【易错题】高中必修二数学下期末试题(及答案)

合集下载

【易错题】高中必修二数学下期末一模试卷含答案

【易错题】高中必修二数学下期末一模试卷含答案

【易错题】高中必修二数学下期末一模试卷含答案一、选择题1.已知向量()cos ,sin a θθ=v ,()1,2b =v ,若a v 与b v 的夹角为6π,则a b +=v v ( )A .2B .7C .2D .12.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为33.若,则( )A .B .C .D .4.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,55.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?6.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-7.已知集合 ,则A .B .C .D .8.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .159.函数2ln ||y x x =+的图象大致为( )A .B .C .D .10.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10 D .1或1111.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-12.在ABC ∆中,2cos (,b,22A b c a c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==u u u v u u u v u u u v u u u v,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN u u u u v的最小值是_____.14.若x ,y 满足约束条件10,{30,30,x y x y x -+≥+-≥-≤则z=x−2y 的最小值为__________.15.()()()()()1tan11tan 21tan31tan 441tan 45︒︒︒︒︒+++++L =__________.16.已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 17.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .18.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 19.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高 为20.在直三棱柱111ABC A B C -中,90ACB ∠=o ,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.三、解答题21.某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示. 组号 分组频数 频率第1组 [)160,165 5 0.050 第2组 [)165,170 ① 0.350第3组 [)170,175 30 ②第4组 [)175,180 20 0.200第5组[)180,185100.100(1)请先求出频率分布表中,①②位置的相应数据,再完成频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试; (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率. 22.投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n 年的纯利润总和(前年总收入-前年的总支出 -投资额72万元)(Ⅰ)该厂从第几年开始盈利?(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值. 23.在ABC V 中,5,3,sin 2sin BC AC C A ===. (Ⅰ)求AB 的值; (Ⅱ)求sin 24A π⎛⎫-⎪⎝⎭的值. 24.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.25.已知ABC ∆的三个顶点坐标分别为()4,2A --,()4,2B ,()13C ,. (1)求边AB 上的高所在直线的一般式方程; (2)求边AB 上的中线所在直线的一般式方程.26.如图,平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =u u u v v ,AD b =u u u v v ,试以a v ,b v 为基底表示DE u u u v 、BF u u u v 、CG u u u v.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先计算a r 与b r的模,再根据向量数量积的性质22()a b a b +=+r r r r 即可计算求值.【详解】因为()cos ,sin a θθ=r,(2b =r ,所以||1a =r ,||3b =r.又222222()2||2||||cos ||6a b a b a a b b a a b b +=+=+⋅+=+π+r r r r r r r r r r r r312337=+⨯+=, 所以7a b +=r r,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.2.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差3.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.4.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C5.A【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.6.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.7.D解析:D 【解析】 试题分析:由得,所以,因为,所以,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.9.A解析:A【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。

【易错题】高中必修二数学下期末试题附答案

【易错题】高中必修二数学下期末试题附答案
解析:36π
【解析】
三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径,
若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,
可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,
可得 ,解得r=3.
球O的表面积为: .
点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
【易错题】高中必修二数学下期末试题附答案
一、选择题
1.设 , 为两条不同的直线, , 为两个不同的平面,则( )
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是
详解:四棱锥 的体积是三棱柱体积的 , ,当且仅当 时,取等号.
∴ .
故选C.
点睛:本题考查棱柱与棱锥的体积,考查用基本不等式求最值.解题关键是表示出三棱柱的体积.
8.C
解析:C
【解析】
当 时,不等式 可化为 ,显然恒成立;当 时,若不等式 恒成立,则对应函数的图象开口朝上且与 轴无交点,则 解得: ,综上 的取值范围是 ,故选C.
A. B.
C. D.
5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把 个面包分给 个人,使每个人所得成等差数列,且使较大的三份之和的 是较小的两份之和,则最小的一份为()

【易错题】高中必修二数学下期末一模试题(含答案)(1)

【易错题】高中必修二数学下期末一模试题(含答案)(1)

【易错题】高中必修二数学下期末一模试题(含答案)(1)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165 D .158 3.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-374.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,55.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?6.已知D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦7.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 28.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23B .24C .25D .269.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .10.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④11.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线 12.在ABC ∆中,2cos (,b,22A b c a c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________.15.在ABC ∆中,若3B π=,3AC =,则2AB BC +的最大值为__________.16.在区间[]0,1上随机选取两个数x 和y ,则满足20-<x y 的概率为________.17.已知a 0>,b 0>,且111a b +=,则b3a 2b a++的最小值等于______. 18.底面直径和高都是4cm 的圆柱的侧面积为___cm 2.19.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .20.已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f(2|a-1|)>f (2-),则a 的取值范围是______.三、解答题21.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,⋅⋅⋅,第五组[]17,18.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n 表示该班某两位同学的百米测试成绩,且已知[)[],13,1417,18.m n ∈⋃求事件“1m n ->”发生的概率.22.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值; 23.已知数列{a n }满足a 1=1,1114n naa +=-,其中n ∈N *. (1)设221n n b a =-,求证:数列{b n }是等差数列,并求出{a n }的通项公式.(2)设41nn a c n =+,数列{c n c n +2}的前n 项和为T n ,是否存在正整数m ,使得11n m m T c c +<对于n ∈N *,恒成立?若存在,求出m 的最小值;若不存在,请说明.24.以原点为圆心,半径为r 的圆O 222:()0O x y r r +=>与直线380x y --=相切. (1)直线l 过点(2,6)-且l 截圆O 所得弦长为43求直线l l 的方程;(2)设圆O 与x 轴的正半轴的交点为M ,过点M 作两条斜率分别为12,k k 12,k k 的直线交圆O 于,A B 两点,且123k k ⋅=-,证明:直线AB 恒过一个定点,并求出该定点坐标.25.如图,平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =u u u v v ,AD b =u u u v v ,试以a v ,b v 为基底表示DE u u u v 、BF u u uv 、CG u u u v .26.ABC ∆中,D 是BC 上的点,AD 平分∠BAC,ABD ∆面积是ADC ∆面积的2倍. (1)求sin sin BC; (2)若AD =1,DC =2,求BD 和AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.D解析:D 【解析】 【分析】 【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =. 考点:算法的循环结构 3.D解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v(),整理可得:12 AB 33AD AC +u u u v u u u v u u u v=, 221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v , ∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v .,故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.4.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C5.A解析:A【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.6.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下,对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.7.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.8.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=, 则()323266663213132?25a b a b a b a b a b ba b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.9.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。

【易错题】高中必修二数学下期末试题(含答案)

【易错题】高中必修二数学下期末试题(含答案)
2
故选 D. 【点睛】 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想 象能力.
6.D
解析:D 【解析】
试题分析: AB 2a, AC 2a b , AC AB b ,b AC AB BC .
由题意知 b
2, a b
a b cos120
1
2
1 2
棱 CC1 的中点,则异面直线 AB1 和 BM 所成的角为( )
A.
B.
C.
D.
2
3
11.已知 f x 是定义在 R 上的奇函数,当 x 0 时, f x 3 2x ,则不等式
f x 0 的解集为( )
A.
,
3 2
0,
3 2
B.
,
3 2
3 2
,
C.
3 2
,
3 2
【详解】
因为 b 在 a 上的投影(正射影的数量)为 2 ,
所以| b | cos a, b 2 ,

|
b
|
cos
2 a,
b
,而
1
cos
a,
b
0

所以| b | 2 ,
因为
a
2b
2
(a
2b)2
2
a
4a b
2
4b
|
a
|2
4
|
a
||
b|
cos
a, b
4
| b|2
=16 4 4 (2) 4 | b |2 48 4 | b |2
16.在四面体 ABCD中, AB=AD 2, BAD 60,BCD 90,二面角 A BD C 的大小为150 ,则四面体 ABCD 外接球的半径为__________.

【易错题】高中必修二数学下期末模拟试卷附答案

【易错题】高中必修二数学下期末模拟试卷附答案

【易错题】高中必修二数学下期末模拟试卷附答案一、选择题1.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =A .5B .7C .9D .112.若,则( )A .B .C .D .3.某空间几何体的三视图如图所示,则该几何体的体积为( )A .73 B .8π3- C .83D .7π3- 4.已知D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦5.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .6.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+7.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .422+C .442+D .642+8.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A .12尺 B .815尺 C .1629尺 D .1631尺 9.设正项等差数列的前n 项和为,若,则的最小值为A .1B .C .D .10.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-UB .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞U11.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)212.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=二、填空题13.直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .14.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.15.若(2,1)x ∃∈--,使不等式()24210x xm m -++>成立,则实数m 的取值范围为________.16.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______. 17.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 18.设α为锐角,若4cos()65πα+=,则sin(2)12πα+的值为______. 19.已知复数z x yi =+,且23z -=,则yx的最大值为__________. 20.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m的取值范围为 .三、解答题21.某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲,乙两部门评分的中位数; (2)分别估计该市的市民对甲,乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲,乙两部门的评价. 22.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()f ϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.23.已知:a b c v v v、、是同一平面内的三个向量,其中()1,2a =v(1)若25c =v ,且//c a v v ,求c v的坐标; (2)若52b =v,且2a b +v v 与2a b -v v 垂直,求a v 与b v 的夹角θ. (3)若()1,1b =v ,且a v 与a b λ+v v的夹角为锐角,求实数λ的取值范围.24.已知函数()()sin 0,0,2f x A x A πωφωφ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的单调增区间并求出()f x 取得最小值时所对应的x 取值集合. 25.已知函数()e cos xf x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.26.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=⨯==,选A. 2.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.B解析:B 【解析】 【分析】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积. 【详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅⋅=.故选B. 【点睛】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.4.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下,对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.5.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.6.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.7.D解析:D 【解析】 【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积. 【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是2,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222222264 2.2S=⨯+⨯⨯+⨯⨯⨯=+故选D.【点睛】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.8.C解析:C【解析】试题分析:将此问题转化为等差数列的问题,首项为,,求公差,,解得:尺,故选C.考点:等差数列9.D解析:D【解析】【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。

【易错题】高中必修二数学下期末试题(带答案)

【易错题】高中必修二数学下期末试题(带答案)

1 4
,且
C
为锐角,求
sin A .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A 【解析】
a1
a3
a5
3a3
3, a3
1,
S5
5 2
(a1
a5 )
5 2
2a3
5a3
5
,选
A.
2.D
解析:D 【解析】
【分析】
【详解】
试题分析:根据题意由1 3 成立,则循环,即 M 1 1 3 , a 2,b 3 , n 2 ;又由
5
5
A. 2 5 5
B. 2 5 25
C. 2 5 或 2 5
5
25
D. 2 5 25
8.已知an的前 n 项和 Sn n2 4n 1,则 a1 a2 a10 ( )
A. 68
B. 67
C. 61
D. 60
9.要得到函数 y 2 3 cos2 x sin 2x 3 的图象,只需将函数 y 2sin 2x 的图象
(1)直线 EG / / 平面 BDD1B1 ;
(2)平面 EFG / / 平面 BDD1B1 .
26.设函数
f
(x)
cos
2
x
3
sin2
x

(1)求函数 f x 的最小正周期.
(2)求函数 f x 的单调递减区间;
(3)设 A, B,C 为
ABC
的三个内角,若
cos
B
1 3

f
C 2
3.D
解析:D 【解析】
【分析】
【详解】
求解一元二次方程,得

【易错题】高中必修二数学下期末一模试卷(含答案)(1)

【易错题】高中必修二数学下期末一模试卷(含答案)(1)

【易错题】高中必修二数学下期末一模试卷(含答案)(1)一、选择题1.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( ) A .0d >,170S >B .0d <,170S <C .0d >,180S <D .0d >,180S >2.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( )A .1B .2C .3D .43.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A c B b =,sin B =,ABC S =△b =( ) A.B. CD4.若||1OA =u v,||OB u u u v 0OA OB ⋅=u u u v u u u v ,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB u u u v u u u v u u u v =+(,)m n R ∈,则m n的值为( ) A .13 B .3 C.3 D5.已知1sin 34πα⎛⎫-=⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( ) A .58- B .58 C .78- D .786.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1 B .(]0,1 C .[]1,1- D .(]1,1-7.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( ) A .(1,1)(3,4)-UB .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞U8.函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .0 9.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2πB .C .D .3π 10.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④ 11.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是A .()()22112x y +++=B .()()22114x y -++=C .()()22112x y -++=D .()()22114x y +++= 12.若函数()(1)(0x x f x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .二、填空题13.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.14.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.15.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.16.等边ABC ∆的边长为2,则AB u u u v 在BC uuu v方向上的投影为________. 17.设向量(12)(23)a b ==r r ,,,,若向量a b λ+r r 与向量(47)c =--r ,共线,则λ= 18.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为19.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为20.设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = .三、解答题21.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?22.已知满足(1)求的取值范围;(2)求函数的值域. 23.已知函数()()22f x sin x cos x 23sin x cos x x R =--∈(I )求2f 3π⎛⎫ ⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.24.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数;(2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值.25.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ;(2)平面//EFG 平面11BDD B .26.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+.(1)求n a ;(2)设数列1{}n S 的前n 项和为n T ,求证:34n T <.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】利用等差数列的通项公式求和公式可判断出数列{}n a 的单调性,并结合等差数列的求和公式可得出结论.【详解】9810S S S <<Q ,90a ∴<,9100a a +>,100a ∴>,0d >.179017S a =<∴,()1891090S a a =+>.故选:D.【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.2.D解析:D【解析】【分析】【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个,故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.3.D解析:D【解析】【分析】 利用正弦定理化简sin 5sin 2A c B b=,再利用三角形面积公式,即可得到,a c,由sin B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c = 由于在ABC V中,sin B =,ABC S =△1sin 2ABC S ac B ==V联立521sin 2sin a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin B =,所以3cos 4B == 所以在ABC V 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.4.B解析:B【解析】【分析】利用向量的数量积运算即可算出.【详解】解:30AOC ︒∠=Qcos ,OC OA ∴<>=u u u r u u u r2OC OA OC OA⋅∴=u u u r u u u r u u u r u u u r ()mOA nOB OA mOA nOB OA+⋅∴=+u u u r u u u r u u u r u u u r u u u r u u u r=1OA =Q,OB =,0OA OB ⋅=u u u r u u ur= 229m n ∴=又C Q 在AB 上0m ∴>,0n >3m n∴= 故选:B【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.5.C 解析:C 【解析】由题意可得:1sin sin cos 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,则217cos 2cos 22cos 121366168πππααα⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 本题选择C 选项.6.C解析:C【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立,故a ⩽1,而1+a +1⩾1,即a ⩾−1,综上,a ∈[−1,1],本题选择C 选项. 点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.7.A解析:A【解析】【分析】画出函数的图象,利用不等式,结合函数的图象求解即可.【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D ,故()1f m <时,实数m 的取值范围是11m -<<或34m <<.故选A.【点睛】本题考查函数与方程的综合运用,属于常考题型.8.B解析:B【分析】可采用构造函数形式,令()()()35lg 1,1x h x x g x x +=+=-,采用数形结合法即可求解 【详解】由题可知,1x >-,当1x =时,()80f x =-≠,令358()(1)lg(1)350lg(1)311x f x x x x x x x +=-+--=⇒+==+--, 令()()()35lg 1,1x h x x g x x +=+=-,画出函数图像,如图:则两函数图像有两交点,故函数()(1)lg(1)35f x x x x =-+--的零点个数为2个 故选:B【点睛】本题考查函数零点个数的求解,数形结合思想,属于中档题 9.A解析:A 【解析】【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解.【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角,在△A 2BM 中,22252()2a A B a BM a ==+=,, 222313()2a A M a =+=,222222,2A B BM A M MBA π∴+=∴∠=, .【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.10.C解析:C【解析】【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性.【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.11.C解析:C 【解析】圆22220x y x y ++-=的圆心坐标为()1,1-2,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --=322=2,设所求圆的圆心为(),a b ,且圆心在直线40x y --=422a b --=0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=.故选C .【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,考查了计算能力,属于中档题.12.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则 解析:4 【解析】 【分析】 【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=14.9【解析】【分析】由一元二次方程根与系数的关系得到a+b=pab=q 再由ab ﹣2这三个数可适当排序后成等差数列也可适当排序后成等比数列列关于ab 的方程组求得ab 后得答案【详解】由题意可得:a+b=p解析:9 【解析】 【分析】由一元二次方程根与系数的关系得到a+b=p ,ab=q ,再由a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a ,b 的方程组,求得a ,b 后得答案. 【详解】由题意可得:a+b=p ,ab=q , ∵p>0,q >0, 可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列, 也可适当排序后成等比数列, 可得①或②. 解①得:;解②得:.∴p=a+b=5,q=1×4=4, 则p+q=9. 故答案为9.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a ,b 均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b 与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p ,q .15.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60o【解析】 【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DEDF DD DC ==Q,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴, 所以,四边形11A BCD 为平行四边形,11//A B CD ∴, 所以,异面直线EF 与11A C 所成的角为11BA C ∠.易知11A BC ∆为等边三角形,1160BA C ∴∠=o.故答案为:60o . 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.16.【解析】【分析】建立直角坐标系结合向量的坐标运算求解在方向上的投影即可【详解】建立如图所示的平面直角坐标系由题意可知:则:且据此可知在方向上的投影为【点睛】本题主要考查平面向量数量积的坐标运算向量投 解析:1-【解析】 【分析】建立直角坐标系,结合向量的坐标运算求解AB u u u r 在BC uuu r方向上的投影即可. 【详解】建立如图所示的平面直角坐标系,由题意可知:()0,0A ,()2,0B ,()1,3C ,则:()2,0AB =uu u r ,()1,3BC =-u u u v ,2AB BC ⋅=-u u u r u u u r且2AB =u u u r ,10BC =u u u v,据此可知AB u u u r 在BC uuu r 方向上的投影为212AB BC AB⋅-==-u u u v u u u vu u uv .【点睛】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.17.2【解析】【分析】由题意首先求得向量然后结合向量平行的充分必要条件可得的值【详解】=由向量共线的充分必要条件有:故答案为2【点睛】本题主要考查平面向量的坐标运算向量平行的充分必要条件等知识意在考查学解析:2 【解析】 【分析】由题意首先求得向量a b λ+r r ,然后结合向量平行的充分必要条件可得λ的值.【详解】a bλ+r r =(,2(2,3)(2,23λλλλ+=++)), 由向量共线的充分必要条件有:()()(2)7(23)42λλλ+⋅-=+⋅-⇒=. 故答案为2. 【点睛】本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.18.20【解析】【分析】根据题意可知过(35)的最长弦为直径最短弦为过(35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x ﹣解析:206 【解析】 【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可. 【详解】解:圆的标准方程为(x ﹣3)2+(y ﹣4)2=52, 由题意得最长的弦|AC |=2×5=10,根据勾股定理得最短的弦|BD |=22251-=46,且AC ⊥BD , 四边形ABCD 的面积S =|12AC |•|BD |12=⨯10×46=206. 故答案为206. 【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.19.【解析】【分析】【详解】试题分析:根据题意设塔高为x 则可知a 表示的为塔与山之间的距离可以解得塔高为考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用属于中档题 解析:【解析】 【分析】 【详解】试题分析:根据题意,设塔高为x ,则可知00tan 60=,t 2an 30=00200a ax-,a 表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.20.2n+1【解析】由条件得且所以数列是首项为4公比为2的等比数列则解析:2n+1 【解析】由条件得111112222222111n n n n n n n n a a a b b a a a ++++++++====---,且14b =,所以数列{}n b 是首项为4,公比为2的等比数列,则11422n n n b -+=⋅=.三、解答题21.(1)()3800,19,y 5005700,19,x x N x x ≤⎧=∈⎨->⎩;(2)19;(3) 购买1台机器的同时应购买19个易损零件. 【解析】试题分析:(Ⅰ)分x ≤19及x >19,分别求解析式;(Ⅱ)通过频率大小进行比较;(Ⅲ)分别求出n=19,n=20时所需费用的平均数来确定. 试题解析:(Ⅰ)当时,3800y =;当时,3800500(19)5005700y x x =+-=-,所以与的函数解析式为3800,19,{()5005700,19,x y x N x x ≤=∈->.(Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1(380070430020480010)4000100⨯⨯+⨯+⨯=. 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯⨯+⨯=. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【考点】函数解析式、概率与统计【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题. 22.(1) (2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于 的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域. 试题解析: 解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中因为函数开口向上,且对称轴为函数在上单调递增的最大值为,最小值为函数的值域为. 23.(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,. 【解析】 【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值.(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间. 【详解】(Ⅰ)f (x )=sin 2x ﹣cos 2x 23-x cos x , =﹣cos2x 3-x , =﹣226sin x π⎛⎫+ ⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+. 所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈,解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,. 【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.24.(1)1tan 3cos 2t θθ=+-;(2)6π【解析】 【分析】(1)根据直角三角形的边角关系求出AC 和BC 的值,再求t 关于θ的函数解析式;(2)根据t 的解析式,结合三角函数的性质求出t 的最小值以及对应θ的值. 【详解】(Ⅰ)由题意知,AP PB ⊥,2AP =,02πθ<<,所以2tan PC θ=,2cos AC θ=,122tan BC θ=-, 所以t 关于θ的函数为 2122tan 1tan 3242cos 4cos 2AC BC t θθθθ-=+=+=+-; (Ⅱ)由(Ⅰ)知,1tan 2sin 33cos 2cos t θθθθ-=+-=+, 令2sin 0cos y θθ-=>,则22sin 2cos 14y y θθ=++… 解得3y …13sin ,cos 2θθ= 即6πθ=时,所花时间t 最小.【点睛】本题考查了解三角形的应用问题,也考查了三角函数图象与性质的问题,意在考查学生对这些知识的理解掌握水平.25.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】 证明: (1)如图,连接SB ,,E G Q 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂Q 平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B .(2)连接,,SD F G Q 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=, ∴平面//EFG 平面11BDD B . 【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题.26.(1)21n a n =+;(2)见解析 【解析】 【分析】(1)设公差为d ,由28S =,38522a a a +=+可得1112829282a d a d a d +=⎧⎨+=++⎩,,解得13a =,2d =,从而可得结果;(2) 由(1),21n a n =+,则有()232122n n S n n n =++=+,则()11111222nS n n n n ⎛⎫==- ⎪++⎝⎭,利用裂项相消法求解即可. 【详解】(1)设公差为d ,由题1112829282a d a d a d +=⎧⎨+=++⎩,,解得13a =,2d =.所以21n a n =+.(2) 由(1),21n a n =+,则有()232122n nS n n n =++=+. 则()11111222n S n n n n ⎛⎫==- ⎪++⎝⎭. 所以n T 11111111111232435112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111112212n n ⎛⎫=+-- ⎪++⎝⎭ 34<. 【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.。

【易错题】高中必修二数学下期末试卷(带答案)(2)

【易错题】高中必修二数学下期末试卷(带答案)(2)

【易错题】高中必修二数学下期末试卷(带答案)(2)一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?3.在ABC ∆中,2AB =2AC =,E 是边BC 的中点.O 为ABC ∆所在平面内一点且满足222OA OB OC ==u u u v u u u v v ,则·AE AO u u u v u u u v 的值为( )A .12B .1C .22D .324.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<<D .{}21x x x <->或5.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( )A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭6.要得到函数2sin 2y x x =+2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位7.若||1OA =u u u v ,||OB u u u v 0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOBu u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( )A .13B .3C .3D 8.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 9.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35 C .25D .1510.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称11.1()xf x e x=-的零点所在的区间是( )A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)212.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线二、填空题13.在平面直角坐标系xOy 中, 已知圆C 1 : x 2 + y 2=8与圆C 2 : x 2+y 2+2x +y -a =0相交于A ,B 两点.若圆C 1上存在点P ,使得△ABP 为等腰直角三角形,则实数a 的值组成的集合为______.14.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.15.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.16.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为17.已知点()M a b ,在直线3415x y +=22a b +_______. 18.若a 10=12,a m =22,则m =______. 19.设α为锐角,若4cos()65πα+=,则sin(2)12πα+的值为______. 20.若两个向量a v 与b v 的夹角为θ,则称向量“a b ⨯v v”为向量的“外积”,其长度为sin a b a b θ⨯=v v v v .若已知1a =v ,5b =v ,4a b ⋅=-v v ,则a b ⨯=v v .三、解答题21.已知:a b c v v v、、是同一平面内的三个向量,其中()1,2a =v(1)若25c =v ,且//c a v v ,求c v的坐标;(2)若5b =v2a b +v v 与2a b -v v 垂直,求a v 与b v 的夹角θ. (3)若()1,1b =v ,且a v 与a b λ+v v的夹角为锐角,求实数λ的取值范围.22.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值; (2)当ABC ∆的面积为3时,求a+c 的值.23.已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.24.已知ABC ∆中,内角,,A B C 所对边分别为,,a b c ,若()20a c cosB bcosC --=. (1)求角B 的大小;(2)若2b =,求a c +的取值范围. 25.已知数列{a n }满足a 1=1,1114n na a +=-,其中n ∈N *.(1)设221 nnba=-,求证:数列{b n}是等差数列,并求出{a n}的通项公式.(2)设41nnacn=+,数列{c n c n+2}的前n项和为T n,是否存在正整数m,使得11nm mTc c+<对于n∈N*,恒成立?若存在,求出m的最小值;若不存在,请说明.26.以原点为圆心,半径为r的圆O222:()0O x y r r+=>与直线380x y--=相切.(1)直线l过点(2,6)-且l截圆O所得弦长为43求直线l l的方程;(2)设圆O与x轴的正半轴的交点为M,过点M作两条斜率分别为12,k k12,k k的直线交圆O于,A B两点,且123k k⋅=-,证明:直线AB恒过一个定点,并求出该定点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】∵集合{}124A,,=,{}2|40B x x x m=-+=,{}1A B⋂=∴1x=是方程240x x m-+=的解,即140m-+=∴3m=∴{}{}{}22|40|43013B x x x m x x x=-+==-+==,,故选C2.A解析:A【解析】试题分析:由程序框图知第一次运行112,224k S=+==+=,第二次运行213,8311k S=+==+=,第三次运行314,22426k S=+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.3.D解析:D 【解析】 【分析】根据平面向量基本定理可知()12AE AB AC =+u u u v u u u v u u u v,将所求数量积化为1122AB AO AC AO ⋅+⋅u u uv u u u v u u u v u u u v ;由模长的等量关系可知AOB ∆和AOC ∆为等腰三角形,根据三线合一的特点可将AB AO ⋅u u u v u u u v 和AC AO ⋅u u u v u u u v 化为212AB u u uv 和212AC u u u v ,代入可求得结果.【详解】E Q 为BC 中点 ()12AE AB AC ∴=+u u u v u u u v u u u v()111222AE AO AB AC AO AB AO AC AO ∴⋅=+⋅=⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v222OA OB OC ==u u u v u u u v u u u v Q AOB ∴∆和AOC ∆为等腰三角形211cos 22AB AO AB AO OAB AB AB AB ∴⋅=∠=⋅=u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,同理可得:212AC AO AC ⋅=u u u v u u u v u u u v22111314422AE AO AB AC ∴⋅=+=+=u u u v u u u v u u u v u u u v本题正确选项:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.4.A解析:A 【解析】 【分析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>Q 的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122baa⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.5.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.6.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.7.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,2OC OA ∴<>=u u u r u u u rOC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()2mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r=1OA =Q,OB =,0OA OB ⋅==229m n∴=又CQ在AB上m∴>,0n>3mn∴=故选:B【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8.B解析:B【解析】【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项.【详解】依题意01a b<<<,由于12xy⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b>,故A选项不等式成立.由于lny x=为定义域上的增函数,故ln ln0a b<<,则11ln lna b>,所以B选项不等式不成立,D选项不等式成立.由于01a b<<<,故11a b>,所以C选项不等式成立.综上所述,本小题选B.【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.9.C解析:C【解析】选取两支彩笔的方法有25C种,含有红色彩笔的选法为14C种,由古典概型公式,满足题意的概率值为142542105CpC===.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.10.D解析:D 【解析】()sin(2)cos(2))2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.11.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.12.B解析:B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,2MF BF BM ==∴=BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.二、填空题13.【解析】【分析】先求得直线为:再分别讨论或和的情况根据几何性质求解即可【详解】由题则直线为:当或时设到的距离为因为等腰直角三角形所以即所以所以解得当时经过圆心则即故答案为:【点睛】本题考查圆与圆的位 解析:{}8,825,825-+【解析】 【分析】先求得直线AB 为:280x y a ++-=,再分别讨论90PAB ∠=︒或90PBA ∠=︒和90APB ∠=︒的情况,根据几何性质求解即可 【详解】由题,则直线AB 为:280x y a ++-=,当90PAB ∠=︒或90PBA ∠=︒时,设1C 到AB 的距离为d , 因为ABP △等腰直角三角形, 所以12d AB =,即2182d d =-,所以2d =, 228221a d -==+,解得825a =±当90APB ∠=︒时,AB 经过圆心1C ,则80a -=,即8a =, 故答案为:{}8,825,825-+ 【点睛】本题考查圆与圆的位置关系的应用,考查点到直线距离公式的应用,考查分类讨论思想和数形结合思想14.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60o【解析】 【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DEDF DD DC ==Q,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴, 所以,四边形11A BCD 为平行四边形,11//A B CD ∴, 所以,异面直线EF 与11A C 所成的角为11BA C ∠.易知11A BC ∆为等边三角形,1160BA C ∴∠=o.故答案为:60o . 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.15.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用解析:6米 【解析】 【分析】 【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =故水面宽为266 考点:抛物线的应用16.20【解析】【分析】根据题意可知过(35)的最长弦为直径最短弦为过(35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x ﹣解析:6 【解析】 【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可. 【详解】解:圆的标准方程为(x ﹣3)2+(y ﹣4)2=52, 由题意得最长的弦|AC |=2×5=10,根据勾股定理得最短的弦|BD |=2251-=6,且AC ⊥BD , 四边形ABCD 的面积S =|12AC |•|BD |12=⨯10×6=6. 故答案为6. 【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.17.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于解析:3 【解析】 【分析】22a b +()0,0到点(),a b 的距离,再由点到直线距离公式即可得出结果.【详解】()0,0到点(),a b的距离,又∵点(),M a b在直线:3425l x y+=()0,0到直线34150x y+-=的距离,且3d==.【点睛】本题主要考查点到直线的距离公式的应用,属于基础题型.18.5【解析】解析:5【解析】5,52a m====19.【解析】试题分析:所以考点:三角恒等变形诱导公式二倍角公式同角三角函数关系【思路点晴】本题主要考查二倍角公式两角和与差的正弦公式题目的已知条件是单倍角并且加了我们考虑它的二倍角的情况即同时求出其正弦解析:50【解析】试题分析:247cos(2)213525πα⎛⎫+=⋅-=⎪⎝⎭,24sin(2)325πα+=,所以sin(2)sin(2)1234πππαα+=+-2472252550⎫=-=⎪⎝⎭.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.【思路点晴】本题主要考查二倍角公式,两角和与差的正弦公式.题目的已知条件是单倍角,并且加了6π,我们考虑它的二倍角的情况,即247cos(2)213525πα⎛⎫+=⋅-=⎪⎝⎭,同时求出其正弦值24sin(2)325πα+=,而要求的角sin(2)sin(2)1234πππαα+=+-,再利用两角差的正弦公式,就能求出结果.在求解过程中要注意正负号.20.3【解析】【分析】【详解】故答案为3【点评】本题主要考查以向量的数量积为载体考查新定义利用向量的数量积转化是解决本题的关键解析:3【解析】【分析】【详解】44 155a b a b a b cos cos a b θθ⋅-⋅∴-⨯v v v v v vv v Q ====33[0sin 15355sin a b a b θπθθ∈∴⨯=⨯⨯v v Q v v ,),=,==故答案为3. 【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,三、解答题21.(1)(2,4)或(-2,-4) (2)π (3)()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭【解析】 【分析】(1)设(,)c x y =r,根据条件列方程组解出即可;(2)令(2)(2)0a b a b +⋅-=r rr r 求出a b ⋅r r ,代入夹角公式计算;(3)利用()0a a b λ+>⋅r r r ,且a r 与a λb +r r 不同向共线,列不等式求出实数λ的取值范围.【详解】 解:设(,)c x y =r,∵c =r //c a r r,∴222020y x x y -=⎧⎨+=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴(2,4)c =r 或(2,4)c =--r;(2)∵2a b +r r 与2a b -r r垂直,∴(2)(2)0a b a b +⋅-=r rr r ,即222320a a b b +⋅-=r r r r ,∴52a b ⋅=-r r ,∴5cos 1||||a ba b θ-⋅===-r r r r ,∴a r与b r的夹角为π;(3)a r Q 与a λb +r r的夹角为锐角则()0a a b λ+>⋅r r r ,且a r 与a λb +rr 不同向共线,()25(12)0a aa ab b λλλ+==+>∴⋅++⋅r r r r rr ,解得:53λ>-, 若存在t ,使()a b a t λ=+r r r,0t > ()()1,21,1(1,2)a b λλλλ+=+=++r rQ则()1,2(1,2)t λλ=++,122t t t t λλ+=⎧∴⎨+=⎩,解得:10t λ=⎧⎨=⎩, 所以53λ>-且0λ≠, 实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭. 【点睛】本题考查了平面向量的数量积运算,利用数量积研究夹角,注意夹角为锐角,数量积大于零,但不能同向共线,夹角为钝角,数量积小于零,但不能反向共线,本题是中档题. 22.(1)53a =(2)a c +=【解析】试题分析:(1)利用同角三角函数的基本关系式,求出sin B ,利用正弦定理求出a 即可.(2)通过三角形的面积求出ac 的值,然后利用余弦定理即可求出a +c 的值. 试题解析: 解:(1)43cos ,sin 55B B =∴=Q . 由正弦定理得10,sin sin 3sin 6a b a A B π==可得. 53a ∴=. (2)ABC ∆Q 的面积13sin ,sin 25S ac B B ==, 33,1010ac ac ∴==. 由余弦定理2222cos b a c ac B =+-, 得4=22228165a c ac a c +-=+- ,即2220a c +=.∴()()22220,40a c ac a c +-=+=,∴a c +=点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.23.(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =; (2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列;(3)借助等比数列的通项公式求得12n n a n-=,从而求得12n n a n -=⋅.【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =. 从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果. 24.(1)3B π=;(2)(]2,4.【解析】 【分析】(1)利用正弦定理化简()20a c cosB bcosC --=得:() 2sinA sinC cosB sinBcosC -=,再由正弦两角和差公式和化为:()2sinAcosB sinBcosC cosBsinC sin B C =+=+,再由()sin B C sinA +=得出cos B的值即可;(2)由sin 3b B =得出a A =,c C =,得到a c A C +=+,进而得到sin 6a c A π+=+⎛⎫ ⎪⎝⎭,再根据角的范围得到sin 6A π⎛⎫ ⎪⎝⎭+的范围即可.【详解】(1)Q 由()20a c cosB bcosC --=, 可得:() 2sinA sinC cosB sinBcosC -=,2sinAcosB sinBcosC cosBsinC ∴=+,可得:()2sinAcosB sin B C sinA =+=,(0,)A π∈Q ,0sinA >,∴可得12cosB =, 又由(0,)B π∈得:3B π=,(2)sin b B =Qa A =,c C =, Q 23A C π+=,]sin sin sin()333a c A C A A B ∴+=+=++1sin sin()sin sin 32A A A A A π⎤⎤=++=+⎥⎥⎦⎣⎦14cos 4sin()26A A A π⎤=+=+⎥⎣⎦,203A π<<Q ,5666A πππ<+<, 可得:1sin ,162A π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦, ∴a c +的取值范围(]2,4.【点睛】本题主要考查解三角形,侧重考查正弦定理的应用,考查辅助角公式的运用,考查逻辑思维能力和运算能力,属于中档题. 25.(1)12n n a n+=;(2)3 【解析】 试题分析:(1)结合递推关系可证得b n +1-b n =2,且b 1=2,即数列{b n }是首项为2,公差为2的等差数列,据此可得数列{}n a 的通项公式为12n n a n+=. (2)结合通项公式裂项有21122n n c c n n ,+⎛⎫=-⎪+⎝⎭求和有111213212n T n n ⎛⎫=+--< ⎪++⎝⎭.据此结合单调性讨论可得正整数m 的最小值为3. 试题解析: (1)证明:b n +1-b n 1222121n n a a +=---222112114n n a a =--⎛⎫-- ⎪⎝⎭ 4222121n n n a a a =-=--. 又由a 1=1,得b 1=2,所以数列{b n }是首项为2,公差为2的等差数列,所以b n =2+(n -1)×2=2n ,由221n n b a =-,得12n n a n+=. (2)解:2n c n =,()2411222n n c c n n n n +⎛⎫==- ⎪++⎝⎭所以111213212n T n n ⎛⎫=+--< ⎪++⎝⎭.依题意,要使11n m m T c c +<对于n ∈N *恒成立,只需()134m m +≥,解得m ≥3或m ≤-4.又m >0,所以m ≥3,所以正整数m 的最小值为3.26.(1)2x =-或20x +-=100x +-=;(2)(2,0). 【解析】分析:(1)先由直线和圆相切得到圆的方程,再由垂径定理列式,分直线斜率存在与不存在两种情况得到结果;(3)联立直线和圆,由韦达定理得到交点的坐标,由这两个点写出直线方程,进而得到直线过定点. 详解:(1)∵圆222:(0)O x y r r +=>与直线0x y -+=80x --=相切, ∴圆心O到直线的距离为4d ==,∴圆O 的方程为:2216x y +=若直线l 的斜率不存在,直线l 为2x =- 1x =, 此时直线l截圆所得弦长为若直线l 的斜率存在,设直线l为()2y k x =+()1y k x =-,由题意知,圆心到直线的距离为1d == 2d =,解得:k = 此时直线l为100x +-=,则所求的直线l 为2x =-或20x +-=-100x += (2)由题意知,()4,0M ()2,0A -,设直线()1:4MA y k x =-,与圆方程联立得:()12224y k x x y ⎧=+⎨+=⎩ ()122416y k x x y ⎧=-⎨+=⎩, 消去y 得:()()222211114440k x k x k +++-= ()22221111816160k x k x k +-+-=,∴()21211611M A k x x k -=+∴()2121411Ak xk -=+,12181Ak yk -=+ 用13k -换掉1k 得到B 点坐标 ∴21213649B k x k -=+,121249B k y k =+ 12141B k y k =+ ∴直线AB 的方程为21112221118444131k k k y x k k k ⎛⎫-+=- ⎪+-+⎝⎭整理得:()121423k y x k =-- 则直线AB 恒过定点为()2,0.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平移AB1至A2B,连接A2M,∠MBA2即为AB1与BM所成的角,
在△A2BM中,

故选A.
【点睛】
本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.
11.C
解析:C
【解析】
分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.
14.已知 , ,且 ,则 的最小值等于______.
15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且 .若 ,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.
16.等边 的边长为2,则 在 方向上的投影为________.
A. B. C. D.
8.若 , , ,点C在AB上,且 ,设 ,则 的值为()
A. B. C. D.
9.设函数 的最小正周期为 ,且 ,则( )
A. 在 上单调递增B. 在 上单调递减
C. 在 上单调递减D. 在 上单调递增
10.如图,已知三棱柱 的各条棱长都相等,且 底面 , 是侧棱 的中点,则异面直线 和 所成的角为( )
【解析】
分析:首先利用一元二次不等式的解法,求出 的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.
详解:解不等式 得 ,
所以 ,
所以可以求得 ,故选B.
点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.
【详解】
由已知可得 ,则 ,解得 .故选A.
【点睛】
本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.
若 中,已知 且 为锐角,若 ,则无解;若 或 ,则有一解;若 ,则有两解.
8.B
解析:B
【解析】
【分析】
利用向量的数量积运算即可算出.
【详解】
解:
, ,
又 在 上

故选:
【点睛】
(1)求证:平面 平面 ;
(2)求证: 平面 ;
(3)求三棱锥 体积.
25.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准 (吨)、一位居民的月用水量不超过 的部分按平价收费,超出 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 , 分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中 的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使 的居民每月的用水量不超过标准 (吨),估计 的值,并说明理由.
26.某家庭记录了未使用节水龙头 天的日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
5.已知 的前 项和 ,则 ( )
A. B. C. D.
6.要得到函数 的图象,只需将函数 的图象( )
A.向左平移 个单位B.向右平移 个单位
C.向左平移 个单位D.向右平移 个单位
7.在 中,已知 ,如果 有两组解,则 的取值范围是( )
, ,由线面平行的性质可得 , 正确;
, ,则 , 与 异面; 错,
, , 与 可能平行、相交、异面, 错,.故选B.
【点睛】
本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.
12.D
解析:D
【解析】
由 有 ,所以 ,选D.
点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。
二、填空题
13.【解析】【分析】由题意首先求解底面积然后结合四棱锥的高即可求得四棱锥的体积【详解】由题意可得底面四边形为边长为的正方形其面积顶点到底面四边形的距离为由四棱锥的体积公式可得:【点睛】本题主要考查四棱锥
解析:
【解析】
【分析】
由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积.
【详解】
由题意可得,底面四边形 为边长为 的正方形,其面积 ,
顶点 到底面四边形 的距离为 ,
由四棱锥的体积公式可得: .
【点睛】
本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.
【详解】
建立如图所示的平面直角坐标系,由题意可知: , , ,
则: , ,
且 , ,
据此可知 在 方向上的投影为 .
【点睛】
本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.
17.【解析】【分析】【详解】设圆心直线的斜率为弦AB的中点为的斜率为则所以由点斜式得
详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程: ,可得点A的坐标为: ,据此可知目标函数的最大值为: .本题选择C选项.
点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
22.已知 .
(1)若 ,且 ,求k的值;
(2)若 ,且 ,求证: .
23.如图,在四棱锥 中,PA⊥平面ABCD,CD⊥AD,BC∥AD, .
(Ⅰ)求证:CD⊥PD;
(Ⅱ)求AB,若存在,确定点M的位置,若不存在,请说明理由.
24.如图,在三棱柱 中,侧棱垂直于底面, 分别是 的中点.
17.直线 与圆 相交于两点 , ,弦 的中点为 ,则直线 的方程为__________.
18.已知点 在直线 上,则 的最小值为_______.
19.若两个向量 与 的夹角为 ,则称向量“ ”为向量的“外积”,其长度为 .若已知 , , ,则 .
20.已知 ,点 在直线 上,且 ,则点 的坐标为________
6.C
解析:C
【解析】
【分析】
化简函数 ,然后根据三角函数图象变换的知识选出答案.
【详解】
依题意 ,故只需将函数 的图象向左平移 个单位.所以选C.
【点睛】
本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.
7.A
解析:A
【解析】
【分析】
已知 ,若 有两组解,则 ,可解得 的取值范围.
3.C
解析:C
【解析】
∵函数y=f(x)定义域是[−2,3],
∴由−2⩽2x−1⩽3,
解得− ⩽x⩽2,
即函数的定义域为 ,
本题选择C选项.
4.B
解析:B
【解析】
【分析】
利用 可能平行判断 ,利用线面平行的性质判断 ,利用 或 与 异面判断 , 与 可能平行、相交、异面,判断 .
【详解】
, ,则 可能平行, 错;
本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.
10.A
解析:A
【解析】
【分析】
由题意设棱长为a,补正三棱柱ABC-A2B2C2,构造直角三角形A2BM,解直角三角形求出BM,利用勾股定理求出A2M,从而求解.
【详解】
设棱长为a,补正三棱柱ABC-A2B2C2(如图).
5.B
解析:B
【解析】
【分析】
首先运用 求出通项 ,判断 的正负情况,再运用 即可得到答案.
【详解】
当 时, ;
当 时, ,
故 ;
所以,当 时, ,当 时, .
因此, .
故选:B.
【点睛】
本题考查了由数列的前 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分 和 两种情形,第二要掌握 这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
【详解】
由余弦定理得 ,
解得 ( 舍去),故选D.
【考点】
余弦定理
【名师点睛】
本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!
2.B
解析:B
【易错题】高中必修二数学下期末试题(及答案)
一、选择题
1.△ABC的内角A、B、C的对边分别为a、b、c.已知 , , ,则b=
A. B. C.2D.3
2.已知集合 ,则
A. B.
C. D.
3.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是( )
A. B. C. D.
4.设 , 是两条不同的直线, 是一个平面,则下列命题正确的是()
解析: .
【解析】
【分析】
【详解】
设圆心 ,直线 的斜率为 ,弦AB的中点为 , 的斜率为 , 则 ,所以 由点斜式得 .
18.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于
相关文档
最新文档