一元二次方程经典练习题(6套)附带详细答案.doc

合集下载

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

(完整版)一元二次方程计算题及答案

(完整版)一元二次方程计算题及答案

6X2-7X+1=06X2-7X=-1X2- ( 7/6)X+ ( 7/12 )2=-1 /6 +( 7/12 )2 (X-7 /12 )2=25 /144•••X-7 /12= ±5/12•••X1=1,X2=1/ 65X2-18=9X5X2-9X=18X2-1.8X=3.6(X-0.9 )2=4.41•••X-.9= ±2.1•••X1=3,X2=-1.24X 2-3X=52解:X2- ( 3/4 ) X=13(X-3 / 8 )2=13•••X-3 /8= ±29 /8•••X1=4,X2 =-13 / 45X 2=4-2X5X 2+2X=4X2+0.2X=0.8(X+0.1 )2 =0.81X+0.1= ±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x A2-9x+8=0 答案:x1=8 x2=1⑵ xA2+6x-27=0 答案:x1=3 x2=-9⑶ xA2-2x-80=0 答案:x仁-8 x2=10⑷ xA2+10x-200=0 答案:x1=-20 x2=10(5)xA2-20x+96=0 答案:x仁12 x2=8⑹xA2+23x+76=0 答案:x1=-19 x2=-4(7)xA2-25x+154=0 答案:x1=14 x2=11(8)xA2-12x-108=0 答案:x仁-6 x2=18(9)xA2+4x-252=0 答案:x1=14 x2=-18(10)xA2-11x-102=0 答案:x仁17 x2=-6(11)xA2+15x-54=0 答案:x1=-18 x2=3(12)xA2+11x+18=0 答案:x仁-2 x2=-9(13)xA2-9x+20=0 答案:x1=4 x2=5(14)xA2+19x+90=0 答案:x1=-10 x2=-9(15)xA2-x1=13 x2=1225x+156=0 答案:(16)xA2-22x+57=0 答案:x1=3 x2=19(17)xA2-5x-176=0 答案:x仁16 x2=-11(18)xA2-x1=7 x2=1926x+133=0 答案:(19)xA2+10x-11=0 答案:x1=-11 x2=1(20)xA2-3x-304=0 答案:x1=-16 x2=19(21)xA2+13x-x1=7 x2=-20140=0 答案:(22)xA2+13x-48=0 答案:x1=3 x2=-16(23)xA2+5x-176=0 答案:x1=-16 x2=11(24)x A2+28x+171=0 答案:x仁-9 x2=-19(25)x A2+14x+45=0 答案:x仁-9 x2=-5(26)xA2-9x-136=0 答案:x仁-8 x2=17(27)xA2-15x-76=0 答案:x仁19 x2=-4(28)xA2+23x+126=0 答案:x仁-9 x2=-14(29)xA2+9x-70=0 答案:x1=-14 x2=5(30)xA2-1x-56=0 答案:x1=8 x2=-7(31)xA2+7x-60=0 答案:x1=5 x2=-12(32)xA2+10x-39=0 答案:x1=-13 x2=3(33)xA2+19x+34=0 答案:x1=-17 x2=-2(34)xA2-6x-160=0 答案:x仁16 x2=-10(35)xA2-6x-55=0 答案:x仁11 x2=-5(36)xA2-7x-144=0 答案:x仁-9 x2=16(37)xA2+20x+5 仁0 答案:x仁-3 x2=-17(38)xA2-9x+14=0 答案:x1=2 x2=7(39)xA2-29x+208=0 答案:x1=16 x2=13(40)xA2+19x-20=0 答案:x1=-20 x2=1(41)xA2-13x-48=0 答案:x仁16 x2=-3(42)xA2+10x+24=0 答案:x仁-6 x2=-4(43)xA2+28x+180=0 答案:x1=-10 x2=-18(44)xA2-8x-209=0 答案:x1=-11 x2=19(45)xA2+23x+90=0 答案:x1=-18 x2=-5(46)x A2+7x+6=0 答案:x仁-6 x2=-1(47)x A2+16x+28=0 答案:x1=-14 x2=-2(48)xA2+5x-50=0 答案:x1=-10 x2=5(49)xA2+13x-14=0 答案:x1=1 x2=-14(50)xA2-23x+102=0 答案:x仁17 x2=6(51)xA2+5x-176=0 答案:x1=-16 x2=11(52)xA2-8x-20=0 答案:x仁-2 x2=10(53)xA2-16x+39=0 答案:x1=3 x2=13(54)xA2+32x+240=x1=-20 x2=-120 答案:(55)xA2+34x+288=x1=-18 x2=-160 答案:(56)xA2+22x+105=x仁-7 x2=-150 答案:(57)xA2+19x-20=0 答案:x1=-20 x2=1(58)xA2-7x+6=0 答案:x1=6 x2=1(59)xA2+4x-22 仁0 答案:x仁13 x2=-17(60)xA2+6x-9 仁0 答案:x1=-13 x2=7(61)xA2+8x+12=0 答案:x1=-2 x2=-6(62)xA2+7x-120=0 答案:x1=-15 x2=8(63)xA2-18x+17=0 答案:x1=17 x2=1(64)xA2+7x-170=0 答案:x1=-17 x2=10(65)xA2+6x+8=0 答案:x仁-4 x2=-2(66)x^2+13x+12=0 答案:x仁-1 x2=-12(67)xA2+24x+119=0 答案:x仁-7 x2=-17(68)x A2+11x-42=0 答案:x1=3 x2=-14(69)x A20x-289=0 答案:x仁17 x2=-17(70)xA2+13x+30=0 答案:x仁-3 x2=-10(71)xA2-24x+140=0 答案:x1=14 x2=10(72)xA2+4x-60=0 答案:x1=-10 x2=6(73)xA2+27x+170=0 答案:x1=-10 x2=-17(74)xA2+27x+152=0 答案:x1=-19 x2=-8(75)xA2-2x-99=0 答案:x仁11 x2=-9(76)xA2+12x+11=0 答案:x1=-11 x2=-1(77)xA2+17x+70=0 答案:x1=-10 x2=-7(78)xA2+20x+19=0 答案:x1=-19 x2=-1(79)xA2-2x-168=0 答案:x1=-12 x2=14(80)xA2-13x+30=0 答案:x1=3 x2=10(81)xA2-10x-119=0 答案:x仁17 x2=-7(82)xA2+16x-17=0 答案:x1=1 x2=-17(83)xA2-1x-20=0 答案:x1=5 x2=-4(84)xA2-2x-288=0 答案:x仁18 x2=-16(85)xA2-20x+64=0 答案:x仁16 x2=4(86)xA2+22x+105=0 答案:x仁-7 x2=-15(87)xA2+13x+12=0 答案:x仁-1 x2=-12(88)x^2-4x-285=0 答案:x仁19 x2=-15(89)x^2+26x+133=0 答案:x1=-19 x2=-7(90)x A2-17x+16=0 答案:x1=1 x2=16(91)x A2+3x-4=0 答案:x1=1 x2=-4(92)xA2-14x+48=0 答案:x1=6 x2=8(93)xA2-12x-133=0 答案:x仁19 x2=-7(94)xA2+5x+4=0 答案:x仁-1 x2=-4(95)xA2+6x-9 仁0 答案:x1=7 x2=-13(96)xA2+3x-4=0 答案:x仁-4 x2=1(97)xA2-13x+12=0 答案:x1=12 x2=1(98)xA2+7x-44=0 答案:x1=-11 x2=4(99)xA2-6x-7=0 答案:x仁-1 x2=7 (100)xA2-9x-90=0 答案:x仁15 x2=-6(101)xA2+17x+72=x仁-8 x2=-9 0 答案:(102)xA2+13x-14=0 答案:x1=-14 x2=1 (103)xA2+9x-36=0 答案:x1=-12 x2=3 (104)xA2-9x-90=0 答案:x仁-6 x2=15(105)xA2+14x+13=x仁-1 x2=-13 0 答案:(106)xA2-16x+63=0 答案:x1=7 x2=9 (107)xA2-15x+44=0 答案:x1=4 x2=11 (108)xA2+2x-168=0 答案:x1=-14 x2=12 (109)xA2-6x-216=0 答案:x1=-12 x2=18 (110)xA2-6x-55=0 答案:x仁11 x2=-5(111)x A2+18x+32=0 答案:x1=-2 x2=-16。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数) 18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

(完整版)一元二次方程经典测试题(含答案)

(完整版)一元二次方程经典测试题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程经典练习题附带详细答案

一元二次方程经典练习题附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )+x=1 =12; (x 2-1)=3(x-1) (x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( ) 个 B2个 个 个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )=0 =0 +1=0 +6=0 4.方程x 2=6x 的根是( )=0,x 2=-6 =0,x 2=6 =6 =0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对6.若两个连续整数的积是56,则它们的和是( ) D.±157.不解方程判断下列方程中无实数根的是( )=2x-1 +4x+5420x -= D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) (1+x)2=1000 +200×2x=1000 +200×3x=1000 [1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程2(1)5322xx-+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一一、选择题: ( 每小题 3分 , 共 24 分)1. 下列方程中 , 常数项为零的是 ( )A.x 2+x=1B.2x2-x-12=12 ; C.2(x 2-1)=3(x-1) D.2(x2+1)=x+22. 下列方程 : ①x 2=0, ②1- 2=0,③2 2④3 2x2x 3 -8x+ 1=0x +3x=(1+2x)(2+x),- =0,x 2xx中 ,一元二次方程的个数是 ( )A.1 个 B2 个 C.3 个 D.4个3. 把方程( x- 5 ) (x+ 5 ) +(2x-1) 2=0 化为一元二次方程的一般形式是( )A.5x 2-4x-4=0B.x2-5=0 C.5x2-2x+1=0D.5x2-4x+6=04. 方程 x 2=6x 的根是 ()A.x 12B.x12D.x=0=0,x =-6=0,x =6 C.x=65. 方 2x 2-3x+1=0 经为 (x+a) 2=b 的形式 , 正确的是 ( )23 2121A.x316 ; B. 2C.x3; D. 以上都不对2x;4164 166. 若两个连续整数的积是 56, 则它们的和是 ( )A.11B.15C.-15D.±15 7. 不解方程判断下列方程中无实数根的是 ( )A.-x2=2x-1 B.4x2+4x+ 5=0; C.2 x 2x3 0D.(x+2)(x-3)==-548. 某超市一月份的营业额为 200 万元 , 已知第一季度的总营业额共 1000 万元 , 如果平均每月增长率为 x, 则由题意列方程应为 ()A.200(1+x) 2B.200+200 ×2x=1000 =1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) 2]=1000二、填空题 : ( 每小题3分,共 24分)( x 1) 25________, 它的一次项系数是9. 方程3x化为一元二次方程的一般形式是22______.210. 关于 x 的一元二次方程x +bx+c=0 有实数解的条件是 __________.11. 用 ______法解方程 3(x-2) 2=2x-4 比较简便 .12. 如果 2x 2+1 与 4x 2-2x-5 互为相反数 , 则 x 的值为 ________. 13. 如果关于 x 的一元二次方程 2x(kx-4)-x2+6=0 没有实数根 , 那么 k 的最小整数值是__________.214. 如果关于 x 的方程 4mx -mx+1=0 有两个相等实数根, 那么它的根是 _______.15. 若一元二次方程 (k-1)x2-4x-5=0 有两个不相等实数根 , 则 k 的取值范围是 _______.16. 某种型号的微机 , 原售价 7200 元/ 台 , 经连续两次降价后 , 现售价为 3528 元/ 台 , 则平均每次降价的百分率为 ______________.三、解答题 (2 分)17. 用适当的方法解下列一元二次方程 .( 每小题 5分,共15 分 )(1)5x(x-3)=6-2x;(2)3y2+1=2 3y ;(3)(x-a)2=1-2a+a 2(a 是常数 )18.(7 分) 已知关于 x 的一元二次方程 x 2+mx+n=0的一个解是 2, 另一个解是正数 , 而且也是方程 (x+4) 2-52=3x 的解 , 你能求出 m 和 n 的值吗 ?19.(10 分 ) 已知关于 x 的一元二次方程x 2-2kx+ 1k 2-2=0.2(1)求证 : 不论 k 为何值 , 方程总有两不相等实数根 .(2)设 x ,x 是方程的根 , 且 x 2 +2x x =5, 求 k 的值 .2 1 -2kx1 11 2四、列方程解应用题 (每题 10分, 共 20 分 )20. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低 36%, 若每年下降的百分数相同 , 求这个百分数 .21. 某商场今年1 月份销售额为 100 万元 ,2 月份销售额下降了 10%, 该商场马上采取措施 , 改进经营管理 , 使月销售额大幅上升 ,4 月份的销售额达到 129.6 万元 , 求 3, 4 月份平均每月销售额增长的百分率 .答案一、 DAABC,DBD 二、9.x 2+4x-4=0,410. b 2 4c 011. 因式分解法 12.1或2313. 2 14.1815. k1且k 1516. 30% 三、17.( 1) 3,2;(2)3;( 3)1, 2a-1 5 318.m=-6,n=819.(1)=2k2+8>0,∴不论k为何值,方程总有两不相等实数根.(2)k14四、20. 20%21. 20%练习二一、选择题 (题,每题有四个选项,其中只有一项符合题意。

每题 3 分,共 24 分):共 81.下列方程中不一定是一元二次方程的是 ( )A.(a-3)x 2=8 (a ≠ 3)B.ax 2+bx+c=0C.(x+3)(x-2)=x+5D. 3x2 3 x 2 0572 下列方程中 , 常数项为零的是 ( )A.x 2+x=1B.2x 2-x-12=12 ;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23. 一元二次方程2x2-3x+1=0 化为 (x+a) 2 =b 的形式 , 正确的是 ( )2 2 1;C. 2A. x 3 16;B. 2 x 3 x 3 1 ; D. 以上都不对2 4 16 4 164. 关于x的一元二次方程 a 1 x2 x a2 1 0的一个根是0,则a值为()A、 1 B 、 1 C 、1或 1 D 、125. 已知三角形两边长分别为 2 和 9, 第三边的长为二次方程x2 -14x+48=0 的一根 ,则这个三角形的周长为 ( )A.11B.17C.17 或 19D.196.已知一个直角三角形的两条直角边的长恰好是方程2x2 8x 7 0 的两个根,则这个直角三角形的斜边长是()A、 3 B 、 3 C 、6 D 、 97. 使分式x25x6的值等于零的 x 是( ) x 1A.6B.-1或6C.-1D.-68.若关于 y 的一元二次方程 ky 2-4y-3=3y+4 有实根 , 则 k 的取值范围是 ( )A.k>- 7B.k ≥-7且 k≠ 0 C.k ≥-7D.k> 7 且 k≠04 4 4 49. 已知方程x2 x 2 ,则下列说中,正确的是()(A)方程两根和是 1 (B)方程两根积是 2(C)方程两根和是 1 (D)方程两根积比两根和大 210.某超市一月份的营业额为 200 万元 , 已知第一季度的总营业额共 1000 万元 ,如果平均每月增长率为x, 则由题意列方程应为 ( )A.200(1+x) 2=1000B.200+200 ×2x=10002]=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)二、填空题 :( 每小题 4 分, 共 20 分)11.用 ______法解方程 3(x-2) 2=2x-4 比较简便 .12.如果 2x2+1 与 4x2-2x-5 互为相反数 , 则 x 的值为 ________.13.x2 3x _____ ( x ____) 214.若一元二次方程 ax2+bx+c=0(a≠ 0) 有一个根为 -1, 则 a、b、c 的关系是 ______.15. 已知方程 3ax2-bx-1=0和ax2+2bx-5=0, 有共同的根 -1,则a= ______, b=______.16.一元二次方程 x2-3x-1=0 与 x2-x+3=0 的所有实数根的和等于 ____.17.已知 3- 2 是方程 x2+mx+7=0的一个根 , 则 m=________,另一根为 _______.18.已知两数的积是 12, 这两数的平方和是 25, 以这两数为根的一元二次方程是___________.1 119. 已知x1,x2 是方程 x 2 2x 1 0 的两个根,则x1x2等于 __________.20. 关于 x 的二次方程 x2 mx n 0 有两个相等实根,则符合条件的一组m, n 的实数值可以是 m , n .三、用适当方法解方程:(每小题 5 分,共 10 分)21. (3 x) 2 x2 5 22. x2 2 3x 3 0四、列方程解应用题:(每小题 7 分,共 21 分)23. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同 , 求这个百分数 .24.如图所示,在宽为 20m,长为 32m的矩形耕地上,修筑同样宽的三条道路,(互2相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m,道路应为多宽?25. 某商场销售一批名牌衬衫,平均每天可售出20 件,每件赢利40 元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1 元,商场平均每天可多售出2 件。

求:(1)若商场平均每天要赢利 1200 元,每件衬衫应降价多少元?( 2)每件衬衫降价多少元时,商场平均每天赢利最多?26.解答题(本题 9 分)已知关于 x 的方程 x22(m 2) x m2 4 0 两根的平方和比两根的积大21,求m 的值《一元二次方程》复习测试题参考答案一、选择题:1、B 2 、D 3 、C 4 、B 5 、 D 6、B 7 、A 8 、B 9 、C 10 、D二、填空题:11、提公因式 12 、 - 2或 1 13 、9,314 、 b=a+c 15 、1 ,-2 3 4 216、3 17 、-6 ,3+ 2 18 、x2-7x+12=0 或 x2 +7x+12=0 19 、-220、2 , 1(答案不唯一,只要符合题意即可)三、用适当方法解方程:21、解: 9-6x+x 2+x2=5 22 、解: (x+ 3 ) 2=0x 2-3x+2=0 x+ 3 =0(x-1)(x-2)=0 x 1 2 3 =x = -x1=1x 2=2四、列方程解应用题:23、解:设每年降低x,则有(1-x)2=1-36%2(1-x) =0.641-x= ± 0.8x1=0.2 x2=1.8(舍去)答:每年降低 20%。

24、解:设道路宽为xm(32-2x)(20-x)=5702640-32x-40x+2x =5702x -36x+35=0(x-1)(x-35)=0x1=1 x 2=35(舍去)答:道路应宽 1m25、⑴解:设每件衬衫应降价x 元。

(40-x)(20+2x)=12002800+80x-20x-2x -1200=02x -30x+200=0(x-10)(x-20)=0x1=10( 舍去 ) x 2 =20⑵解:设每件衬衫降价x 元时,则所得赢利为(40-x)(20+2x)2=-2 x +60x+8002=-2(x -30x+225)+12502=-2(x-15) +1250所以,每件衬衫降价 15 元时,商场赢利最多,为 1250 元。

相关文档
最新文档