由此可计算出第10行去掉“1”后的最后一个数为第36个数,从而可求出前35项和。

等比数列的前n项和习题(含答案)

等比数列的前n项和习题(含答案)

[A 基础达标]1.等比数列1,a ,a 2,a 3,…的前n 项和为( )A .1+a (1-a n -1)1-11aB .1-a n 1-aC.a n +1-1a -1 D .以上皆错 解析:选D.当a =1时,S n =n ,故选D.2.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( )A .7B .8C .15D .16解析:选C.设{a n }的公比为q ,因为4a 1,2a 2,a 3成等差数列,所以4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,所以q =2,又a 1=1,所以S 4=1-241-2=15,故选C. 3.已知等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =( )A .-2B .2C .3D .-3 解析:选A.因为S 3+3S 2=0,所以a 1(1-q 3)1-q +3a 1(1-q 2)1-q=0, 即(1-q )(q 2+4q +4)=0.解得q =-2或q =1(舍去).4.设等比数列{a n }的前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( ) A.18B .-18 C.578 D .558 解析:选A.法一:由等比数列前n 项和的性质知S 3,S 6-S 3,S 9-S 6成等比数列,又a 7+a 8+a 9=S 9-S 6,则S 3,S 6-S 3,a 7+a 8+a 9成等比数列,从而a 7+a 8+a 9=(S 6-S 3)2S 3=18.故选A.法二:因为S 6=S 3+S 3q 3,所以q 3=S 6-S 3S 3=-18,所以a 7+a 8+a 9=S 9-S 6=S 3q 6=8× ⎝⎛⎭⎫-182=18.故选A.5.在等比数列{a n }中,已知S 30=13S 10,S 10+S 30=140,则S 20等于( )A .90B .70C .40D .30解析:选C.因为S 30≠3S 10,所以q ≠1.由⎩⎪⎨⎪⎧S 30=13S 10,S 10+S 30=140得⎩⎪⎨⎪⎧S 10=10,S 30=130, 所以⎩⎪⎨⎪⎧a 1(1-q 10)1-q =10,a 1(1-q 30)1-q =130,所以q 20+q 10-12=0.所以q 10=3,所以S 20=a 1(1-q 20)1-q=S 10(1+q 10) =10×(1+3)=40.6.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.解析:因为在等比数列{a n }中,前3项之和等于21,所以a 1(1-43)1-4=21,所以a 1=1. 所以a n =4n -1. 答案:4n -1 7.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,a n +1-a n =2n ,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n ,应用累加法可得a n =2n -1.所以S n =a 1+a 2+...+a n =2+22+ (2)-n =2(1-2n )1-2-n =2n +1-n -2. 答案:2n +1-n -2 8.在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项和S 15=________.解析:设数列{a n }的公比为q ,则由已知,得q 3=-2.又a 1+a 2+a 3=a 11-q(1-q 3)=1, 所以a 11-q =13,所以S 15=a 11-q (1-q 15)=a 11-q[1-(q 3)5]=13×[1-(-2)5]=11. 答案:119.记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n ·2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列.10.数列{a n }是首项为1的等差数列,且公差不为零,而等比数列{b n }的前三项分别是a 1,a 2,a 6.(1)求数列{a n }的通项公式;(2)若b 1+b 2+…+b k =85,求正整数k 的值.解:(1)设数列{a n }的公差为d ,因为a 1,a 2,a 6成等比数列,所以a 22=a 1·a 6,所以(1+d )2=1×(1+5d ),所以d 2=3d ,因为d ≠0,所以d =3,所以a n =1+(n -1)×3=3n -2.(2)数列{b n }的首项为1,公比为q =a 2a 1=4, 故b 1+b 2+…+b k =1-4k 1-4=4k -13. 令4k -13=85,即4k =256, 解得k =4.故正整数k 的值为4.[B 能力提升]11.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项解析:选B.设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n -2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q 3n -6=4.所以两式相乘,得a 61q 3(n -1)=8,即a 21q n -1=2,又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n =642,即2n =642,所以n =12. 12.已知等比数列{a n }的前10项中,所有奇数项之和S 奇为8514,所有偶数项之和S 偶为17012,则S =a 3+a 6+a 9+a 12的值为________.解析:设公比为q ,由⎩⎪⎨⎪⎧S 偶S 奇=q =2,S 奇=a 1[1-(q 2)5]1-q 2=8514,得⎩⎪⎨⎪⎧a 1=14,q =2. 所以S =a 3+a 6+a 9+a 12=a 3(1+q 3+q 6+q 9)=a 1q 2·1-q 121-q 3=585. 答案:58513.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以c (c >0)为公比的等比数列.(1)求数列{a n }的通项公式;(2)求a 2+a 4+…+a 2n .解:由条件知S 1=a 1=1.(1)①当c =1时,a n =⎩⎪⎨⎪⎧1,n =1,S n -S n -1,n ≥2⇒a n =⎩⎪⎨⎪⎧1,n =1,0,n ≥2.②当c ≠1时,a n =⎩⎪⎨⎪⎧1,n =1,(c -1)c n -2,n ≥2. (2)①当c =1时,a 2+a 4+…+a 2n =0;②当c ≠1时,数列是以a 2为首项,c 2为公比的等比数列,所以a 2+a 4+…+a 2n =(c -1)(1-c 2n )1-c 2=c 2n -11+c. 14.(选做题)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a n n,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.解:(1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6; 因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7.(2)证明:设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ;当n ≥7时,S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6,A n =780-210×⎝⎛⎭⎫34n -6n ,因为{a n }是递减数列,所以{A n }是递减数列,又A 8=780-210×(34)8-68=824764>80, A 9=780-210×(34)9-69=767996<80, 所以须在第9年初对M 更新.。

4.3.2 等比数列的前n项和公式(精练)(解析版)

4.3.2 等比数列的前n项和公式(精练)(解析版)

4.3.2等比数列的前n 项和公式【题组1等比数列的前n 项和与基本量】1、设正项等比数列{}n a 的前n 项和为n S ,若321238S a a =+,则公比=q ()A.2B.32-C.2或32-D.2或32【答案】A【解析】由321238S a a =+,有123212()38a a a a a ++=+,即321260a a a --=,由等比数列的通项公式得2111260a q a q a --=,即2260q q --=,解得2q =或32q =-,由数列为正项等比数列,∴2q =.故选:A2、记正项等比数列{}n a 的前n 项和为n S ,若2373S S =,则该数列的公比q =()A.13B.12C.2D.3【答案】C【解析】正项等比数列{}n a 中,0q >,由2373S S =得()()1212373a a a a a +=++,整理得3213440a a a --=,即23440q q --=,解得2q =,所以数列{}n a 的公比2q =.故选:C3、设正项等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则公比q =()A.5B.4C.3D.2【答案】D【解析】设公比为q ,因为23S =,415S =,所以4212S S -=,所以1234312a a a a +=⎧⎨+=⎩,即112311312a a q a q a q +=⎧⎨+=⎩两个方程左右两边分别相除,得24q =,因为数列是正项等比数列,所以2q =,故选:D.4、已知等比数列{}n a 的前n 项和为n S ,若34S =,612S =,则12S =______.【答案】60【解析】设等比数列的公比为q ,因为34S =,612S =,所以1q ≠,则()313141a q S q-==-,()6161121a q S q-==-,所以63131q q-=-,解得32q =,所以()()()()12661121211112126011a q a q q S qq--+===⨯+=--;故答案为:605、在等比数列{}n a 中,16a =,2312a a =-.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若66m S =,求m .【答案】(1)()162n n a -=⋅-或6n a =;(2)5m =或11【解析】(1)设等比数列{}n a 的公比为q ,由2312a a =-得:21112a q a q =-,即26126q q =-,解得:2q =-或1q =,()162n n a -∴=⋅-或6n a =.(2)当2q =-时,()()6126612mm S --==+,解得:5m =;当1q =时,1666m S ma m ===,解得:11m =;综上所述:5m =或11.【题组2等比数列片段和性质及应用】1、等比数列{}n a 的前n 项和为n S ,若812S =,2436S =,则16S =()A.24B.12C.24或-12D.-24或12【答案】A【解析】因为等比数列{}n a 的前n 项和为n S ,所以8S ,168S S -,2416S S -成等比数列,因为812S =,2436S =,所以()()21616121236S S -=⨯-,解得1624S =或1612S =-,因为816880S S q S -=>,所以160S >,则1624S =.故选:A2、若等比数列{}n a 的前n 项和为n S,22S =,46S =+78a a +=()A.32+B.32+C.16+D.16+【答案】D【解析】1222a a S +==34424a a S S +=-=+,由等比数列片段和的性质:2S ,42S S -,64S S -,86S S -,…成等比数列,所以568a a +=+,则7816a a +=+3、n S 为等比数列{}n a 的前n 项和,且721143,18,S S S x ===,则()A.23450x x +-=B.23630x x --=C.23450x x --=D.23630x x +-=【答案】C【解析】因为730S =≠,所以71472114,,S S S S S --成等比数列,所以()()272114147S S S S S -=-,即()2318(3)x x -=-,整理得23450x x --=.故选:C.4、设等比数列{}n a 的前n 项和为n S ,若842S S =,则1284S S S -的值是()A.4-B.3C.3-D.4【答案】B【解析】已知等比数列{}n a 的前n 项和为n S ,842S S =,由等比数列的性质得:484128,,S S S S S --成等比数列,且公比不为-1即24144,,2S S S S -成等比数列,44122S S S ∴-=,2413S S ∴=,12844433S SS S S ∴==-.故选:B.5、一个等比数列共有3m 项,若前2m 项之和为15,后2m 项之和为60,则这个等比数列的所有项的和为()A.63B.72C.75D.87【答案】A【解析】由题意知215m S =,360m m S S -=,又()()()2232260m m m m m m m m S S S S S S S S -=-=+-,解得3m S =,所以360363m S =+=.故选:A.【题组3等比数列奇偶项和的性质应用】1、已知等比数列{}n a 共有32项,其公比3q =,且奇数项之和比偶数项之和少60,则数列{}n a 的所有项之和是()A.30B.60C.90D.120【答案】D【解析】设等比数列{}n a 的奇数项之和为1S ,偶数项之和为2,S 则311531a a S a a =++++,()2463213531123a a a a q a a a a S S ++++=++++==又1260S S +=,则11603S S +=,解得1230,90S S ==,故数列{}n a 的所有项之和是3090120+=.故选:D2、已知等比数列{}n a 的公比2q =,前100项和为10090S =,则其偶数项24100a a a +++L 为()A.15B.30C.45D.60【答案】D【解析】设1399S a a a =+++L ,则()2410013992a a a a a a q S +++=+++=L L ,又因为1001210090S a a a =+++=L ,所以39030S ,S ==,所以24100260a a a S +++==L .故选:D3、已知项数为奇数的等比数列{}n a 的首项为1,奇数项之和为21,偶数项之和为10,则这个等比数列的项数为()A.5B.7C.9D.11【答案】A【解析】根据题意,数列{}n a 为等比数列,设111·n n n a a q q --==,又由数列{}n a 的奇数项之和为21,偶数项之和为10,则211210q -==,故1(1)2110213151n n n a q S n q-=+=⇒-=⇒=-;故选:A 4、已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为()A.2B.4C.8D.16【答案】C【解析】设这个等比数列{}n a 共有()2k k N *∈项,公比为q ,则奇数项之和为132185k S a a a -=+++=奇,偶数项之和为()2421321170n n S a a a q a a a qS -=+++=+++==奇偶,170285S q S ∴===偶奇,等比数列{}n a 的所有项之和为()212212211708525512kkk a S -==-=+=-,则22256k =,解得4k =,因此,这个等比数列的项数为8.故选:C.5、等比数列{}n a 中,11a =,427a =,则2462020+++a a a a 的值为()A.()20203318-B.()20201318-C.()20203312-D.()10103312-【答案】A【解析】设等比数列{}n a 的公比为q ,∵11a =,427a =,∴327q =,解得11a =,3q =.∴13-=n n a ,23a =,29q =,1239n n a -=⋅()()202010102462020319+++193318a a a a -==--,故选:A.【题组4等比数列前n 项和的其他性质】1、设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是()A.681a a >B.01q <<C.n S 的最大值为7S D.nT 的最大值为7T 【答案】B【解析】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾,若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾,所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误;因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误;因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误;故选:B.2、已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是()A.若20222021S S >,则数列{}n a 单调递增B.若20222021T T >,则数列{}n a 单调递增C.若数列{}n S 单调递增,则20222021a a ≥D.若数列{}n T 单调递增,则20222021a a ≥【答案】D【解析】A:由20222021S S >,得20220a >,即202110a q >,则1a 、q 取值同号,若100a q <<,,则{}n a 不是递增数列,故A 错误;B:由20222021T T >,得20221a >,即202111a q >,则1a 、q 取值同号,若100a q <<,,则数列{}n a 不是递增数列,故B 错误;C:若等比数列11a =,公比12q =,则11()122(1)1212nn n S -==--,所以数列{}n S 为递增数列,但20222021a a <,故C 错误;D:由数列{}n T 为递增数列,得1n n T T ->,所以1n a >,即1q ≥,所以20222021a a ≥,故D 正确.故选:D3、设等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,并满足条件1202120221,1a a a >⋅>,()()20212022110a a -⋅-<,则下列结论中不正确的有()A.q >1B.20222021S S >C.202120231a a ⋅<D.2021T 是数列{}n T 中的最大项【答案】A【解析】因为()()20212022110a a -⋅-<,所以20212022101a a >⎧⎨<<⎩或20212022011a a <<⎧⎨>⎩,而{}n a 为等比数列1202120221,1a a a >⋅>,于是01q <<,20212022101a a >⎧⎨<<⎩,则A 错误;2022202120222021S S a S =+>,则B 正确;22021202320221a a a ⋅=<,则C 正确;因为122021202220231,1,,1,01,01,a a a a a >>><<<<,所以2021T 是数列{}n T 中的最大项,则D 正确.故选:A.4、已知等比数列{}n a 的前n 项和为n S ,若135a a+=,420S =,则846422S S S S S -=--()A.9B.10C.12D.17【答案】B【解析】设等比数列{}n a 的公比为q ,因为412341324S a a a a a a a a =+++=+++()()131313(1)5(1)20a a a a q q a a q =++=+=+++=.所以3q =,则()()44844284442264262444211101S S S S S q S S q q S S S S S S q S S q -----====+=------.故选:B 【题组5等比数列中Sn 与an 的关系】1、已知等比数列{}n a 的前n 项和23n n S m +=-,则m a =()A.93B.1023⨯C.103D.923⨯【答案】B【解析】因为数列{}n a 的前n 项和23n n S m +=-,所以1127a S m ==-,221812754a S S m m =-=--+=,33224381162a S S m m =-=--+=,又数列{}n a 为等比数列,所以数列{}n a 的公比32162354a q a ===,所以2154327a a m ==-,所以9m =,118a =,所以1118323n n n a -+=⨯=⨯,故10923m a a ==⨯,故选:B.2、等比数列{}n a 的前n 项和23nn S m =+⨯,则m =()A.2-B.2C.1D.1-【答案】A【解析】116a S m ==+,当2n ≥时,1143n n n n a S S --=-=⨯,因为{}n a 是等比数列,所以11436m -⨯=+,得2m =-,所以A 正确.故选:A.3、设数列{}n a 的前n 项和为n S ,若221n n S a n =-+,则10S =()A.11223-B.10219-C.103223⨯-D.93219⨯-【答案】C【解析】当1n =时,111221S a a ==-+,解得11a =.当2n ≥时,11223n n S a n --=-+,所()11221223n n n n n a S S a n a n --=-=-+--+,即122n n a a -=+,所以()1222n n a a -+=+,即1222n n a a -+=+,所以数列{}2n a +是首项为3,公比为2的等比数列,则1232n n a -+=⨯,从而3223n n S n =⨯--,故10103223S =⨯-.故选:C4、设n S 为数列{}n a 的前n 项和.若23n n S a =-,则5a =()A.48B.81C.96D.243【答案】A【解析】由23n n S a =-,当1n =时1123a a =-,即13a =,当2n 时,1123n n S a --=-,则122n n n a a a -=-,即12n n a a -=(2)n .∴数列{}n a 是以3为首项,以2为公比的等比数列,则132n n a -=⨯,∴453248a =⨯=.故选:A.5、已知数列{}n a 的前n 项和21n n S =-,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n T =________.【答案】1122n --.【解析】由21n n S =-得当2n ≥时1121n n S --=-,所以112(2)n n n n a S S n --=-=≥,又因为01112a S ===,所以12n n a -=,1112n n a -=,即1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公比的等比数列,所以11111221212n n n T -⎛⎫- ⎪⎝⎭==--,【题组6等比数列前n 项和的实际应用】1、《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.问日益几何?”意思是:女子从第2天开始,每天比前一天多织相同数量的布,第1天织5尺布,现在一月(按30天计)共织390尺布,则该女子第5天所织的布的尺数为()A.7B.10715C.21931D.20929【答案】D【解析】设第n 天织布n a 尺,∵每天比前一天多织相同数量的布∴数列{}n a 为等差数列,设其公差为d,又第1天织5尺布,∴15a =,∵一月(按30天计)共织390尺布,∴30=390S ,∴3029305+3902d ⨯⨯⨯=,∴1629d =,∴516209542929a =+⨯=,即第该女子第5天所织的布的尺数为20929,故选:D.2、在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为()(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈)A.42B.56C.63D.70【答案】C【解析】设第n 轮感染的人数为n a ,则数列{}n a 是12a =,公比2q =的等比数列,由()2121199912nn S ⨯-+=+=-,可得121000n +=,解得2500n =,两边取对数得lg 2lg 500n =,则lg 23lg 2n =-,所以33118.979lg 20.3010n =-=-≈=,故需要的天数约为9763⨯=.故选:C3、《九章算术》中的“两鼠穿墙题”是我国数学的古典名题.“今有城墙厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”题意是:“两只老鼠从城墙的两边相对分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半……”,则前6天两只老鼠一共穿城墙________尺.【答案】207932【解析】由题意可知,小老鼠每天打洞的距离是以1为首项,以12为公比的等比数列,前6天打洞之和为611()21321263-=-;大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前6天打洞之和为6126312-=-.所以两只老鼠前6天打洞穿墙的厚度之和为632079633232+=.4、如图,一个小球从10m 高处自由落下,每次着地后又弹回到原来高度的13,若已知小球经过的路程为530m 27,则小球落地的次数为______.【答案】4【解析】设小球从第(n-1)次落地到第n 次落地时经过的路程为n a m,则12321110,102,10233a a a ==⨯⨯=⨯⨯,,当2n ≥时,得出递推关系12120,33n n a a a +==,所以数列{}n a 是从第2项开始以首项为203,公比为13的等比数列,所以221120((2)33n n n a a n --=⋅=≥,且110a =,设小球第n 次落地时,经过的路程为530m 27,所以12n n S a a a =+++211111020()(333n -⎡⎤=++++⎢⎥⎣⎦110203n -=-,所以11053020327n --=,解得4n =,5、某中学有在校学生2000人,没有患感冒的同学.由于天气骤冷,在校学生患流行性感冒人数剧增,第一天新增患病同学10人,之后每天新增的患病同学人数均比前一天多9人.由于学生患病情况日益严重,学校号召同学接种流感疫苗以控制病情.从第8天起,新增病患的人数均比前一天减少50%,并且每天有10名患病同学康复.(1)求第n 天新增病患的人数()113,N n a n n *≤≤∈;(2)按有关方面规定,当天患病同学达到全校人数的15%时必须停课,问该校有没有停课的必要?请说明理由.【答案】(1)()139117N 2813n nn n a n n *-+≤≤⎧=∈⎨≤≤⎩;(2)该学校不用面临停课的危险;理由见解析【解析】(1)当17,N n n *≤≤∈时,∵110a =,公差为9,∴10(1)991=+-⋅=+n a n n 当813,N n n *≤≤∈时,∵764a =,公比为12,∴71313711222---⎛⎫⎛⎫=⋅== ⎪⎪⎝⎭⎝⎭n n nn a a∴()139117N 2813n nn n a n n *-+≤≤⎧=∈⎨≤≤⎩(2)设n S 为第n 天患病总人数,则当27n ≤≤时,10n n n S S a --=>当813≤≤n 时,13110210---=-=-n n n n S S a ,令1321009--≥⇒≤n n ,()()17912789897102202n a a S S a a a a a a a +==+++++-⨯=++-最大值()5471064222002%3⋅+==<⨯=++-.所以该学校不用面临停课的危险.。

高中数学必修五 等比数列及前n项和(总结、例题、练习)

高中数学必修五 等比数列及前n项和(总结、例题、练习)

第五节 等比数列及前n 项和【基础知识】1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母__q __表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1(a 1≠0,q ≠0). 3.等比中项若G 2=a ·b _(ab ≠0),那么G 为a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m,(n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),1n a ⎧⎫⎨⎬⎩⎭,{2n a },{a n ·b n },n n a b ⎧⎫⎨⎬⎩⎭仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,S n =111(1)(1)(1)11n n na q a a q a q q q q =⎧⎪--⎨=≠⎪--⎩6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为__q n __. 难点正本 疑点清源 1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.两个防范(1)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.【考点剖析】考点一:等比数列基本量的运算【题组训练】1.已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2等于()A.2B.1C.12D.18【答案】C【解析】由{a n}为等比数列,得a3a5=24a,又a3a5=4(a4-1),所以24a=4(a4-1),解得a4=2.设等比数列{a n}的公比为q,则由a4=a1q3,得2=14q3,解得q=2,所以a2=a1q=12.2.(2021·湘东五校联考)已知在等比数列{a n}中,a3=7,前三项之和S3=21,则公比q的值是()A.1 B.-1 2C.1或-12D.-1或12【答案】C【解析】当q=1时,a n=7,S3=21,符合题意;当q≠1时,由21317,(1)=211a qa qq⎧=⎪⎨-⎪-⎩得q=-12.综上,q的值是1或-12,故选C.3.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得S7=71(12)12a--=381,解得a1=3..【名师微点】等比数列基本量运算的解题策略(1)等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =11(1)11n n a a q a q q q--=--. 考点二:等比数列的判定与证明例1.[典例精析]已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列. 【证明】因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以1n n b b +=211111112442242222n n n n n n nn n n n n na a a a a a a a a a a a a ++++++++----===--- 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法]等比数列的判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. 考点三:等比数列的性质及应用例2.(1)已知等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A.12B.10C.8 D.2+log35(2)设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于()A.18B.-18C. 578D.558(3)已知等比数列{a n}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.【答案】(1)B(2)A(3)2【解析】(1)由a5a6+a4a7=18,得a5a6=9,所以log3a1+log3a2+...+log3a10=log3(a1a2 (10)=log3(a5a6)5=5log39=10.(2)因为a7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以8(S9-S6)=1,即S9-S6=18,所以a7+a8+a9=1 8 .(3)由题意,得=240=80S SS S+-⎧⎪⎨-⎪⎩奇偶奇偶,,解得=80=160SS-⎧⎪⎨-⎪⎩奇偶,所以q=160=80SS--偶奇=2.[解题技法]应用等比数列性质解题时的2个注意点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q(m,n,p,q∈N*),则a m·a n=a p·a q”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.2.4 等比数列 基础练一、单选题1.在等比数列{}n a 中,201920168a a =,则数列{}n a 的公比q 的值为( )A .2B .3C .4D .82.已知等比数列{}n a 中,2017a ,2019a 是方程2410x x -+=的两个根,则2018a =( )A .1B .±1C .2018D .1,2018 3.已知数列{}n a 是公比为q 的等比数列,且132,,a a a 成等差数列,则公比q 的值为( )A .11,-2B .1C .1-2D .-24.若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b 为( ) A .1B .1-C .2D .2-5.已知等比数列{}n a 满足112a =,且()24341a a a ⋅=-,则5a =( ) A .8B .16C .32D .646.在各项不为零的等差数列{}n a 中,2201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则()220172019log b b ⋅的值为( )A .1B .2C .4D .8二、填空题7.若,22,33x x x ++是一个等比数列的前3项,则第四项为_________.8.在等比数列{}n a 中,1132a =,当11n 时,1n a >恒成立,则公比q 的取值范围是______.9.已知数列{}n a 满足()*1111,3n n n a a n a a +==∈+N ,那么{}n a 的通项公式是___.三、解答题10.已知:n S 为{}n a 的前n 项和,且满足n n a S n +=.(1)求证:{}1n a -成等比数列; (2)求n a .2.5 等比数列的前n 项和基础练一、单选题1.已知数列{}n a 的前n 项和22n S n n =+,则数列11{}n n a a +⋅的前6项和为( )A .215 B .415 C .511 D .1011 2.数列11111,2,3,424816…的前n 项和为( )A .()211122n n n ++-B .()1111122n n n +++-C .()211222n n n ++-D .()1112122n n n ⎛⎫++- ⎪⎝⎭3.数列{}n a的通项公式为n a =n S 为其前n 项和.若9n S =,则n =( )A .99B .98C .97D .964.若数列{}n a 的通项公式为221n n a n =+-,则数列{}n a 的前n 项和n S 为( )A .221n n +-B .1221n n ++-C .1222n n ++-D .222n n +-5.数列{}n a 满足n a =123...nn ++++,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( )A .2nn +B .22nn + C .1n n + D .21nn + 6.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( )A .3(1)2n n -++⨯B .3(1)2n n ++⨯C .1(1)2n n ++⨯D .1(1)2n n +-⨯二、填空题7.已知数列{a n }的通项a n =2n +n ,若数列{a n }的前n 项和为Sn ,则S 8=_________8.()()11114473231n n +++=⨯⨯-+ 9.已知数列111112123123n+++++++,,,,,,则其前n 项的和等于_________.三、解答题10.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.参考答案11.【答案】A【解析】设等比数列{a n }的公比为q ,∵a 2019=8a 2016,∴q 3=8,解得q =2. 故选A . 2.【答案】B【解析】∵2017a ,2019a 是方程x 2﹣4x+1=0的两个根,∴20172019a a =1,则在等比数列{a n }中,201720192018a a a =2=1,2008a ∴=±1故选B . 3.【答案】A【解析】数列{}n a 是公比为q 的等比数列,132,,a a a 故3122a a a =+,由此解得112q =-, 故选A 。

等比数列及其前n项和(含答案)

等比数列及其前n项和(含答案)

等比数列及其前 n 项和一、单选题(共10 道,每道10 分)1.公差不为0 的等差数列第二、三、六项构成等比数列,则公比为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:等比数列的通项公式2.等比数列中,,,则的值为( )A. B.C. D.答案:D 解题思路:试题难度:三颗星知识点:等比数列的性质3.在等比数列中,已知,,则( )A. B.C. D.答案:C 解题思路:试题难度:三颗星知识点:等比数列的性质4.公比为4 的等比数列的各项都是正数,且,则( )A. B.1C.4D.16答案:A解题思路:试题难度:三颗星知识点:等比数列的性质5.在正项等比数列中,,是方程的两个根,则的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:等比数列的性质6.一个蜂巢里有1 只蜜蜂,第1 天,它飞出去找回了5个伙伴;第2天,6 只蜜蜂飞出去,各自找回了5 个伙伴⋯⋯如果这个找伙伴的过程继续下去,第6 天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:等比数列的通项公式7.在等比数列中,表示前n 项的和,若,,则公比q=( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:等比数列的性质8.等比数列的前n 项,前2n 项,前3n 项的和分别为A,B,C,则( )A. B.答案:D 解题思路:试题难度: 三颗星 知识点: 等比数列的性质 9. 设等比数列 的前 n 项的和为 ,已知 , ,则 ( )答案: A解题思路:试题难度: 三颗星 知识点: 等比数列的性质A. B. C. D.C. D.10.已知 是首项为 1 的等比数列,( )是其前 n 项和,且 的前 5 B.答案:C 解题思路:。

高考数学一轮复习课时作业(三十五) 等比数列及其前n项和 (3)

高考数学一轮复习课时作业(三十五) 等比数列及其前n项和 (3)

课时作业(三十五) 等比数列及其前n 项和1.在等比数列{a n }中,a 1=1,a6+a8a3+a5 =127 ,则a 6的值为( )A .127B .181C .1243D .1729C [设等比数列{a n }的公比为q ,由a6+a8a3+a5 =q 3=127 ⇒q =13 ,所以a 6=a 1·q 5=1243 .故选C.]2.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11C [由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10.]3.(多选)记单调递增的等比数列{a n }的前n 项和为S n ,若a 2+a 4=10,a 2a 3a 4=64,则( ) A .S n +1-S n =2n +1 B .a n =2n -1 C .S n =2n -1D .S n =2n -1-1BC [由a 2a 3a 4=64得a 33 =43,则a 3=4.设等比数列{a n }的公比为q (q ≠0),由a 2+a 4=10,得4q +4q =10,即2q 2-5q +2=0,解得q =2或q =12 .又因为数列{a n }单调递增,所以q =2,所以2a 1+8a 1=10,解得a 1=1.所以a n =2n -1,S n =1×(1-2n )1-2=2n -1,所以S n +1-S n =2n +1-1-(2n-1)=2n .故选BC.]4.(2020·全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则Sn an =( )A .2n -1B .2-21-n C .2-2n -1D .21-n -1B [法一:设等比数列{a n }的公比为q ,则由⎩⎪⎨⎪⎧a5-a3=a1q4-a1q2=12,a6-a4=a1q5-a1q3=24 解得⎩⎪⎨⎪⎧a1=1,q =2.所以S n =a1(1-qn )1-q=2n -1,a n =a 1q n -1=2n -1,所以Sn an =2n -12n -1=2-21-n ,故选B.法二:设等比数列{a n }的公比为q ,因为a6-a4a5-a3 =a4(1-q2)a3(1-q2) =a4a3 =2412 =2,所以q =2,所以Sn an =a1(1-qn )1-q a1qn -1 =2n -12n -1=2-21-n ,故选B.] 5.(多选)(2020·江苏省邗江中学高二月考)已知等比数列{a n }中,满足a 1=1,q =2,S n 是{a n }的前n 项和,则下列说法正确的是( )A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1an 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列AC [等比数列{a n }中,满足a 1=1,q =2,所以a n =2n -1,所以a 2n =22n -1,所以数列{a 2n }是等比数列,故A 正确;又1an =12n -1 =⎝⎛⎭⎫12 n -1 ,所以数列⎩⎨⎧⎭⎬⎫1an 是递减数列,故B 不正确;因为log 2a n =log 22n -1=n -1,所以{log 2a n }是等差数列,故C 正确;数列{a n }中,S 10=1-2101-2 =210-1,S 20=220-1,S 30=230-1,S 10,S 20,S 30不成等比数列,故D 不正确;故选AC.]6.等比数列{a n }中,a 1= 2 ,a 2=33 ,则a2+a2013a8+a2019 =________,a 1a 2a 3a 4=________.解析: 因为等比数列{a n }中,a 1= 2 ,a 2=33 , 所以q =a2a1 =332,所以a2+a2013a8+a2019 =a2+a2013(a2+a2013)q6 =1q6=1⎝ ⎛⎭⎪⎫3326 =89 , a 1a 2a 3a 4=a 41·q 6=( 2 )4·⎝ ⎛⎭⎪⎫332 6 =4×98 =92 .答案: 89 ;927.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________. 解析: ∵a 2+a 4=-2a 3,∴a 2+a 4+2a 3=0,a 2+2a 2q +a 2q 2=0, ∵a 2≠0,∴q 2+2q +1=0,解得q =-1. ∵a 1=2 020,∴S 2 021=a1(1-q2 021)1-q =2 020×[1-(-1)2 021]2 =2 020.答案: 2 0208.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有 1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.解析: 由题意,得正方形的边长构成以22 为首项,以22为公比的等比数列,现已知共得到1 023个正方形,则有1+2+…+2n -1=1 023,∴n =10,∴最小正方形的边长为22 ×⎝⎛⎭⎫22 9 =132 .答案:1329.已知数列{a n }的前n 项和为S n ,满足S n =4a n -p ,其中p 为非零常数. (1)求证:数列{a n }为等比数列;(2)若a 2=43,求{a n }的通项公式.解析: (1)证明:当n =1时,S 1=4a 1-p ,得a 1=p3 ≠0,当n ≥2时,a n =S n -S n -1=(4a n -p )-(4a n -1-p )=4a n -4a n -1, 得3a n =4a n -1,即an an -1 =43, 因而数列{a n }是首项为p 3 ,公比为43的等比数列.(2)由(1)知,数列{a n }的通项公式为a n =p 3 ×⎝⎛⎭⎫43 n -1 ,又a 2=43 ,可知p =3,于是a n =⎝⎛⎭⎫43 n -1 .10.在等比数列{a n }中,a 1=6,a 2=12-a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =66,求m . 解析: (1)设等比数列{a n }的公比为q , ∵a 1=6,a 2=12-a 3,∴6q =12-6q 2,解得q =-2或q =1, ∴a n =6×(-2)n -1或a n =6. (2)①若a n =6×(-2)n -1,则S n =6×[1-(-2)n]3 =2[1-(-2)n ],由S m =66,得2[1-(-2)m ]=66,解得m =5. ②若a n =6,q =1,则{a n }是常数列, ∴S m =6m =66,解得m =11. 综上,m 的值为5或11.11.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这3个数可适当排序后构成等差数列,也可适当排序后构成等比数列,则p +q 的值等于( )A .7B .8C .9D .10C [因为a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,所以a +b =p ,ab =q .因为p >0,q >0,所以a >0,b >0,又a ,b ,-2这3个数可适当排序后构成等差数列,也可适当排序后构成等比数列,所以⎩⎪⎨⎪⎧2b =a -2,ab =4 或⎩⎪⎨⎪⎧2a =b -2,ab =4, 解得⎩⎪⎨⎪⎧a =4,b =1 或⎩⎪⎨⎪⎧a =1,b =4(负值已舍去).所以p =a +b =5,q =1×4=4,所以p +q =9.故选C.]12.(多选)(2020·江苏南京高三期中)已知等比数列{a n }的公比q =-23 ,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [数列{a n }是公比q 为-23 的等比数列,{b n }是首项为12,公差设为d 的等差数列,则a 9=a 1⎝⎛⎭⎫-23 8,a 10=a 1⎝⎛⎭⎫-23 9, ∴a 9·a 10=a 21 ⎝⎛⎭⎫-23 17 <0,故A 正确; ∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1⎝⎛⎭⎫-23 8>12+8d ,a 1⎝⎛⎭⎫-23 9>12+9d , 由于a 9,a 10异号,因此a 9<0或a 10<0, 故b 9<0或b 10<0,且b 1=12.可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选AD.]13.已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7. (1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.解析: (1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a1q =2,a1+a1q +a1q2=7解得⎩⎪⎨⎪⎧a1=4,q =12 或⎩⎪⎨⎪⎧a1=1,q =2 (舍去).所以a n =4·⎝⎛⎭⎫12 n -1 =⎝⎛⎭⎫12 n -3 .(2)由(1)可知,S n =a1(1-qn )1-q =4⎝⎛⎭⎫1-12n 1-12=8⎝⎛⎭⎫1-12n <8. 因为a n >0,所以S n 单调递增. 又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8. 14.(开放型)在①an +1an =-12 ,②a n +1-a n =-16,③a n +1=a n +n -8这三个条件中任选一个,补充在下面的问题中,若问题中的S n 存在最大值,则求出最大值;若问题中的S n 不存在最大值,请说明理由.问题:设S n 是数列{a n }的前n 项和,且a 1=4,________,求{a n }的通项公式,并判断S n 是否存在最大值.解析: 选①因为an +1an =-12 ,a 1=4,所以{a n }是首项为4.公比为-12 的等比数列,所以a n =4×⎝⎛⎭⎫-12 n -1 =⎝⎛⎭⎫-12 n -3 .当n 为奇数时,S n =4⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫-12n 1+12=83 ⎝⎛⎭⎫1+12n , 因为83 ⎝⎛⎭⎫1+12n 随着n 的增加而减少, 所以此时S n 的最大值为S 1=4. 当n 为偶数时,S n =83 ⎝⎛⎭⎫1-12n , 且S n =83 ⎝⎛⎭⎫1-12n <83 <4.综上,S n 存在最大值,且最大值为4. 选②因为a n +1-a n =-16 ,a 1=4.所以{a n }是首项为4,公差为-16 的等差数列,所以a n =4+(n -1)⎝⎛⎭⎫-16 =-16 n +256 . 由-16 n +256≥0得n ≤25,所以S n 存在最大值.且最大值为S 25(或S 24),因为S 25=25×4+25×242 ×⎝⎛⎭⎫-16 =50,所以S n 的最大值为50.选③因为a n +1=a n +n -8,所以a n +1-a n =n -8, 所以a 2-a 1=-7,a 3-a 2=-6,…a n -a n -1=n -9, 则a n -a 1=a 2-a 1+a 3-a 2+…+a n -a n -1=(-7+n -9)(n -1)2=n2-17n +162,又a 1=4,所以a n =n2-17n +242 .当n ≥16时,a n >0, 故S n 不存在最大值.15.(多选)(2020·山东枣庄期中)将n 2个数排成n 行n 列的一个数阵,如下:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .a 67=17×37C .a ij =(3i -1)×3j -1D .S =14n (3n +1)(3n -1)ACD [由题意可得,a 13=a 11m 2=2m 2,a 61=a 11+5m =2+5m ,所以2m 2=2+5m +1,解得m =3或m =-12 (舍去),所以A 正确.由题意,得a 67=a 61m 6=(2+3×5)×36=17×36,所以B 错误.因为a ij =a i 1m j -1=[a 11+(i -1)×m ]×m j -1=[2+(i -1)×3]×3j -1=(3i -1)×3j -1,所以C 正确.因为S =(a 11+a 12+…+a 1n )+(a 21+a 22+…+a 2n )+…+(a n 1+a n 2+…+a nn )=a11(1-3n )1-3+a21(1-3n )1-3 +…+an1(1-3n )1-3 =12 (3n -1)(2+3n -1)n 2 =14 n (3n +1)(3n -1),所以D 正确,故选ACD.]16.(2021·广东梅州质检)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数).若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析: 当n =1时,a 1=S 1=λa 1-1.又a 1=1,所以λ-1=1,解得λ=2.所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以1为首项,2为公比的等比数列,所以数列{a n }的通项公式为a n =2n -1又a n b n =-n 2+9n -20,所以b n =-n2+9n -202n -1,所以b n +1-b n =-(n +1)2+9(n +1)-202n--n2+9n -202n -1=n2-11n +282n<0.又2n >0,所以n 2-11n +28=(n -4)(n -7)<0,解得4<n <7又n ∈N ,所以满足条件的n 的取值集合为{5,6}答案: {5,6}。

2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版

2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版

第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。

专题27 等比数列及其前n项和(押题专练)(解析版)

专题27 等比数列及其前n项和(押题专练)(解析版)

1.已知等比数列{a n }的前n 项和为S n ,且S 1,S 2+a 2,S 3成等差数列,则数列{a n }的公比为( ) A .1 B .2 C.12D .3 解析:因为S 1,S 2+a 2,S 3成等差数列,所以2(S 2+a 2)=S 1+S 3,2(a 1+a 2+a 2)=a 1+a 1+a 2+a 3,a 3=3a 2,q =3。

选D 。

答案:D2.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10= ( ) A .12 B .10 C .8 D .2+log 35解析:由题意可知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18得a 5a 6=a 4a 7=9, 而log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·…·a 10) =log 3(a 5a 6)5=log 395 =log 3310=10。

答案:B3.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1 B .4n -1 C .2n -1 D .2n -1解析:∵⎩⎨⎧a 1+a 3=52a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,1a 1q +a 1q 3=54,2由(1)除以(2)可得1+q 2q +q 3=2,解得q =12,代入(1)得a 1=2,∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n =4⎝⎛⎭⎫1-12n 42n =2n -1,选D 。

答案:D4.在等比数列{a n }中,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为17,则S 6=( ) A.634 B .16 C .15 D.614解析:由等比数列的性质知a 2·a 3=a 1·a 4=2a 1,即a 4=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列及其前n 项和(作业)
例1: 已知等比数列{}n a 中,各项都是正数,且1a ,31
2
a ,22a 成等差数列,则
910
78
a a a a +=+( )
A
.1 B
.1 C
.3+D
.3-
【思路分析】
设公比为q ,则0q >,21a a q =,231a a q =,
∵1a ,31
2
a ,22a 成等差数列,
∴3122a a a =+,即21112a q a a q =+,
解得1q =+
1,
∴22910787878()3a a a a q q a a a a ++===+++. 故选C .
例2: 若等比数列
{}
n a 中,25112a a a ++=,58146a a a ++=,那么
2581114a a a a a ++++的值为( )
A .8
B .9
C .242
31
D .
240
41
【思路分析】
设公比为q ,则335814251125112511()
a a a q a a a q a a a a a a ++++==++++,即33q =,
∴38553a a q a ==,9145527a a q a ==,
由58146a a a ++=,得5553276a a a ++=,解得56
31
a =
, ∴2581114251158145242
()()31
a a a a a a a a a a a a ++++=+++++-=. 故选C .
例3: 设{}n a 为等比数列,{}n b 为等差数列,且10b =,n n n c a b =+,若数列{}
n c
的前三项为1,1,2,则{}n a 的前10项之和是 ( ) A .978
B .557
C .467
D .1 023
【思路分析】
设数列{}n a 的公比为q ,设数列{}n b 的公差为d , ∵10b =,11c =, ∴11a =,
则2a q =,23a q =,2b d =,32b d =, ∵21c =,32c =,
∴2122q d q d +=⎧⎨+=⎩
,解得21q d =⎧⎨=-⎩,
∴数列{}n a 的前10项之和10110(1)
1 0231a q S q
-=
=-.故选D .
1. 在等比数列{}n a 中,已知332a =
,前三项和39
2
S =,则公比q =( )
A .12
B .12
-
C .1或1
2
-
D .1或
12
2. 已知等比数列{}n a 满足123a a +=,236a a +=,则7a =( )
A .64
B .81
C .128
D .243
3. 公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则5a =( )
A .1
B .2
C .4
D .8
4. 已知等比数列{}n a 满足31a ,51a ,则2
3
262a a a ++ 37a a =( )
A .4
B .6
C .8
D .8-
5. 已知等比数列{}n a 的各项均为正数,且564718a a a a +=,
则3132310log log log =a a a +++…( ) A .12 B .10 C .8
D .32log 5+
6. 设{}n a 是由正数组成的等比数列,n S 为其前n 项和,已知241a a =,37S =,
则5S =( ) A .152
B .
314
C .
334
D .
172
7. 设n S 为等比数列{}n a 的前n 项和,2580a a +=,则
5
2
S S =( ) A .11 B .5 C .8- D .11-
8. 等比数列{}n a 中,42S =,86S =,则17181920a a a a +++=
_______.
9. 若210lg lg lg 110x x x +++=…,则210lg lg lg x x x +++=…
__________.
10. 已知等比数列{}n a 的前n 项和为2n n S a b =⋅+,且13a =.
(1)求a ,b 的值以及数列{}n a 的通项公式; (2)设n n
n
b a =,求数列{}n b 的前n 项和n T .
【参考答案】
1.C 2.A 3.A
4.C
5.B
6.B
7.D
8.32
9.2 046
10.(1)3a =,3b =-,132n n a -=⋅;
(2)1
421332n n n T -+=-⋅。

相关文档
最新文档