第八章光学系统成像质量评价

合集下载

第八章 光学系统的像质评价分解

第八章 光学系统的像质评价分解
I ( y)

1 1 1 cos y c源自s 3y cos 5y cos 7y 4 3 5 7
其中 2/T称为空间角频率;空间 频率 1 T
对光学系统而言,这个分解过程的物理意义是:如果物平面 的强度分布是一个周期函数,可以把它看成是由很多频率、 振幅和初位相不同的余弦函数合成。
像平面输出的余弦基元为: I ( y' ) 1 a' cos(2' y' ) 物面图形的对比K为
I I 2a K max min a I max I min 2
像面图形的对比K’为
I’(y )
I 'max I 'min 2a' K' a' I 'max I 'min 2
二、中心点亮度 光学系统存在像差时,其成像衍射的中心亮度(爱 里斑亮度)与不存在像差时衍射斑的中心亮度的 比值来表示光学系统的成像质量;这个比值称为 中心点亮度,用S.D.表示。 斯托列尔(K.Strehl)准则:当S.D. ≥0.8时,认 为光学系统的成像质量是完善的。
适用于:小像差光学系统,计算复杂。
第八章 光学系统的像质评价
第一节 瑞利判断和中心亮度
一、瑞利(Reyleigh)判断
实际波面与参考球面波之间的最大波像差不超过 时, 4 此波面可看作是无缺陷的。 参考球面选择的标准是使波象差的最大值最小; 波像差的最大值允许量不超过 4 。
优点:便于实际应用;
缺点:从光波传播光能的观点看,瑞利判断不够严密; 适用于:小像差光学系统,如:望远物镜,显微物镜, 微缩物镜,制版物镜等。
1 5
a6 0
矩形周期函数的振幅 频谱函数

第八章 光学系统成像质量评价

第八章  光学系统成像质量评价

3、非球面透镜
4、变折射率透镜:
中间折射率大
大孔径产生的球差
加发散透镜消除球差
球差
§8-4 轴外像点的单色像差
• 子午面:主光线(轴外物点)和光轴决定的平面
子午平面内的光束称子午光束
• 弧矢面:过主光线和子午面垂直的平面
弧矢平面内的光束称弧矢光束
彗差
轴上点:由于是共轴球面系统,通过光轴的任意截面内的光束 结构均相同;轴外点:只存在一个对称平面。为简化问题,用 两个平面光束的结构近似代表整个光束的结构。 彗差:是轴外物点发出宽光束通过光学系统后,由于球差的影 响而不再对称,不能会聚到一点,相对于主光线失去对称性而 产生的。
几何光学方法:几何像差、波像差、点列图、光学传递函数等; 物理光学方法:点扩散函数,相对中心光强,物理光学传递函数
分辨率检验: 分辨率:光学系统成像时所能分辨的最小间隔δ 空间频率:δ的倒数 星点检验: 一个物点通过光学系统成像后,根据弥散斑的大小和能 量分布的情况,可以评判系统的成像质量
,单位:lp/mm 5m 200lp/mm
δT’= δL’ tanU’
存在球差时的像点形状
最小弥散圆
球差(Spherical aberration):
L' Lm 'l '
轴上像点的单色像差——球差

球差是轴上点唯一的单色像差;还有色差 LFC
对于单透镜来说,U越大则球差值越大
单透镜自身不能校正球差
-Umax A
hmax
h
彗差的方向有两种:
尖端指向视场中心的称为正彗差 尖端指向视场边缘的称为负彗差
彗差对成像的影响:
影响像的清晰度,使成像的质量降低。彗差对于 大孔径系统和望远系统影响较大。 彗差的大小与光束宽度、物体的大小、光阑位 置、光组内部结构(折射率、曲率、孔径)有关 对于某些小视场大孔径的系统(如显微镜), 常用“正弦差”来描述小视场的彗差特性。

第八章光学系统的像质评价

第八章光学系统的像质评价
出现“伪分辨现像”;
第三节 点列图
在几何光学的成像过程中,由一点发出的许多条 光线经光学系统成像后,由于像差的存在,使 其在像面上不再集中于一点,而是形成一个分 布在一定范围内的弥散斑图形,称为点列图。
在点列图中利用这些点的密集程度来衡量光学系 统的成像质量的方法称为点列图法。
利用点列图法来评价照相物镜等的成像质量时, 通常是利用集中30%以上的点或光线所构成的 图形区域作为其实际有效弥散斑,弥散斑直径 的倒数为系统的分辨率。
第一节 瑞利判断和中心亮度
一、瑞利(Reyleigh)判断
实际波面与参考球面波之间的最大波像差不超过 时,
4 此波面可看作是无缺陷的。
参考 优点:便于实际应用; 缺点:从光波传播光能的观点看,瑞利判断不够严密; 适用于:小像差光学系统,如:望远物镜,显微物镜, 微缩物镜,制版物镜等。
接收器分辨率 极值曲线
第二节 分辨率
分辨率是反映光学系统能分 辨物体细节的能力。
瑞利指出:能分辨的两个等亮
度点间的距离对应艾里斑的半 径,即一个亮点的衍射图案中 点与另一个亮点的衍射图案的 第一暗环重合时,这两个亮点 则能被分辨。
根据衍射理论,无限远物体被理想光学系统形成 的衍射图案中,第一暗环半径对出射光瞳中心 的张角为:
二、中心点亮度
光学系统存在像差时,其成像衍射的中心亮度(爱 里斑亮度)与不存在像差时衍射斑的中心亮度的 比值来表示光学系统的成像质量;这个比值称为
中心点亮度,用S.D.表示。
斯托列尔(K.Strehl)准则:当S.D. ≥0.8时,认 为光学系统的成像质量是完善的。
适用于:小像差光学系统,计算复杂。
第四节 光学传递函数评价成像质量
把物平面分解成无限多个物点 物面图形的分解

mtf光学系统成像质量评估方法

mtf光学系统成像质量评估方法

MTF(Modulation Transfer Function)是光学系统成像质量评估的重要指标之一,它描述了光学系统对高对比度物体细节信息的成像能力。

在光学系统设计和优化过程中,对其成像质量的评估是至关重要的,而MTF的测量和分析是评估光学系统成像质量的重要方法之一。

本文将介绍MTF光学系统成像质量评估方法。

1. MTF的基本概念MTF是指光学系统在特定空间频率下的成像对比度传递函数,描述了光学系统对不同空间频率下物体细节信息的成像能力。

在实际应用中,MTF通常被表示为对比度相对于空间频率的函数图。

通过分析MTF曲线,可以直观地了解光学系统在不同空间频率下的成像能力,判断其成像质量优劣。

2. MTF的测量方法(1)光栅法光栅法是最常用的MTF测量方法之一,通过将空间周期状物体(如光栅)成像,利用光栅的传递函数与系统MTF进行卷积,得到系统的MTF曲线。

这种方法简单直观,适用于对于大部分光学系统的MTF评估。

(2)差动法差动法是一种通过对比不同空间频率下的目标物体图像和参考图像,得到系统的MTF曲线。

这种方法适用于对成像设备不便携的场合,但需要精确的图像处理技术和系统校准。

(3)干涉法干涉法是通过干涉条纹的形成来测量MTF的一种方法,它能够直接测量相位信息和幅度信息,对系统MTF的测量有很好的灵敏度和分辨率。

但是,干涉法对环境要求较高,且实验操作相对复杂。

3. MTF的分析与评估(1)MTF曲线的解读MTF曲线通常会显示出在低空间频率时,成像对比度随空间频率的增加而逐渐降低,而在高空间频率时,成像对比度急剧下降。

通过分析MTF曲线的特征,可以评估光学系统的成像能力。

(2)MTF的指标评价在评估光学系统的MTF时,需要使用一些指标来描述其成像质量,如MTF50、MTF20等,它们分别表示MTF曲线上50、20的空间频率对应的成像对比度。

这些指标能够量化地描述光学系统的成像能力,为光学系统的设计和优化提供依据。

光学系统成像质量评价

光学系统成像质量评价
(一)望远镜分辨率 (二)照相系统分辨率 (三)显微镜分辨率
第九节 光学传递函数 第十节 用光学传递函数评价系统的像质
上一页 下一页 返回
第一节 概述
成像质量评价的方法: 成像质量评价的方法:
1、用于在光学系统实际制造完成后对其进行实际测量。 用于在光学系统实际制造完成后对其进行实际测量。 分辨率检验 星点检验 用于在光学系统还没制造出来, 2、用于在光学系统还没制造出来,即在设计阶段通过计算就能评定 系统质量。 系统质量。
上一页
下一页
返回
第二节 介质的色散和光学系统的色差
某一种介质对两种不同颜色光线的折射率之差称为该介质对这两种颜色 光的色散。 光的色散。 不同颜色光线的像点沿光轴方向的位置之差称为轴向色差 分别表示F 两种波长光线的近轴像距,则轴向色差为: 若用 lF ', lC '分别表示F,C两种波长光线的近轴像距,则轴向色差为:
1500 N= F
三、显微镜物镜分辨率: 显微镜物镜分辨率:
在显微镜系统中,物体位在近距离,一般以物平面上刚能分开两物体 在显微镜系统中,物体位在近距离, 间的最短距离σ 间的最短距离σ表示
σ=
0.61λ 0.61λ = nu NA
上一页 下一页 返回
第九节 光学传递函数
一种对设计和使用都适用的统一的像质评价指标 图像分解与合成的概念 像面与物面对比之比称为对指定空间频率μ的对比传递因子, 像面与物面对比之比称为对指定空间频率μ的对比传递因子,用 MTFμ表示 表示。 MTFμ表示。称为振幅传递因子
δ L ' = L ' l '
上一页 下一页 返回
第四节 轴外像点的单色相差
如图所示,主光线和光轴决定的平面,称为子午面, 如图所示,主光线和光轴决定的平面,称为子午面,过主光线与子午 面垂直的平面,称为弧矢面。 面垂直的平面,称为弧矢面。

光学系统的像差理论和像质评价

光学系统的像差理论和像质评价
20 Engineering Optics
彗差对于大孔径系统和望远系统影响较大 彗差的大小与光束宽度、物体的大小、光阑位置、 光组内部结构(折射率、曲率、孔径)有关 对于某些小视场大孔径的系统(如显微镜),常用 “正弦差”来描述小视场的彗差特性。 正弦差等于彗差与像高的比值,用符号SC’表示
SC ' li m Ks '/y '
由子午光束所形成的像是一条垂直子午面的短线t称 为子午焦线 由弧矢光束所形成的像是一条垂直弧矢面的短线s称 为弧矢焦线
t
A
s
24
Engineering Optics
这两条短线不相交但相互垂直且隔一定距离
两条短线间沿光轴方向的距离即表示像散的大小 用符号Xts’表示
Xts’=Xt’-Xs’
t
A
s
25
Engineering Optics
入瞳
光学系统
光屏
这种即非对称又不会聚于一点的细光束称为像散光束 这两条短线(焦线)光能量最为集中,它们是轴外点 的像
Engineering Optics
大孔径产生的球差
11
Engineering Optics
加发散透镜消除球差
12
Engineering Optics
球差
13
Engineering Optics
2、彗差(轴外点宽光束)
了解成像光束光线的全貌: 子午平面和弧矢平面 由轴外物点和光轴所确定的平面称为子午平面 子午平面内的光束称子午光束
第六、八章 光学系统的相差理 论和像质量评价
Engineering Optics
1
光学系统的像差 理想光学系统的分辨率 各类光学系统分辨率的表示方法

应用光学第八章 光学系统成像质量评价

应用光学第八章 光学系统成像质量评价
球差(Spherical aberration) 慧差(Coma) 像散(Astigmatism) 场曲(Field curvature) 畸变(Distortion)
色差(Chromatic aberration)
轴向色差(Axial chromatic aberration) 垂轴色差(Chromatic difference of magnification)
球差:不同孔径光线对理想像点的距离称为球差。
L' L'l'
符号规则:光线聚焦点在理想像点右方为正,左方为负。 通常用1.0,0.85,0.707,0.5,0.3孔径的球差来描述整个光束的结构。
球差的消除
球差的大小与物点位置和成像光束的孔径角有关。 球差的消除:
利用正、负透镜组合,可以消除球差。 非球面透镜
弧XS矢’ 。场表曲示:此弧光矢线光对线交对点交与点理B想S’离像理平想面像的平偏面离的程轴度向。距离 弧矢慧差:光线对交点BS’离开主光线的垂直距离KS’ 。表
示此光线对交点偏离主光线的程度,即弧矢光线相对于主 光线不对称的程度。 细想像光平束面弧的矢轴场向曲距:离当x光s’束。的宽度趋于零,其交点Bs’离理 轴外弧矢球差:不同宽度弧矢光线对的弧矢场曲和细光束 弧矢场曲之差。表示了细光束与宽光束交点前后位置的差。
8-9 光学传递函数
光学系统是一个空间不变的线性系统。
光学
分解
系统
合成
物面
物点
弥散斑
像面
假定每个弥散斑的形状相同,其光强度与相应物点的光强 度成正比。这样的系统我们称为空间不变的线性系统。
光学传递函数理论的出发点
分解
光学 系统
合成
物面强

第八章光学系统的像质评价和像差公差

第八章光学系统的像质评价和像差公差

第八章光学系统的像质评价和像差公差光学系统的像质评价和像差公差是光学设计中非常重要的内容,对于确保光学系统的成像效果和减小像差具有重要意义。

本文将从像质评价和像差公差两个方面进行详细介绍。

第一部分:像质评价在光学系统设计中,像质评价是衡量系统成像效果好坏的一项重要指标。

像质评价可以通过不同的参数来进行,如分辨率、畸变、像场曲率等。

1.分辨率:分辨率是指系统能够分辨出最小细节的能力。

在光学系统中,分辨率受到折射率、孔径、波长等因素的影响。

分辨率的提高可以通过增加系统的孔径、减小像散等方法来实现。

2.畸变:畸变是指光学系统成像时图像相对于参考图像的形变情况。

主要分为径向畸变和切向畸变两种。

径向畸变是指图像中心与边缘的变形情况,切向畸变是指图像的扭曲情况。

畸变的产生主要是由于光学元件的形状和定位误差导致的,可以通过优化元件设计和加强装配精度来减小畸变。

3.像场曲率:像场曲率是指光学系统各个像点的焦距随着物距的变化情况。

如果像场曲率过大,会导致成像不清晰,失去焦点。

可以通过调整透镜曲率半径、引入焦点平面等方法来改善像场曲率。

第二部分:像差公差像差是指光学系统成像时图像与理想像之间的差异,它是光学系统中不可避免的问题。

为了减小像差,需要对光学系统进行像差公差的设计和控制。

1.球面像差:球面像差是由于透镜表面的曲率或者抛物率与光线的入射角度不匹配导致的成像失真。

可以通过优化透镜表面形状和选择合适的材料来减小球面像差。

2.形状像差:形状像差是光学元件的形状不规则或者安装位置偏差导致的成像失真。

可以通过优化元件设计和加强装配精度来减小形状像差。

3.色差:色差是指透镜对不同波长的光具有不同的折射率,从而导致颜色偏差。

色差主要分为色散和像散两种。

色散是指透镜对不同波长的光具有不同的聚焦效果,像散是指不同波长的光成像位置不一致。

可以通过使用多片透镜组合、引入补偿透镜等方法来减小色差。

在光学系统设计中,像质评价和像差公差是重要的内容,对于确保系统的成像效果和减小像差具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8-4 轴外像点的单色像差
Sagittal aberrations
D B
KS '
Chief ray
Z
BS '
D
Bs'
xs '
L'
XS'
弧矢场曲 X S '
弧矢彗差 K S '
细光束弧矢场曲 x s '
轴外弧矢球差 LS'XS'xs'
§8-4 轴外像点的单色像差
Sagittal aberrations
KS
'
1 3
KT
'
§8-4 轴外像点的单色像差
小视场大孔径
正弦差: 定义为彗差与像高的比值在像高趋于零时的极限. 用SC’表示
SC' lim KS ' y'0 y'
SC'siU n1u' l'lz' 1 siU n'u1 L'lz'
小孔径
L T',K T',L S',K S'~ 0
轴外像差由 xt ', xs ' 决定
y'FC yF'yC'
yC ' yd '
yF '
垂轴色差
y'f'tan
F
d
C
§8-3 轴上像点的单色像差——球差
通常的带光划分:0; 0.3;0.5;0.7071;0.85;1.0
R R'
R'2R2R'2
2R'2R2 R' R 0.707R1
2
§8-3 轴上像点的单色像差——球差
最小弥散圆
球差(Spherical aberration): L'Lm'l'
§8-4 轴外像点的单色像差
Astigmatism
xts'xt'xs'
Chief ray
弧矢焦线 子午焦线
Bt' Bs'
xs'
xt'
平均场曲: 把子午焦线(焦 点)和弧矢焦线(焦点)的中 点到理想像平面的距离作 为系统实际场曲大小的度
量. x' xt 'xs ' 2
§8-4 轴外像点的单色像差
1 f'
(n1)
1 r1
1 r2
§8-2 介质的色散和光学系统的色差
色散
阿贝数
d
587.6nm
nd 1
nF nC
§8-2 介质的色散和光学系统的色差
玻璃图
§8-2 介质的色散和光学系统的色差
lF '
F
d
C
lC '
f
'(n1)
1 r1
1 r2
l'FClF'lC' 轴向色差
§8-2 介质的色散和光学系统的色差
✓轴上点像差: 球差、轴向色差
✓轴外点像差: 彗差、场曲、像散、畸
变、垂轴色差
单色像差: 球差、彗差、场曲、像散、畸变 色差: 轴向色差、垂轴色差
§8-5 几何像差的曲线表示
像差的曲线表示
§8-5 几何像差的曲线表示
像差的曲线表示
§8-5 几何像差的曲线表示
Spot diagram
y'y'yz'
Z
§8-5 几何像差的曲线表示
Encircled energy
y'y'yz'
Z
§8-6 用波像差评价光学系统的成像质量
理想波面
波像差 实际波面
§8-7 理想光学系统的分辨率
圆孔衍射
2R 1.22
n'sinU'max
§8-7 理想光学9;sinU'max
§8-7 理想光学系统的分辨率
决定成像特性
球差 最小弥散斑位置和大小 彗差 像散 平均焦点位置和大小 匹兹瓦曲率 畸变 波前方差 斯特列尔比 需要的二次曲线常数
决定成像好坏
§8-1 Introduction
评估光学系统的像差 ➢对制作完成的光学系统进行测量评估
分辨率检验、星点检验 ➢在设计过程中对光学系统进行评估
几何像差、波像差、点列图、光学传递函数、斯特列尔比等
5m 200lp/mm
星点检验
§8-1 Introduction
§8-2 介质的色散和光学系统的色差
色散
n c
红色光 紫色光
速度快 速度慢
折射率小 折射率大
色散:两种不同颜色光线折射率之差称为该介质对这两种色光的色散
中部色散
n12n1n2 nFCnFnC
F
656.3nm
C
486.1nm
Fraunhofer wavelength
分辨率检验
§8-1 Introduction
分辨率:光学系统所能分辨的最小间隔δ(/mm)的倒数μ(lp/mm)
空间频率: 1 (lp/mm)
分辨率检验
§8-1 Introduction
分辨率:光学系统所能分辨的最小间隔δ(/mm)的倒数μ(lp/mm)
空间频率: 1 (lp/mm)
对比度: contrast 在邻近区域内, 光强极大值和极小值之差与极大值和极小值之和的 比值, 用K表示.
Astigmatism
§8-4 轴外像点的单色像差
Astigmatism
若 x t ' x s ' 0
M
B'
X T ' x t ' 0
D Z
X S ' x s ' 0
K T ' 0
B
D M
K S ' 0
§8-4 轴外像点的单色像差
Distortion
Chief ray
M
Z
y0' yz'
M B
Image
畸变:
yz'yz'y0'
yz0 '
yz 'y0' y0'
正常
负畸变:桶形畸变
正畸变:鞍形畸变
§8-4 轴外像点的单色像差
Aberrations
✓ 球差: spherical aberration ✓ 彗差: coma ✓ 场曲: field curvature ✓ 像散: astigmatism ✓ 畸变: distortion ✓ 轴向色差: axial chromatism ✓ 垂轴色差: lateral chromatism
§8-3 轴上像点的单色像差——球差
通常使用带光:0;0.7071;1.0
L'L1.0'l'
带光
L'
§8-3 轴上像点的单色像差——球差 球差欠校正 L'0
球差过校正 L'0
§8-4 轴外像点的单色像差
Meridian Surface M D Z
D
B
M
Sagittal Surface
B'
Chief ray
§8-4 轴外像点的单色像差
Meridian aberrations
场曲: Field curvature Chief ray
彗差: Coma
M
Z
M B
KT '
Bt'
BT '
xt '
L'
XT '
子午场曲 X T '
子午彗差 K T '
细光束子午场曲 x t '
轴外子午球差 LT'XT'xt'
第八章 光学系统成像质量评价
Chapter 5: Evaluations for optical image systems
§8-1 Introduction
Aberrations
§8-1 Introduction
对光学系统的要求
一阶 要求
三阶 要求
有效焦距和后焦距 F-数 像距 像面大小 主平面位置 顶点到主平面间距离 入瞳尺寸和位置 出瞳尺寸和位置 拉格朗日不变量
相关文档
最新文档