《双曲线和抛物线的参数方程(2)》教学案
双曲线及其标准方程教案与说明(甘肃)

双曲线及其标准方程教案与说明(甘肃)教案内容:一、教学目标1. 让学生理解双曲线的定义及其性质。
2. 引导学生掌握双曲线的标准方程及其变换。
3. 培养学生的数学思维能力,提高学生解决实际问题的能力。
二、教学重难点1. 重点:双曲线的定义、性质、标准方程及其变换。
2. 难点:双曲线标准方程的推导及应用。
三、教学准备1. 教师准备:双曲线的课件、例题、习题。
2. 学生准备:笔记本、文具、已学过的相关知识。
四、教学过程1. 导入:通过复习直线、圆等基本几何图形,引导学生思考双曲线的定义和特点。
2. 新课导入:介绍双曲线的定义,引导学生掌握双曲线的性质。
3. 例题讲解:讲解双曲线的标准方程及其变换,让学生通过例题理解并掌握双曲线的标准方程。
4. 课堂练习:让学生独立完成练习题,巩固双曲线标准方程的知识。
5. 总结:对本节课的内容进行总结,强调双曲线标准方程的重要性和应用。
五、课后作业1. 完成课后习题,加深对双曲线及其标准方程的理解。
2. 结合生活实际,寻找双曲线模型的应用,提高学生的数学应用能力。
说明:本教案根据甘肃地区的教学实际情况编写,注重学生的基本数学素养的培养,难度适中。
在教学过程中,教师要关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和自信心。
通过课后作业的设置,让学生将所学知识应用到实际生活中,提高学生的数学应用能力。
六、教学拓展1. 引导学生探索双曲线的参数方程及其图像。
2. 介绍双曲线在其他领域的应用,如物理学、天文学等。
七、课堂小结1. 回顾本节课所学内容,让学生总结双曲线及其标准方程的知识。
2. 强调双曲线在数学和实际生活中的重要性。
八、课后反思1. 教师对本节课的教学情况进行反思,分析学生的学习效果。
2. 根据学生的反馈,调整教学方法和解题策略,为下一节课做好准备。
九、章节测试1. 设计一份章节测试题,测试学生对双曲线及其标准方程的掌握程度。
2. 及时批改测试题,了解学生的学习状况,为下一步教学提供依据。
《双曲线和抛物线的参数方程(2)》教学案

1.13《双曲线和抛物线的参数方程》教学案一、学习目标(1).双曲线、抛物线的参数方程.(2).双曲线、抛物线的参数方程与普通方程的关系.(3).通过学习双曲线、抛物线的参数方程,进一步完善对双曲线、抛物线的认识,理解参数方程与普通方程的相互联系.并能相互转化.提高综合运用能力二、学习重难点学习重点:双曲线、抛物线参数方程的推导学习难点:(1)双曲线、抛物线参数方程的建立及应用.(2)双曲线、抛物线的参数方程与普通方程的互化三、学法指导:认真阅读教材,按照导学案的导引进行自主合作探究式学习四、知识链接:焦点在x 上的椭圆的参数方程________________________________________ 焦点在y 上的椭圆的参数方程________________________________________五、学习过程(阅读教材29-34完成)(一)双曲线的参数方程1双曲线),(0012222>>=-b a b y a x 的参数方程___________________________注:(1)ϕ的范围__________________________(2)ϕ的几何意义___________________________2双曲线),(0012222>>=-b a b x a y 的参数方程___________________________(二)抛物线的参数方程抛物线)(022>=p px y 的参数方程___________________________(三)典型例题六、课堂练习:、 的轨迹方程。
,求点相交于点并于点,且上异于顶点的两动是抛物线是直角坐标原点,、如图例M M AB AB OM OB OA p px y B A O ⊥⊥>=,)0(2,12___________的两个焦点坐标tan sec {、求双曲线αα34321==y x ______________的渐近线方程为)为参数(tan sec {、双曲线ϕϕϕ==y x 32的轨迹方程。
高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 4数学教学案

第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程(1)抛物线y 2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,则焦点在x 轴上; 如果y 对应的参数形式是a sec φ,则焦点在y 轴上.3.若抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.则参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 本题考查双曲线的参数方程的应用,解答本题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),则B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P点的轨迹方程,并说明它是何曲线.[精讲详析] 本题考查抛物线的参数方程的求法及其应用.解答本题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2,变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t 得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 本题考查椭圆及双曲线的参数方程,解答本题需要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin (θ-φ)|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(广东高考)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2则5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),则x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.天津高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.[命题立意] 本题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2 一、选择题1.下列参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos 2t C.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2t D.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数范围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3(sin 2θ+cos 2θ)cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 二、填空题5.(陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,则焦点坐标为(1,0). 答案:(1,0)6.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,则点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),则x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0) 7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48.∴焦点坐标为(0,±43). 答案:(0,±43)8.(广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),则中点为M (a2(secα+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a (sec α-sec β)b (tan α-tan β)[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 则k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),则⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4(t 1+t 2)4(t 21+t 22)-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4(t 21+t 22),y =4(t 1+t 2),则y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.已知圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
山西高中数学第2章参数方程2双曲线的参数方程学案无解答

双曲线的参数方程【学习目标】1、了解双曲线参数方程,了解其参数的意义。
2、能够将双曲线的参数方程与普通方程进行互化【重点难点】双曲线的参数方程【学习过程】一、问题情景导入将参数方程cossinx ay bϕϕ=⎧⎨=⎩(ϕ为参数)化为普通方程,并说明其为什么曲线二、自学探究:(阅读课本第27-30页,完成下面知识点的梳理)1、中心在原点,焦点在x轴上的椭圆22221x ya b+=(a>b>0)的参数方程是______规定ϕ的取值范围为______2、中心在原点,焦点在x轴上的双曲线22221x ya b-=的参数方程是______中心在原点,焦点在y轴上的双曲线22221y xa b-=的参数方程是______规定参数ϕ的取值范围______如何判断焦点的位置______三、例题演练:例1、A、B分别是椭圆221369x y+=的右顶点和上顶点,动点C在该椭圆上运动,求△ABC的重心G的轨迹的普通方程。
练习1.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是( ) A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)2.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为 ( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)3.与方程xy =1等价的曲线的参数方程(t 为参数)是( ) A.⎩⎪⎨⎪⎧x =t 2,y =t -2 B.⎩⎪⎨⎪⎧x =sin t ,y =csc t C.⎩⎪⎨⎪⎧x =cos t ,y =sec t D.⎩⎪⎨⎪⎧x =tan t ,y =cot t 4.双曲线⎩⎨⎧x =3sec 2,y =tan 2的顶点坐标为________. 5.圆锥曲线⎩⎪⎨⎪⎧x =4sec θ+1,y =3tan θ(θ为参数)的焦点坐标是________.。
高三数学下册《曲线的参数方程》教案、教学设计

5.教学资源:
(1)充分利用多媒体教学资源,如PPT、动画、视频等,增强课堂教学的直观性和趣味性。
(2)提供丰富的课后学习资源,如网络课程、数学软件等,方便学生自主学习。
四、教学内容与过程
(一)导入新课
在课堂开始时,我将通过一个生动的实例来导入新课。我会向学生展示一个视频,内容是一个摩天轮的运动过程。摩天轮的运动形成了一个圆的轨迹,这个轨迹实际上就是一个曲线。我会引导学生观察摩天轮的运动,并提出问题:“摩天轮的运动轨迹可以用什么方式来描述?”通过这个问题,学生会自然地联想到我们之前学习的坐标系和方程。接着,我会引入曲线参数方程的概念,告诉学生我们将要通过参数方程来描述这样的曲线运动。
(2)关注学生的学习反馈,及时调整教学进度和教学方法,提高教学效果。
(3)注重培养学生的数学思维能力,引导学生从不同角度分析问题,提高解决问题的能力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、自主学习等方面的表现。
(2)终结性评价:通过课后作业、阶段测试等方式,评价学生对曲线参数方程知识的掌握程度。
1.教学方法:
(1)采用情境导入法,以实际生活中的曲线运动为例,引出曲线参数方程的概念,激发学生的学习兴趣。
(2)运用问题驱动的教学方法,引导学生自主探究、合作交流,培养学生的自主学习能力和团队合作精神。
(3)通过实例分析和课堂练习,巩固所学知识,提高学生的实际应用能力。
2.教学过程:
(1)导入:以生活中的曲线运动为例,如圆周运动、行星运动等,引出曲线参数方程的概念。
5.创设有趣、富有挑战性的教学情境,激发学生的学习兴趣,提高学生的学习积极性。
2.2.2-2.2.3 双曲线的参数方程 抛物线的参数方程 课件(人教A选修4-4)

提示:参数 α 表示抛物线上除顶点外的任意一点 M,以射线 OM 为终边的角.
[研一题] [例 1] 距离为 2. 在双曲线 x2-y2=1 上求一点 P, P 到直线 y=x 的 使
[精讲详析]
本题考查双曲线的参数方程的应用,解答本题
需要先求出双曲线的参数方程, 设出 P 点的坐标, 建立方程求解. 设 P 的坐标为(secφ, φ), P 到直线 x-y=0 的距离为 2 tan 由 |secφ-tan φ| 得 = 2 2 1 sin φ 得|cos φ-cos φ|=2,|1-sin φ|=2|cos φ|
证明:设双曲线为 x2-y2=a2,取顶点 A(a,0), 弦 B′B∥Ox,B(asecα,atan α),则 B′(-asecα,atan α). atan α atan α ∵kB′A= ,kBA= , -asecα-a asecα-a ∴kB′A·BA=-1. k ∴以 BB′为直径的圆过双曲线的顶点.
[读教材· 填要点] 1.双曲线的参数方程 x2 y2 (1)中心在原点, 焦点在 x 轴上的双曲线a2-b2=1 的参数方程是 x=asecφ π 3π φ∈[0,2π)且 φ≠2,φ≠ 2 y=btan φ 规定参数 φ 的取值范围为 y2 x2 (2)中心在原点, 焦点在 y 轴上的双曲线a2-b2=1 的参数方程是 x=btan φ y=asecφ .
x2 y2 设椭圆a2+b2=1,∴a=5,c=4,b=3. x2 y2 ∴方程为25+ 9 =1. 设椭圆上一点 P(5cos θ,3sin θ), 双曲线一渐近线为 3x-4y=0, |3×5cos θ-12sin θ| ∴点 P 到直线的距离 d= 5 3| 41sin θ-φ| 5 = (tan φ=4). 5 3 41 ∴dmax= 5 .
教案双曲线及其标准方程

双曲线及其标准方程教学目标:1. 了解双曲线的定义和性质。
2. 学会如何求解双曲线的标准方程。
3. 能够运用双曲线的性质和标准方程解决实际问题。
教学内容:第一章:双曲线的定义与性质1.1 双曲线的定义1.2 双曲线的性质第二章:双曲线的标准方程2.1 双曲线的标准方程2.2 双曲线标准方程的求解方法第三章:双曲线的渐近线3.1 渐近线的定义3.2 渐近线与双曲线的关系第四章:双曲线的焦点和顶点4.1 焦点的定义和性质4.2 顶点的定义和性质第五章:双曲线的参数方程5.1 参数方程的定义5.2 双曲线的参数方程求解方法教学过程:第一章:双曲线的定义与性质1.1 双曲线的定义【讲解】双曲线是平面上到两个定点(焦点)距离之差等于常数的点的轨迹。
【例题】求点P(x, y)到两个定点F1(-3, 0)和F2(3, 0)距离之差等于4的点的轨迹方程。
1.2 双曲线的性质【讲解】1. 双曲线的中心在原点。
2. 双曲线的焦点在x轴上。
3. 双曲线的实轴是连接两个焦点的线段。
4. 双曲线的渐近线是y=±(b/a)x。
【练习】判断双曲线的焦点位置和渐近线方程。
第二章:双曲线的标准方程2.1 双曲线的标准方程【讲解】双曲线的标准方程为:x^2/a^2 y^2/b^2 = 1。
【例题】求双曲线的标准方程,已知焦点在x轴上,实轴长为2a,焦距为2c。
2.2 双曲线标准方程的求解方法【讲解】求解双曲线标准方程的方法有:1. 直接法:根据双曲线的定义和性质,列出方程。
2. 代换法:将双曲线的参数方程代入标准方程求解。
【练习】求解双曲线的标准方程,给定焦点和实轴长。
第三章:双曲线的渐近线3.1 渐近线的定义【讲解】双曲线的渐近线是y=±(b/a)x。
【例题】求双曲线的渐近线方程,已知双曲线的标准方程为x^2/4 y^2/3 = 1。
3.2 渐近线与双曲线的关系【讲解】渐近线与双曲线相交于两个点,这两个点的坐标满足双曲线的方程。
2.2.2-2.2.3 双曲线的参数方程 抛物线的参数方程 课件(人教A选修4-4)

提示:参数 α 表示抛物线上除顶点外的任意一点 M,以射线 OM 为终边的角.
[研一题] [例 1] 距离为 2. 在双曲线 x2-y2=1 上求一点 P, P 到直线 y=x 的 使
[精讲详析]
本题考查双曲线的参数方程的应用,解答本题
需要先求出双曲线的参数方程, 设出 P 点的坐标, 建立方程求解. 设 P 的坐标为(secφ, φ), P 到直线 x-y=0 的距离为 2 tan 由 |secφ-tan φ| 得 = 2 2 1 sin φ 得|cos φ-cos φ|=2,|1-sin φ|=2|cos φ|
[研一题] [ 例 3]
x=4secθ, y=3tan θ
如果椭圆右焦点和右顶点分别是双曲线 (θ 为参数)的右顶点和右焦点,求该椭圆上的点到双
曲线渐近线的最大距离.
[精讲详析]
本题考查椭圆及双曲线的参数方程, 解答本题需
要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条 件求出椭圆的参数方程求解即可. x2 y2 ∵16- 9 =1,∴右焦点(5,0),右顶点(4,0).
设 M(x、y)为抛物线上的动点,P(x0,y0)在抛物线的延长 线上, M 为线段 OP 且
x=2t, 的中点, 抛物线的参数方程为 y=2t2,
x0=4t, 由中点坐标公式得 y0=4t2,
1 2 变形为 y0=4x0,即 x2=4y. 表示的为抛物线.
[悟一法] 在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需 要引入一个中间变量即参数(将 x,y 表示成关于参数的函数),然 后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点 的坐标时,可根据曲线的参数方程表示点的坐标.
p p F(2,0),准线 x=-2,设准线与 x 轴的交点为 A.由抛物线定义可 得|EM|=|MF|,所以△MEF 是正三角形,在 Rt△EFA 中,|EF| p =2|FA|,即 3+2=2p,得 p=2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.13《双曲线和抛物线的参数方程》教学案
一、学习目标
(1).双曲线、抛物线的参数方程.
(2).双曲线、抛物线的参数方程与普通方程的关系.
(3).通过学习双曲线、抛物线的参数方程,进一步完善对双曲线、抛物线的认识,理解参数方程与普通方程的相互联系.并能相互转化.提高综合运用能力
二、学习重难点
学习重点:双曲线、抛物线参数方程的推导
学习难点:(1)双曲线、抛物线参数方程的建立及应用.(2)双曲线、抛物线的参数方程与普通方程的互化
三、学法指导:
认真阅读教材,按照导学案的导引进行自主合作探究式学习
四、知识链接:
焦点在x 上的椭圆的参数方程________________________________________ 焦点在y 上的椭圆的参数方程________________________________________
五、学习过程
(阅读教材29-34完成)
(一)双曲线的参数方程
1双曲线),(0012222
>>=-b a b y a x 的参数方程___________________________
注:(1)ϕ的范围__________________________
(2)ϕ的几何意义___________________________
2双曲线),(0012222
>>=-b a b x a y 的参数方程___________________________
(二)抛物线的参数方程
抛物线)(022>=p px y 的参数方程___________________________
(三)典型例题
六、课堂练习:
、 的轨迹方程。
,求点相交于点并于点,且上异于顶点的两动是抛物线是直角坐标原点,、如图例M M AB AB OM OB OA p px y B A O ⊥⊥>=,)0(2,12
_
__________的两个焦点坐标tan sec {、求双曲线αα34321==y x ______________的渐近线方程为)为参数(tan sec {、双曲线ϕϕϕ==y x 32的轨迹方程。
的中点,求点线段为,点),(上的动点,给定点为抛物线、设P M M P M x y M 0020123-=。