《192平行四边形》同步练习3.docx

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

人教版八年级下册数学平行四边形同步练习解析版

人教版八年级下册数学平行四边形同步练习解析版

18.1平行四边形同步练习参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3选D2.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF 的周长是()A.5 B.7 C.9 D.11解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.3.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD 的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.4.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为()A.6 B.4 C.2 D.1解:∵△ABC,D、E分别为AB、AC中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,S△DEC=S△ADE,∴S△ADE=S△ABC=2.∴S△DEC=S△ADE=2.故选:C.5.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.6.已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE 解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.7.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.8.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图(三)、图(四)、图(五)的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE,∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC.∴甲=乙图3与图1中,三个三角形相似,所以==,==,∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC∴甲=丙.∴甲=乙=丙.故选A.9.在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有()A.3 B.4 C.5 D.6解:任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有(1)(2);(3)(4);(1)(3);(2)(4)共四种.故选B.10.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③ B.①②④ C.①③④ D.②④解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题(共4小题)11.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是 5 cm.解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.12.如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.13.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.14.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE 中,DE的最小值是 4 .解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.三.解答题(共6小题)15.如图所示,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.16.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.17.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).18.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.19.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.20.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

平行四边形练习题(3套)

平行四边形练习题(3套)
3.在 中, ,则 的周长为________cm.
4.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm.
5.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为______cm.
6.对角线长为10cm的正方形的边长是______cm,面积是______ cm2。
A、平行四边形 B、矩形 C、菱形 D、正方形
7、能识别四边形ABCD是等腰梯形的条件是 ( )
A、AD∥BC,AB=CD B、∠A:∠B:∠C:∠D=3:2:3:2
C、AD∥BC,AD≠BC,AB=CD D、∠A+∠B=180o,AD=BC
8、如图,矩形ABCD中,DE⊥AC于E,且
∠ADE:∠EDC=3:2,则∠BDE的度数为( )
7.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.
8.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.
求证:BE=CF.
平行四边形(3)
一、选择题
1、能够判定一个四边形是平行四边形的条件是 ( )
A、一组对角相等B、两条对角线互相平分
4、平行四边形ABCD的对角线AC、BD相交于点O,
下列条件中,不能判定它为菱形的是 ( )
A、AB=AD B、AC⊥BD C、∠A=∠D D、CA平分∠BCD
5、正方形具有而菱形不一定具有的性质是 ( )
A、四条边都相等 B、对角线相等
C、对角线互相垂直平分 D、每条对角线平分一组对角
6、下列四边形中,既是中心对称图形,又是轴对称图形,而且有四条对称轴的是 ( )
三.解答题:

数学人教版八下《 平行四边形性质与判定》同步基础练习卷(含答案)(2022年最新)

数学人教版八下《 平行四边形性质与判定》同步基础练习卷(含答案)(2022年最新)
7.如图,在▱ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于( )
A.10B.8C.6D.4
8.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是( )
A.S1+S2=S3+S4B.S1+S2>S3+S4C.S1+S3=S2+S4D.S1+S2<S3+S4
17.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.
18.一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_______
三、解答题
19.如图,已知△ABC中,D为AB的中点.
(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);
∵EF=BF,BF=DC,∴EF=DC,
∴四边形EFCD是平行四边形。
23.证明:连接AE、DB、BE,BE交AD于点O,
∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,
∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.
24.解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.
14.如图,加一个条件与∠A+∠B=180°能使四边形ABCD成为平行四边形.
15.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______
16.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.

八年级数学下2.2平行四边形同步练习湘教版有答案

八年级数学下2.2平行四边形同步练习湘教版有答案

适用精选文件资料分享八年级数学下 2.2 平行四边形同步练习(湘教版有答案)湘教版 8 年级下册数学平行四边形性质同步练习一、选择题( 本大题共8 小题) 1. 在?ABCD中,以下结论必定正确的选项是()A.AC⊥BD B.∠ A+∠B=180° C. AB=AD D.∠ A≠∠ C 2. 如图 2,在平行四边形 ABCD中,以下结论中错误的选项是() A .∠ 1=∠2B.∠ BAD=∠BCD C.AB=CD D. AC⊥BD 3. 如图,在 ?ABCD中,BF 均分∠ ABC,交 AD于点 F,CE均分∠ BCD,交 AD于点 E,AB=6,EF=2,则 BC长为()A.8 B.10 C.12 D.14 4.如图,在?ABCD中,AB=4,BC=6,∠ B=30°,则此平行四边形的面积是()A. 6 B.12 C. 18 D. 24 5 .如图,?ABCD的对角线AC、BD订交于点O,且AC+BD=16,CD=6,则△ ABO的周长是()A.10 B.14 C.20 D.22 6.如图,在 ?ABCD中,延长 AB到点 E,使 BE=AB,连接 DE交 BC于点 F,则以下结论不必定成立的是() A.∠E=∠CDF B. EF=DF C. AD=2BF D. BE=2CF 7. 如图,在□ ABCD中, E为边 CD上一点,将△ADE沿 AE折叠至△ AD′E处, AD′与 CE交于点 F.若∠ B=52°,∠DAE=20°,则∠ FED′的大小为 _______. A .36° B.52° C.48°D.30° 8.如图,在平行四边形ABCD中, AB=4,∠ BAD的均分线与 BC的延长线交于点 E,与 DC交于点 F,且点 F 为边 DC的中点,DG⊥AE,垂足为 G,若 DG=1,则 AE的边长为()A.2 B.4 C.4 D.8二、填空题 ( 本大题共 6 小题 ) 9. 以以下图,在□ ABCD中,两条对角线交于点 O,有△ AOB≌△ _____,△AOD≌△ _____. 10. 在□ ABCD 中,∠ A:∠ B=2:3,则∠ B=____,∠ C=_____,∠ D=____. 11.在?ABCD中, BC边上的高为 4,AB=5,AC=2 ,则 ?ABCD的周长等于.12.以以下图,在?ABCD中,∠ C=40°,过点D作AD的垂线,交 AB于点 E,交 CB的延长线于点 F,则∠ BEF的度数为.13.如图,□ ABCD中,E 是 BA延长线上一点, AB=AE,连接 CE交 AD于点 F,若 CF均分∠ BCD, AB=3,则 BC的长为. 14. 如图,□ ABCD 的周长为 36.对角线 AC,BD订交于点 O.点 E 是 CD的中点.BO=12.则△DOE的周长为 __________________.三、计算题 ( 本大题共 4 小题 ) 15. 已知平行四边形 ABCD中, CE均分∠ BCD且交 AD于点 E,AF∥CE,且交 BC于点 F.(1)求证:△ABF≌△ CDE;(2)如图,若∠ 1=65°,求∠B的大小.16.图 1,图 2 都是 8×8的正方形网格,每个小正方形的极点成为格点,每个小正方形的边长均为 1,在每个正方形网格中标了然 6 个格点,这 6 个格点简称为注明点(1)请在图1,图2中,以4个标注点为极点,各画一个平行四边形(两个平行四边形不全等);(2)图 1 中所画的平行四边形的面积为.17.如图,在 ?ABCD中,连接 BD,在 BD的延长线上取一点 E,在 DB 的延长线上取一点F,使 BF=DE,连接 AF、CE.求证: AF∥CE.18.如图,平行四边形 ABCD的对角线 AC、BD订交于点 O,E,F 分别是 OA,OC的中点,连接 BE,DF (1)依据题意,补全原形;(2)求证: BE=DF.参照答案:一、选择题 ( 本大题共 8 小题 ) 1. B 解析:此题观察了平行四边形的性质.解:∵四边形 ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.应选 B 2. D 解析:依据平行四边形性质可知:平行四边形的对边相等,平行四边形的对角相等,平行四边形的对角线相互均分。

(完整版)平行四边形练习题及答案(DOC).doc

(完整版)平行四边形练习题及答案(DOC).doc

20.1平行四边形的判定一、选择题1 .四边形ABCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A . 3 种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,其中 a,b 为一组对边边长, c,d?为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .任意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点 F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 满足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图 1图 26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其余各边长用含有未知数 x的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参考答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定.5 .AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、 7.解:如图所示,四边形ABCD是平行四边形.理由如下:在 Rt△BCD 中,根据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC, AB=DC即可,本题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,如图所示.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1 .矩形具有而一般平行四边形不具有的性质是()A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2 .下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A . 1B . 2C . 3D . 43.下列命题中,正确的是()A.有一个角是直角的四边形是矩形 B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线相交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1 图 25.若四边形 ABCD的对角线 AC, BD相等,且互相平分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E, F, G,H 两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC 中, CE, CF分别平分∠ACB和它的邻补角∠ACD.AE⊥CE 于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为什么?参考答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3. D 点拨:选项 D 是矩形的判定定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.2 2所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.理由:因为CE平分∠ ACB, ?CF?平分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.22 2又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A .对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A . 1 种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为 ________.(只写出符合要求的一个即可)图 1图 25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增加的条件是 ________.(只写出符合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直平分边AB,则 BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思考题9.如图,矩形 ABCD的对角线相交于点 O,PD∥AC,PC∥BD, PD,PC相交于点 P,四边形 PCOD是菱形吗?试说明理由.参考答案一、 1. A点拨:本题用排除法作答.2. D 点拨:根据菱形的判定方法判断,注意不要漏解.3. C点拨:如图所示,若∠ ABC=60°,则△ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.4 2因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB= 2 2 2 2AB OA 8 4 =43 (cm ? ),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可添加AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的平分线上(或 AE=AF)26. 12cm; 723 cm点拨:如图所示,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3 点拨:如图所示,因为DE垂直平分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2 2 2 2 2 2 2?AE +DE=AD,即 2 +DE=4 ,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .2 2三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、 9.解:四边形PCOD是菱形.理由如下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要添加条件_______.4.如图 1 所示,直线L 过正方形ABCD的顶点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图 1图2图 35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延长线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点,AF=2, P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.如图所示,在 Rt△ABC中, CF为∠ ACB的平分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思考题8.已知如图所示,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为什么?(2) AF 与 DE是否垂直?说明你的理由.C D A AB,BC边上的点,且 AE=BF,?请问:参考答案一、 1. C点拨:对角线互相平分的四边形是平行四边形,?对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可添加△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 22 12 = 5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17 点拨:如图所示,作 F 关于AC的对称点G.连结EG交AC于P,则PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?平分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,?还可以先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.理由:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.理由:如图,设DE与 AF 相交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判定1 A C 一、选择题.下列结论中,正确的是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线 AC,BD相交于点O,则图中全等三角形有()A. 2 对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A . 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________ (填一个正确的条件即可).三、解答题7.如图所示,AD是∠ BAC的平分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为什么?参考答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A, B 选项都不正确,而 C 选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2. B点拨:因为△ ABC≌△DCB,△ BAD≌△CDA,△ AOB≌△DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和至少为2L=2× 30=60(cm).二、 4. 4:65点拨:如图所示,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:如图所示,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的平分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.理由:延长BA, CD,相交于点 E,如图所示,由∠ B=∠C,可得EB=EC.又AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只要推出 AD∥BC,再由 AD<BC就可知四边形 ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延长 BA,CD,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判定测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉着应战!(每小题 3 分,共 30 分)1. 正方形具有菱形不一定具有的性质是()(A )对角线互相垂直(B)对角线互相平分(C)对角线相等(D)对角线平分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么阴影部分的面积是矩形ABCD 的面积的()(A )A 1 1 1( D )3A5(B )( C)104 3D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 可以等于()( A )4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A )87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A )3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,如果 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不能确定7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2 13 2( A )2 ( B)2 ( C)2 ( D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 , BD 平分ABC ,如果这个梯形的周长为30,则AB的长()( A )4 ( B )5 ( C )6 ( D )7A DA DERPB C( 5)B( 4)Q C9.右图是一个利用四边形的不稳定性制作的菱形晾衣架.A B C 已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A ) 90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、 b,都有 a+b ≥ 2 ab 成立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔仔填,自信!( 每小 2 分,共20 分)11.一个四形四条次是a、b、c、d,且a2 b 2 c 2 d 2 2ac 2bd,个四形是 _______________ .12.在四形ABCD中,角AC、BD交于点O,从(1)AB CD ;(2) AB ∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 平分 BAD 六个条件中,取三个推出四形ABCD 是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出符合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如,已知直l 把 Y ABCD 分成两部分,要使两部分的面相等,直l 所在位置需足的条件是____________________. (只需填上一个你合适的条件)lA DB C(第 13 )(第 16 )14.梯形的上底 6cm ,上底的一点引一腰的平行,与下底相交,所构成的三角形周 21cm ,那么梯形的周_________ cm。

苏教版数学二年级上册第二章平行四边形初步认识同步练习题

苏教版数学二年级上册第二章平行四边形初步认识同步练习题苏教版数学二年级上册第二章平行四边形的初步认识同步练习题姓名:________ 班级:________ 成绩:________ 小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、选择题(共15题;共30分)1.(2分)等底等高的两个平行四边形的面积()。

A.相等B.有可能不同C.一定不同D.无法确定 2.(2分)平行四边形的特点不包括()。

A.有四条边B.有四个角C.四条边都相等D.两组对边分别平行 3.(2分)从平行四边形的一条边上的一点到对边可以引()垂线。

A.一条B.两条C.无数条 4.(2分)把一个长方形沿着对角拉成平行四边形时,面积与原来相比()A.不变B.变大C.变小 5.(2分)把一个平行四边形活动框架拉成一个长方形,那么现在长方形与原来平行四边形相比()。

A.周长不变、面积不变B.周长变了、面积不变C.周长不变、面积变了D.周长变了、面积变了 6.(2分)下面图形中与其他图形不是同类的是()。

A.B.C.7.(2分)下列图片中,没有图形()A.三角形B.圆C.正方形 8.(2分)教室黑板的表面是()。

A.圆形B.长方形C.三角形 9.(2分)在下列图形中,是平面上曲线图形的是()A.三角形B.正方形C.长方形D.圆 10.(2分)下列选项中,()不是平面图形。

A.B.C.11.(2分)一个四边形的四条边分别是8厘米、6厘米、10厘米、6厘米.这个四边形,可能是()A.长方形B.平行四边形C.梯形D.正方形 12.(2分)下列图形中不同类的是()。

A.B.C.13.(2分)用一定不能画出()。

A.B.14.(2分)用一定不能画出()。

A.B.C.15.(2分)右图中有()个平行四边形。

A.4B.6C.8D.9 二、填空题(共5题;共14分)16.(1分)平行四边形具有_______变形的特性。

17.(1分)小聪和小明都用两根长6厘米和两根长4厘米的小棒摆了一个平行四边形,他们摆的图形的_______一定相等。

2021人教版八年级下册平行四边形同步练习含答案

一、选择题(共10小题;共30分)1. 四边形ABCD中,AD∥BC,当满足下列哪个条件时,可以得出四边形ABCD是平行四边形( )A. ∠A+∠C=180∘B. ∠B+∠D=180∘C. ∠A+∠B=180∘D. ∠A+∠D=180∘2. 直线a∥b,点A是直线a上的一个动点,若该点从如图所示的A点出发向右运动,那么△ABC的面积( )A. 变大B. 变小C. 不变D. 不确定3. 如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为( )A. 4B. 5C. 6D. 74. 小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A. ①,②B. ①,④C. ③,④D. ②,③5. 平行四边形相邻两内角的平分线相交所成的角是( )A. 锐角B. 直角C. 钝角D. 无法确定6. 下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )A. AB∥CD,AD=BCB. ∠A=∠C,∠B=∠DC. AB∥CD,AD∥BCD. AB=CD,AD=BC7. 如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC之间的距离是( )A. 5B. 8C. 10D. 158. 若以A(−0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 将两个边长分别为2,3,4的全等三角形拼成四边形,可以拼得不同形状的平行四边形的个数是( )A. 1个B. 2个C. 3个D. 6个10. 如图,已知△ABC中,∠ABC=90∘,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是( )A. 2√17B. 2√5C. 4√2D. 7二、填空题(共6小题;共18分)11. 如图,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8cm,AB=4cm,那么BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8cm,BD=10cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.12. 下列四边形中,是平行四边形的是(请填写序号).13. 在一条河流的平行两岸边,分别栽有一根标杆A,B,测得线段AB与河岸垂直,并且AB=40米,那么,标杆A到对岸的距离等于米,两岸间的距离等于米.14. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.15. 如图,已知直线AB∥CD,直线EF截AB,CD于E,F,EG⊥CD,∠EFD=45∘且FG=6,则AB,CD之间的距离为.16. 四边形OABC在平面直角坐标系中的位置如图所示,已知点A(3,0),C(2,2),若要使四边形OABC为平行四边形,那么点B的坐标为.三、解答题(共6小题;共52分)17. 如图,四边形ABCD是平行四边形.求:(1)∠ADC,∠BCD的度数;(2)边AB,BC的长度.18. 在四边形ABCD中,∠A和∠B互补,∠A=∠C,那么四边形ABCD是平行四边形吗?试说明理由.19. 如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20. 如图,l1∥l2,AB∥CD,BC=2CF.若△CEF的面积是5,求四边形ABCD的面积.21. 如图,在平行四边形ABCD中,AB=AC,若平行四边形ABCD的周长为38,△ABC的周长比平行四边形ABCD的周长少10,求AB和BC的长.22. 如图所示,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,点P,Q分别从点A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则多长时间后四边形ABQP是平行四边形?答案第一部分1. D2. C3. A 【解析】4. D5. B6. A 【解析】平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴ C能判断,平行四边形判定定理1,两组对角分别相等的四边形是平行四边形,∴ B能判断;平行四边形判定定理2,两组对边分别相等的四边形是平行四边形,∴ D能判定;平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形.7. C8. C9. C10. A第二部分11. 8,4,4,512. ①②③13. 40,4014. 120【解析】∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180∘.∵∠B:∠C=1:2,∴∠C=2×180∘=120∘.315. 616. (5,2)第三部分17. (1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,∠B=∠ADC,∠A+∠B=180∘.∵∠B=56∘.∴∠BCD=124∘,∠ADC=56∘.(2)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=30,CD=25.∴AB=25,BC=30.18. 是.理由如下:因为∠A和∠B互补,所以AD∥BC.又因为∠A=∠C,所以∠C和∠B也互补,AB∥CD,所以四边形ABCD是平行四边形.19. ∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这3个三角形的面积相等,即S1=S2=S3.20. 20.21. ∵平行四边形ABCD,∴AB=CD,AD=BC .∵平行四边形ABCD的周长为38,∴AB+BC=AD+DC=19 .∵△ABC的周长比平行四边形ABCD的周长少10,∴△ABC的周长为28 .∴AC=9 .∵AB=AC,∴AB=9,BC=10 .22. 设经过x s后,AP=BQ,则AP=x,BQ=BC−CQ=6−2x,∴x=6−2x,x=2.∴2s后四边形ABQP是平行四边形.。

八年级数学《平行四边形的性质》同步练习题含答案

八年级数学《平行四边形的性质》同步练习题◆基础练习1.如图,已知ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,•则AO=_____,BO=_____,△BOC的周长是_____.(第1题) (第2题) (第3题)2.已知ABCD中,O是对角线AC,B D的交点,已知△AOB的周长为10,AB=4,则AC+•BD=________.3.已知ABCD的周长为40,对角线AC,BD相交于点O,△AOB的周长比△BO C的周长大6,则AB=________,BC=_______.4.在ABCD中,对角线AC与BD相交于点O,则能通过旋转达到重合的三角形有()A.2对 B.3对 C.4对 D.5对5.如图,ABCD的对角线AC,BD相交于点O,EF过点O,与BC,AD分别相交于点E,F,• 求证:OE=OF.6.如图,已知平行四边形ABCD的对角线AC,BD交于点O,E,F分别是OA,OC的中点.(1)求证:OE=OF;(2)求证:DE∥BF.7.如图,在平行四边形ABCD中,已知∠ODA=90°,OA=6,OB=3,求AD,AC的长.◆综合提高8.平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6 B.2<x<8 C.0<x<10 D.0<x<69.如图,已知平行四边形ABCD的对角线AC,BD交于点O,若△BOC的周长是15,AD是6,求对角线AC与BD的和.10.一农夫有一块平行四边形的地要分给两个儿子,请你按以下要求来分.(只要求作出分界线,并保留作图痕迹)(1)分成两个全等的三角形;(2)分成两个全等的平行四边形.(3)分成两个全等的梯形.答案:1.12cm;19cm;59cm 2.12 3.13:7 4.C5.提示:证△AOF≌△COE或△DOF•≌△BOE6.(1)由OA=OC,E,F分别是OA,OC的中点,可得OE=OF(2)提示:证△DOE•≌△BOF,得∠DEO=∠BFO,∴DE∥BF7.AC=2OA=12,∵OD=O B=3,OA=6,由勾股定理得AD=•338.B 9.AC+BD=2OC+2OB=2×(15-6)=18 10.略.。

八年级数学下册平行四边形知识点及同步练习、含答案3(含答案)

学科:数学教学内容:平行四边形的特征【学习目标】1.探索并掌握平行四边形的特征.2.灵活运用平行四边形的特征解决问题.3.平行四边形一般转化成三角形的问题来解决.【基础知识概述】1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形.(2)平行四边形的表示:平行四边形用符号“”表示.平行四边形ABCD 记作,读作平行四边形ABCD.(3)平行四边形定义的作用:①由定义知平行四边形的两组对边分别平行.②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形是平行四边形.2.平行四边形的特征:(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,对角线的交点为对称中心.(5)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.注意:①特征:都是通过连对角线把四边形问题转化成三角形问题来处理的,即通过平移或旋转,利用重合来证明的.②夹在两条平行线间的平行线段是指端点分别在两条平行线上的平行线段.③互相平分指两条线段有公共的中点.3.平行四边形特征的作用:可以用来证明线段相等、角相等及两直线平行等.如图12-1-1,有如下结论:⎪⎪⎩⎪⎪⎨⎧==∠=∠∠=∠==(对角线互相平分),(对角相等),(对边相等),(对边平行),是平行四边形,则如果四边形DO BO CO AO D B C A ADBC CD AB AD//BC CD //AB ABCD 4.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.注意:距离是指垂线段的长度,是大于0的.①平行线的位置确定后,它们的距离是定值,不随垂线段的位置改变.②平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置. 5.平行四边形的面积:(1)如图12-1-2①,.也就是 (a 是平行四边形任何一边长,h 必须是a 边与其对边的距离).(2)同底(等底)同高(等高)的平行四边形面积相等.如图12-1-2②,有公共边BC ,则.注意:这里的底是相对而言的,也就是高所在的边,平行四边形任意一边都可以作底,底确定后,高也就确定了.【例题精讲】例1 如图12-1-3,已知的对角线相交于点O ,过O 作直线交AB 于E ,交CD 于F ,可得OE =OF .为什么?分析:要得到OE =OF ,可先证得它们所在△AEO 与△CFO(△BEO 与△DFO)重合. 解:在中,∵AB ∥CD ,OD =OB , ∴∠1=∠2,∠3=∠4,∴将△BOE 绕点O 旋转180度后与△DOF 重合.∴OE=OF.注意:把线段与角归结为平行四边形的边,对角线或对角,利用平行四边形的特征证明.例2(1)在中,∠A︰∠B=2︰3,求各角的度数.(2)已知的周长为28cm,AB︰BC=3︰4,求它的各边的长.分析:(1)在平行四边形中,邻角是互补的,而对角是相等的,所以∠A与∠B必是邻角,其和为180°,可据此列式求出角度.(2)平行四边形的对边相等,所以周长为邻边之和的2倍,可以据此列式求出各边长.解:(1)由于∠A、∠B是平行四边形的两个邻角,所以∠A+∠B=180°.又因为∠A ︰∠B=2︰3,不妨可设∠A=2k,∠B=3k,那么2k+3k=180°,可以解得k=36°,则∠A=∠C=72°,∠B=∠D=108°.(2)由于在中,AB=CD,BC=AD.所以AB+BC+CD+AD=28,即AB+BC =14.由题意得AB︰BC=3︰4,因此可设AB=3k,BC=4k,那么有3k+4k=14,解得k =2,则AB=CD=6cm,BC=AD=8cm.例3如图12-1-4,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB 的周长比△BOC的周长长8cm,求这个四边形各边长.分析:由平行四边形对边相等知AB+BC=平行四边形周长的一半=30cm,又由△AOB 的周长比△BOC的周长长8 cm知AB—BC=8cm,由此两式,可得各边长.解:∵四边形ABCD为平行四边形,∴AB=CD,AD=CB,AO=CO.∵AB+CD+AD+CB=60,AO+AB+OB-(OB+BC+OC)=8,∴AB十BC=30,AB-BC=8,∴AB=CD=19,BC=AD=11.答:这个四边形各边长分别为19 cm,11 cm,19 cm,11 cm.注意:①平行四边形的邻边之和等于平行四边形周长的一半.②平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.思考:如图12-1-4,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么的周长为多少?提示:周长为80.设AB=3x,则AD=2x,依题意有3x-2x=8,∴x=8,∴AB=3x=3×8=24,AD=2x=2×8=16.∴周长=2(24+16)=80.例4 如图12-1-5,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求∠ADE,∠EDF,∠FDC的度数.分析:由平行四边形对角相等、邻角互补得∠A=∠C,∠A+∠B=180°,再由垂直得到角为90°即可.解:在中,∵∠A=∠C,AD∥BC,∴∠A+∠B=180°.∴∠A=180°-∠B=60°.∴∠C=60°.∵DE⊥AB,DF⊥BC,∴∠ADE=∠FDC=90°-∠A=90°-60°=30°.注意:在平行四边形中求角的度数时,一般运用平行四边形的特征,即对角相等、邻角互补来进行求解.【中考考点】会利用平行四边形证明角相等,线段相等及直线平行.【命题方向】多以中档题型出现,填空、选择、计算、证明等各种形式都会涉及.【常见错误分析】例7如图12-1-7,中,AC和BD交于O,OE⊥AD于E,OF⊥BC于F,则OE=OF.为什么?错解:∵,∴OA=OC,∵OE⊥AD,OF⊥BC,∴∠AOE=∠COF.又∠1=∠2,∴△AOE旋转180°后与△COF重合,∴OE=OF.误区分析:错误出于∠AOE=∠COF这一步骤,原因在于默认了E,O,F三点共线,而已知条件中并没有这个结论,其实E,O,F三点共线在证题过程中应该加以证明,否则就犯了推理没有根据,理由不充足的逻辑错误.正解:解法一:∵,∴AD∥BC,∴∠3=∠4.又OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.解法二:∵AD ∥BC ,OE ⊥AD ∴OE ⊥BC .又OF ⊥BC , ∴直线OE 与OF 重合, 即E ,O ,F 三点共线, ∴∠1=∠2.又∵OA =OC ,∠AEO =∠CFO =90°, ∴△AOE 旋转180°后与△COF 重合, ∴OE =OF .此命题可推广如下: 已知中,AC 和BD 交于O ,过点O 作直线EF 交AD 于F ,交BC 于F ,则OE =OF .求解(略).这个推广后的命题,是平行四边形中一个十分重要的基本命题,利用它的结果可以证明很多问题成立.【学习方法指导】1.学习平行四边形的特征时,按照对角、对边、对角线的顺序去理解,便于记忆和应用.2.本节主要内容是平行四边形的定义及特征,并且要重点理解两条平行线间的距离的概念.【同步达纲练习】 一、填空题1.若一个平行四边形相邻的两内角之比为2︰3,则此平行四边形四个内角的度数分别为____________.2.在中,周长为28,两邻边之比为3︰4,则各边长为____________. 3.在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=____________. 4.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为____________.5.中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比△OBC 的周长多4,则边AB =____________,BC =____________.6.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长各是____________.7.已知等腰△ABC 的一腰AB =9 cm ,过底边上任一点P 作两腰平行线分别交AB 于M ,交AC 于N ,则AN 十PN =____________.8.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.9.平行四边形邻边长是 4 cm 和8cm ,一边上的高是 5 cm ,则另一边上的高是____________.10.如图12-1-8,中,E 是AD 的中点,BD 与EC 相交于F ,若2S EFD =∆,则BFC S ∆=____________.11.已知P 为内一点,,则PCD PAB S S ∆∆+=____________.12.已知的对角线相交于点O ,它的周长为10 cm ,△BCO 的周长比△AOB 的周长多2cm ,则AB =____________.二、解答题13.已知,如图12-1-9,在△ABC 中,BD 是∠ABC 的平分线,DE ∥BC 交AB 于E ,EF ∥AC 交BC 于F ,则BE =FC ,为什么?14.如图12-1-10,中,E ,F 是对角线BD 上两点,且BE =FD ,连结AE ,FC ,则AE =FC ,试说明理由.15.如图12-1-11,中,对角线AC 长为10 cm ,∠CAB =30°,AB 长为6 cm ,求的面积.16.如图12-1-12,在等边△ABC中,P为△ABC内一点,PD∥AB,PE∥BC,PF∥AC,D,E,F分别在AC,AB和BC上,试说明PD+PF+PE=AB.17.从平行四边形的一个锐角顶点作两条高,如果这两条高的夹角是135°,求此平行四边形的各角的度数.三、思考题18.如图12-1-13,EF过对角线的交点O,交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,求四边形EFCD的周长.19.以平行四边形ABCD两邻边BC、CD为边向外作正△BCP和正△CDQ,则△APQ 为正三角形,请说明理由.参考答案【同步达纲练习】 一、1.72°,108°,72°,108° 2.6,8,6,8 3.2cm 21 4.10<x<22 5.7cm ,3 cm 6.5,2 7.9 cm 8.12或189.cm 25 10.8 11.50 12.1.5cm 二、13.提示:由△BED 是等腰三角形得到BE =ED ,由四边形DEFC 是平行四边形得到ED =FC 即可.14.提示:通过△ABE 与△DCF 重合可以得出.15.2cm 30.16.延长FP 交AB 于G ,延长DP 交BC 于H ,四边形AGPD ,EBHD 为平行四边形,PD =AG ,PH =BE ,△GEP ,△PHF 为等边三角形,PE =EG ,PH =PF =BE ,PD +PF +PE =AG +GE +EB =AB .17.45°,135°,45°,135°. 三、18.OE =OF =1.5,AE =CF ,DE =BF ,ED +CF =BF +FC =5,CD =AB =4,四边形EFCD 的周长为2×1.5+5+4=12.19.提示:证明△ABP、△QDA、△QCP三个三角形重合,可得出AP=AQ=PQ即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《19.2平行四边形》同步练习
一、选择题:
1.下面儿组条件中,能判定一个四边形是平行四边形的()
A. 一组对边相等
B.两条对角线互相平分
C. 一组对边平行
D.两条对角线互相垂直
2.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A・1个B. 2个C. 3个D. 4个3•如图,在MBC中,AB = AC = 5, D 是BC上的点,DE // AB 交人C于点E, DF // AC交AB于点F ,那么四边形AFDE的周长是
A. 5
B. 10
C. 15
D. 20
二、填空题:
4. DABCD 的周长是36 cm, AB =8 cm,则BC =
条件是_______________ (填一个你认为正确的条件).
5•在四边形ABCD中,已知要使四边形ABCD为平行四边形,筒要增加的
三、解答题:
6.已知:如图,E、F是口ABCD的对角线AC.L的两点,且B E = DF・・求证:四边形AECF 是平行四边形.
7.如图,平行四边形ABCD屮,试用三种方法将平行四边形分成面积相等的四部分.(要求用文字简述你所设计的三种方法,并在所给的三个平行四边形中正确画图)
8.如图,李村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵桃树,现在村委会准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持桃树不动,并耍求扩建后的池塘呈平行四边形形状,请问该村能否实现这一设想?若能,请设计并画出图形,简单描述你的画法;若不能,请说明理由.
9.口ABCD屮,AC、BD相交于0点,两条对角线的和为36cm, CD长为5cm, >RAOCD 的周长。

10・如图,在ZiABC中,BD平分ZABC, DE〃BC交AB于点E, EF〃AC交BC于点F, 试说明BE=CF
C
同步练习答案:
提示:连结AC,证明四边形AECF 的对角线互相平分,
8. 提示:能•如图,口EFGH 即为所求,其中EF 〃DB 〃HG, EH 〃FG 〃AC 9. •・•四边形ABCD 是平行四边形AOC=-AC, OD=-BD, 2 2
・.・AC + BD=36cm, AOC + OD= 18cm, AOCD 的周长=18 + 5=23cm
10. VBD 平分ZABC, ・・・ZEBD=ZDBC,
•・・DE 〃BC, ・・・ZEDB = ZDBC (两直线平行,内错角相等)
・•・ZEBD=ZEDB A BE=DE (等角对等边),
・・・DE 〃BC, EF 〃AC,四边形CDEF 是平行四边形(两组刈边分别平行的四边形是平行四 边形)
・・・DE=CF (平行四边形的对边相等)・・・BE=CF
1. B,
2.
3. B,
4. 10,
5. AB // CD (或 AD = BC )
6. 7. 分法如下
:
A。

相关文档
最新文档