第八章 光学系统成像质量评价
第八章 光学系统的像质评价分解

1 1 1 cos y c源自s 3y cos 5y cos 7y 4 3 5 7
其中 2/T称为空间角频率;空间 频率 1 T
对光学系统而言,这个分解过程的物理意义是:如果物平面 的强度分布是一个周期函数,可以把它看成是由很多频率、 振幅和初位相不同的余弦函数合成。
像平面输出的余弦基元为: I ( y' ) 1 a' cos(2' y' ) 物面图形的对比K为
I I 2a K max min a I max I min 2
像面图形的对比K’为
I’(y )
I 'max I 'min 2a' K' a' I 'max I 'min 2
二、中心点亮度 光学系统存在像差时,其成像衍射的中心亮度(爱 里斑亮度)与不存在像差时衍射斑的中心亮度的 比值来表示光学系统的成像质量;这个比值称为 中心点亮度,用S.D.表示。 斯托列尔(K.Strehl)准则:当S.D. ≥0.8时,认 为光学系统的成像质量是完善的。
适用于:小像差光学系统,计算复杂。
第八章 光学系统的像质评价
第一节 瑞利判断和中心亮度
一、瑞利(Reyleigh)判断
实际波面与参考球面波之间的最大波像差不超过 时, 4 此波面可看作是无缺陷的。 参考球面选择的标准是使波象差的最大值最小; 波像差的最大值允许量不超过 4 。
优点:便于实际应用;
缺点:从光波传播光能的观点看,瑞利判断不够严密; 适用于:小像差光学系统,如:望远物镜,显微物镜, 微缩物镜,制版物镜等。
1 5
a6 0
矩形周期函数的振幅 频谱函数
第八章光学系统的像质评价

第三节 点列图
在几何光学的成像过程中,由一点发出的许多条 光线经光学系统成像后,由于像差的存在,使 其在像面上不再集中于一点,而是形成一个分 布在一定范围内的弥散斑图形,称为点列图。
在点列图中利用这些点的密集程度来衡量光学系 统的成像质量的方法称为点列图法。
利用点列图法来评价照相物镜等的成像质量时, 通常是利用集中30%以上的点或光线所构成的 图形区域作为其实际有效弥散斑,弥散斑直径 的倒数为系统的分辨率。
第一节 瑞利判断和中心亮度
一、瑞利(Reyleigh)判断
实际波面与参考球面波之间的最大波像差不超过 时,
4 此波面可看作是无缺陷的。
参考 优点:便于实际应用; 缺点:从光波传播光能的观点看,瑞利判断不够严密; 适用于:小像差光学系统,如:望远物镜,显微物镜, 微缩物镜,制版物镜等。
接收器分辨率 极值曲线
第二节 分辨率
分辨率是反映光学系统能分 辨物体细节的能力。
瑞利指出:能分辨的两个等亮
度点间的距离对应艾里斑的半 径,即一个亮点的衍射图案中 点与另一个亮点的衍射图案的 第一暗环重合时,这两个亮点 则能被分辨。
根据衍射理论,无限远物体被理想光学系统形成 的衍射图案中,第一暗环半径对出射光瞳中心 的张角为:
二、中心点亮度
光学系统存在像差时,其成像衍射的中心亮度(爱 里斑亮度)与不存在像差时衍射斑的中心亮度的 比值来表示光学系统的成像质量;这个比值称为
中心点亮度,用S.D.表示。
斯托列尔(K.Strehl)准则:当S.D. ≥0.8时,认 为光学系统的成像质量是完善的。
适用于:小像差光学系统,计算复杂。
第四节 光学传递函数评价成像质量
把物平面分解成无限多个物点 物面图形的分解
mtf光学系统成像质量评估方法

MTF(Modulation Transfer Function)是光学系统成像质量评估的重要指标之一,它描述了光学系统对高对比度物体细节信息的成像能力。
在光学系统设计和优化过程中,对其成像质量的评估是至关重要的,而MTF的测量和分析是评估光学系统成像质量的重要方法之一。
本文将介绍MTF光学系统成像质量评估方法。
1. MTF的基本概念MTF是指光学系统在特定空间频率下的成像对比度传递函数,描述了光学系统对不同空间频率下物体细节信息的成像能力。
在实际应用中,MTF通常被表示为对比度相对于空间频率的函数图。
通过分析MTF曲线,可以直观地了解光学系统在不同空间频率下的成像能力,判断其成像质量优劣。
2. MTF的测量方法(1)光栅法光栅法是最常用的MTF测量方法之一,通过将空间周期状物体(如光栅)成像,利用光栅的传递函数与系统MTF进行卷积,得到系统的MTF曲线。
这种方法简单直观,适用于对于大部分光学系统的MTF评估。
(2)差动法差动法是一种通过对比不同空间频率下的目标物体图像和参考图像,得到系统的MTF曲线。
这种方法适用于对成像设备不便携的场合,但需要精确的图像处理技术和系统校准。
(3)干涉法干涉法是通过干涉条纹的形成来测量MTF的一种方法,它能够直接测量相位信息和幅度信息,对系统MTF的测量有很好的灵敏度和分辨率。
但是,干涉法对环境要求较高,且实验操作相对复杂。
3. MTF的分析与评估(1)MTF曲线的解读MTF曲线通常会显示出在低空间频率时,成像对比度随空间频率的增加而逐渐降低,而在高空间频率时,成像对比度急剧下降。
通过分析MTF曲线的特征,可以评估光学系统的成像能力。
(2)MTF的指标评价在评估光学系统的MTF时,需要使用一些指标来描述其成像质量,如MTF50、MTF20等,它们分别表示MTF曲线上50、20的空间频率对应的成像对比度。
这些指标能够量化地描述光学系统的成像能力,为光学系统的设计和优化提供依据。
光学系统成像质量评价

第九节 光学传递函数 第十节 用光学传递函数评价系统的像质
上一页 下一页 返回
第一节 概述
成像质量评价的方法: 成像质量评价的方法:
1、用于在光学系统实际制造完成后对其进行实际测量。 用于在光学系统实际制造完成后对其进行实际测量。 分辨率检验 星点检验 用于在光学系统还没制造出来, 2、用于在光学系统还没制造出来,即在设计阶段通过计算就能评定 系统质量。 系统质量。
上一页
下一页
返回
第二节 介质的色散和光学系统的色差
某一种介质对两种不同颜色光线的折射率之差称为该介质对这两种颜色 光的色散。 光的色散。 不同颜色光线的像点沿光轴方向的位置之差称为轴向色差 分别表示F 两种波长光线的近轴像距,则轴向色差为: 若用 lF ', lC '分别表示F,C两种波长光线的近轴像距,则轴向色差为:
1500 N= F
三、显微镜物镜分辨率: 显微镜物镜分辨率:
在显微镜系统中,物体位在近距离,一般以物平面上刚能分开两物体 在显微镜系统中,物体位在近距离, 间的最短距离σ 间的最短距离σ表示
σ=
0.61λ 0.61λ = nu NA
上一页 下一页 返回
第九节 光学传递函数
一种对设计和使用都适用的统一的像质评价指标 图像分解与合成的概念 像面与物面对比之比称为对指定空间频率μ的对比传递因子, 像面与物面对比之比称为对指定空间频率μ的对比传递因子,用 MTFμ表示 表示。 MTFμ表示。称为振幅传递因子
δ L ' = L ' l '
上一页 下一页 返回
第四节 轴外像点的单色相差
如图所示,主光线和光轴决定的平面,称为子午面, 如图所示,主光线和光轴决定的平面,称为子午面,过主光线与子午 面垂直的平面,称为弧矢面。 面垂直的平面,称为弧矢面。
第八章 光学系统成像质量评价

L 符号规则:由理想像点计算到实际光线交点
最小弥散圆
l :近轴(理想)像点位置
存在球差 时的像点 形状
Ⅰ Ⅱ Ⅲ
对应孔径角U入射光线的高度h
hmax
-Umax A
h
-U L’ l’
A’
-δL’
-δT’
垂轴球差是过近轴光线像点A’的垂轴平面内度量的球 差。用符号δT’ 表示 它表示由轴向球差引起的弥散圆的半径
一、子午像差
子午光线对交点 B'T 子午光线对交点与理想像平面不重合
同样,子午光线对交点与主光线不重合
• 子午场曲: 子午光线对交点到理想像面的距离
' XT
• 子午彗差:子午光线对交点到 ' 主光线的距离 K T 子午光线对交点 B'T 离开主光线的垂直距离KT’用来表示此光 线对交点偏离主光线的程度
一定物距l成像时,因各色光的焦距不同所得到的像距l’也不同。 按色光的波长由短到长,其相应的像点离透镜有近到远地排列 在光轴上,这种现象称为位置色差。
lF '
F
lC '
d C
F'紫
F'黄
F'红
通常用C、F光像平面的间距表示轴向色差
lF lC lFC
l' FC 0
称为色差校正不足 称为色差校正过渡
正负透镜组合,总的光组为正透镜; 其中正透镜用低色散、低折射率材料,负透 镜用高色散、高折射率材料; 组合后具有校正球差和色差能力;
(2)垂轴色差(倍率色差) 光学材料对不同色光的折射率不同,对于光学系统对不 同色光就有不同的焦距 y '
y f tg
C
yF '
光学系统的像差理论和像质评价

彗差对于大孔径系统和望远系统影响较大 彗差的大小与光束宽度、物体的大小、光阑位置、 光组内部结构(折射率、曲率、孔径)有关 对于某些小视场大孔径的系统(如显微镜),常用 “正弦差”来描述小视场的彗差特性。 正弦差等于彗差与像高的比值,用符号SC’表示
SC ' li m Ks '/y '
由子午光束所形成的像是一条垂直子午面的短线t称 为子午焦线 由弧矢光束所形成的像是一条垂直弧矢面的短线s称 为弧矢焦线
t
A
s
24
Engineering Optics
这两条短线不相交但相互垂直且隔一定距离
两条短线间沿光轴方向的距离即表示像散的大小 用符号Xts’表示
Xts’=Xt’-Xs’
t
A
s
25
Engineering Optics
入瞳
光学系统
光屏
这种即非对称又不会聚于一点的细光束称为像散光束 这两条短线(焦线)光能量最为集中,它们是轴外点 的像
Engineering Optics
大孔径产生的球差
11
Engineering Optics
加发散透镜消除球差
12
Engineering Optics
球差
13
Engineering Optics
2、彗差(轴外点宽光束)
了解成像光束光线的全貌: 子午平面和弧矢平面 由轴外物点和光轴所确定的平面称为子午平面 子午平面内的光束称子午光束
第六、八章 光学系统的相差理 论和像质量评价
Engineering Optics
1
光学系统的像差 理想光学系统的分辨率 各类光学系统分辨率的表示方法
应用光学第八章 光学系统成像质量评价

色差(Chromatic aberration)
轴向色差(Axial chromatic aberration) 垂轴色差(Chromatic difference of magnification)
球差:不同孔径光线对理想像点的距离称为球差。
L' L'l'
符号规则:光线聚焦点在理想像点右方为正,左方为负。 通常用1.0,0.85,0.707,0.5,0.3孔径的球差来描述整个光束的结构。
球差的消除
球差的大小与物点位置和成像光束的孔径角有关。 球差的消除:
利用正、负透镜组合,可以消除球差。 非球面透镜
弧XS矢’ 。场表曲示:此弧光矢线光对线交对点交与点理B想S’离像理平想面像的平偏面离的程轴度向。距离 弧矢慧差:光线对交点BS’离开主光线的垂直距离KS’ 。表
示此光线对交点偏离主光线的程度,即弧矢光线相对于主 光线不对称的程度。 细想像光平束面弧的矢轴场向曲距:离当x光s’束。的宽度趋于零,其交点Bs’离理 轴外弧矢球差:不同宽度弧矢光线对的弧矢场曲和细光束 弧矢场曲之差。表示了细光束与宽光束交点前后位置的差。
8-9 光学传递函数
光学系统是一个空间不变的线性系统。
光学
分解
系统
合成
物面
物点
弥散斑
像面
假定每个弥散斑的形状相同,其光强度与相应物点的光强 度成正比。这样的系统我们称为空间不变的线性系统。
光学传递函数理论的出发点
分解
光学 系统
合成
物面强
第8章 光学系统的像质评价

波像差图
此图是设定视场和色光的波像差三维分布 图,下方表格中的数字给出了波差的大小。
瑞 利判断的优点是便于实际应用,因为波像差与 几何像差之间的计算关系比较简单。 瑞 利判断虽然使用方便,但也存在不够严密之处。 因为它只考虑波像差的最大允许公差,而没有考 虑缺陷部分在整个波面面积中所占的比重。例如 透镜中的小汽泡或表 面划痕等,可能在某一局部 会引起很大的波像差,按照瑞利判断,这是不允 许的。但在实际成像过程中,这种局部极小区域 的缺陷,对光学系统的成像质量并非有明 显的影 响。 瑞利判断是一种较为严格的像质评价方法,它主 要适用于小像差光学系统,例如望远物镜、显微 物镜、微缩物镜和制版物镜等对成像质量要求较 高的系统。
二、中心点亮度 中心点亮度是依据光学系统存在像差时,其成像衍射斑的中心亮度和 不存在像差时衍射斑的中心亮度之比来表示光学系统的成像质量的, 此比值用S.D来表示,当S.D大于等于0.8 时,认为光学系统的成像质 量是完善的,这就是有名的斯托列尔(K.Strehl)准则。 瑞利判断和中心点亮度是从不同角度提出来的像质评价方法,但研究 表明,对一些常用的像差形式,当最大波像差为四分之一波长时,其 中心点亮度S.D约等于0.8,这说明上述二种评价成像质量的方法是一 致的。 斯托列尔准则同样是一种高质量的像质评价标准,它也只适用于小像 差光学系统。但由于其计算相当复杂,在实际中不便应用。
某库克相机物镜像质评价库克相机物镜点列图库克相机物镜的场曲和畸变这一般是由两个曲线图构成图中左边的是像散和场曲曲线右边的是畸变不同颜色表示不同色光t和s分别表示子午和弧矢量同色的t和s间的距离表示像散的大小纵坐标为视场右图横坐标是场曲左图是畸变的百分比值左图中几种不同色曲线间距是放大色差值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、非球面透镜
4、变折射率透镜:
中间折射率大
大孔径产生的球差
加发散透镜消除球差
球差
§8-4 轴外像点的单色像差
• 子午面:主光线(轴外物点)和光轴决定的平面
子午平面内的光束称子午光束
• 弧矢面:过主光线和子午面垂直的平面
弧矢平面内的光束称弧矢光束
彗差
轴上点:由于是共轴球面系统,通过光轴的任意截面内的光束 结构均相同;轴外点:只存在一个对称平面。为简化问题,用 两个平面光束的结构近似代表整个光束的结构。 彗差:是轴外物点发出宽光束通过光学系统后,由于球差的影 响而不再对称,不能会聚到一点,相对于主光线失去对称性而 产生的。
几何光学方法:几何像差、波像差、点列图、光学传递函数等; 物理光学方法:点扩散函数,相对中心光强,物理光学传递函数
分辨率检验: 分辨率:光学系统成像时所能分辨的最小间隔δ 空间频率:δ的倒数 星点检验: 一个物点通过光学系统成像后,根据弥散斑的大小和能 量分布的情况,可以评判系统的成像质量
,单位:lp/mm 5m 200lp/mm
δT’= δL’ tanU’
存在球差时的像点形状
最小弥散圆
球差(Spherical aberration):
L' Lm 'l '
轴上像点的单色像差——球差
球差是轴上点唯一的单色像差;还有色差 LFC
对于单透镜来说,U越大则球差值越大
单透镜自身不能校正球差
-Umax A
hmax
h
彗差的方向有两种:
尖端指向视场中心的称为正彗差 尖端指向视场边缘的称为负彗差
彗差对成像的影响:
影响像的清晰度,使成像的质量降低。彗差对于 大孔径系统和望远系统影响较大。 彗差的大小与光束宽度、物体的大小、光阑位 置、光组内部结构(折射率、曲率、孔径)有关 对于某些小视场大孔径的系统(如显微镜), 常用“正弦差”来描述小视场的彗差特性。
两条短线间沿光轴方向的距离即表示像散的大小
xts ' xt ' xs '
二、色差
1 1 1 (n 1) f' r r 2 1
1、什么叫色差? 白光是由各种不同波长的单色光所组成的 复色光成像时,由于不同色光而引起的像差称为色差。
1 1 1 (n 1) (1)位置色差(轴向色差、纵向色差) f ' r r 2 1
1
分辨率检验时所采用的图案:
分辨率检验
线条宽度 b;平行光管物镜 f1′;待测物镜f2′ 待测物镜可分辨线宽 b′=bf2′/f1′ 分辨率 N=1/2b′
星点检验 衍射受限系统的夫朗和斐衍射图
衍射受限系统的艾里斑的三维光强分布
§8-2 介质的色散和光学系统的色差
一、介质的色散 波长 λ 红色光 紫色光 速度v T 速度快 速度慢 折射率 n c v 折射率小 折射率大
称为色差校正不足 称为色差校正过渡
l' FC 0
若AF’和AC’重合,则
l' FC 0
称为光学系统对F光(蓝)和C光(红)消色差 消色差系统是指对两种色光消轴向(位置)色差的系统 位置色差不同于球差,它在近轴区就产生 细光束成像也不能获得白光的清晰像
因为位置色差会严重影响成像质量(可能比球差严重)
若h/hmax=0.7,则称为0.7孔径或0.7带(带光球差)
通常的带光划分:0; 0.3;0.5;0.7071;0.85;1.0
二、球差的表示方法
不同孔径光线对理想像点的位置之差
可在沿轴方向和垂轴方向来度量分别称为轴向球差和垂轴球差。 它是沿光轴方向度量的球差,用符号δ L’ 表示 L :边缘光线对距离系统最后一面的距离 L L l
正负透镜组合,总的光组为正透镜; 其中正透镜用低色散、低折射率材料,负透 镜用高色散、高折射率材料; 组合后具有校正球差和色差能力;
(2)垂轴色差(倍率色差) 光学材料对不同色光的折射率不同,对于光学系统对不 同色光就有不同的焦距 y '
y f tg
C
yF '
yd '
y'FC yF ' yC L’
单正透镜会产生负值球差,也被称为球差校正不足或 欠校正。
单负透镜会产生正值球差,也被称为球差校正过头或 过校正。 h/hmax
-Umax A
0.85
-U δL’
-L’ -l’
0.7 0.5 0.3 0.2 0
L' L'l '
危害:在任何位置都得不到理想像点
δL’
球差的校正:
• 细光束弧矢场曲:弧矢细光线对交点到理想像面的距离
x
' ' L'S X S xs
' s
• 轴外弧矢球差 :弧矢宽光束交点到细光束交点的距离
• 孔径选取:(± 1,± 0.85, ± 0.7071, ± 0.5, ± 0.3)hm • 视场选取:(± 1,± 0.85, ± 0.7071, ± 0.5, ± 0.3)ω
• 细光束子午场曲:子午细光线对交点到理想像面的距离
x
' t
• 轴外子午球差 :子午宽光束交点到细光束交点的距离
L X x
' T ' T
' t
• 孔径选取:(± 1,± 0.85, ± 0.7071, ± 0.5, ± 0.3)hm
• 视场选取:(± 1,± 0.85, ± 0.7071, ± 0.5, ± 0.3)ω
单透镜的球差与焦距、相对孔径、透镜的形状及折射率有关。 对于给定孔径焦距和折射率的透镜,通过改变其形状可使球差达到 最小。 1、加光阑; 2、采用复合透镜,如正负透镜组合、球面曲率及折射率 的配合等; 这种组合δ L’ =0光组被称为消球差光组
利用正负透镜组合可以消除球差,但也只是在某个孔径消球差, 其余孔径仍有一定球差存在
不同孔径的光线在像平面上形成半径不同的相互错开的圆斑。 距离主光线像点越远,形成的圆斑直径越大。 Y
慧尾形的弥散像
P
X
光斑的尖端较亮,尾部亮度逐渐减弱,称为彗星像差,简称彗差。 彗差通常用子午面上和弧矢面上对称于主光线的各对光线,经系 统后的交点相对于主光线的偏离来度量,分别称为子午彗差和 弧矢彗差
彗差
小视场大孔径
正弦差: 定义为彗差与像高的比值在像高趋于零时的极限. 用SC’ 表示 K ' sin U1u ' l 'l z ' SC ' lim S SC' 1 y ' 0 y ' sin U ' u1 L'l z ' 小孔径
LT ' , KT ' , LS ' , K S ' ~ 0 3、像散
§8-3 轴上像点的单色像差:球差
一、球差的定义 当透镜孔径较大时,由光轴上一物点发出的光束经球面折射 后不再交于一点,这种现象叫做球面像差,简称球差。
对应孔径角Umax入射光线的高度hmax被称为全孔径(边光球差)
对应孔径角U入射光线的高度h
-Umax A
hmax
h
-U L’ l’
A’
-δL’
-δT’
像差的大小反映了光学系统质量的优劣 几何像差主要有七种:
单色光像差有五种: 复色光像差有两种: 球差 轴上点: 轴向像差 垂轴像差
彗差
轴外点:
像散 场曲 畸变
在实际光学系统中,各 种像差是同时存在的。
§ 8- 1
一阶 要求
有效焦距和后焦距 F-数 像距 像面大小 主平面位置 顶点到主平面间距离 入瞳尺寸和位置 出瞳尺寸和位置 拉格朗日不变量
一、子午像差
子午光线对交点 B'T 子午光线对交点与理想像平面不重合
同样,子午光线对交点与主光线不重合
• 子午场曲: 子午光线对交点到理想像面的距离
' XT
• 子午彗差:子午光线对交点到 ' 主光线的距离 K T 子午光线对交点 B'T 离开主光线的垂直距离KT’用来表示此光 线对交点偏离主光线的程度
就有不同的像高,这就是垂轴色差 一般也用C、F 光在同一基准像面的像高之差表示。
y FC yZF yZC
结果使像的边缘呈现彩色 影响成像清晰度
A
BC’ BD’ BF’
yz ’
F
yz ’
D
yz ’
c
BF’ B BD’ BC’ A
yzc’
yz ’
D
yz ’
F
B
倍率色差校正方法: 对称式结构;利用光阑在球心处或物 在顶点处。
第八章
光学系统成像质量评价
§ 8- 1 概
述
实际光学系统中只有平面反射镜能成完善像,其 它的系统成完善像的条件: (1)近轴区 (2)细光束 (3)小物体 (4)单色光
实际光学系统都有一定大小的相对孔径 合视场,远远超出近轴区所限定的范围。 与近轴区成像比较必然在成像位置和像 的大小方面存在一定的差异,被称为像差 指在光学系统中由透镜材料的特性或折 射(或反射)表面的几何形状引起实际像与 理想像的偏差。
L 符号规则:由理想像点计算到实际光线交点
最小弥散圆
l :近轴(理想)像点位置
存在球差 时的像点 形状
Ⅰ Ⅱ Ⅲ
对应孔径角U入射光线的高度h
hmax
-Umax A
h
-U L’ l’
A’
-δL’
-δT’
垂轴球差是过近轴光线像点A’的垂轴平面内度量的球 差。用符号δT’ 表示 它表示由轴向球差引起的弥散圆的半径
因此用白光成像的光学系统都必须校正位置色差 孔径不同,白光将会有不同的位置色差。位置色差 的性质类似于球差 光学系统只能对一个孔径的光线进行校正色差