自动控制原理第三章12
自动控制原理第三章

0.368/T 0.135/T 0.05/T
时输出称为脉冲(冲激)响应 函数,以h(t)标志。 t 1 T h( t ) C 脉冲 ( t ) e T
0
T
2T
3T
t
求系统闭环传函提供了实验方法,以单位脉冲输入信号作用于 系统,测定出系统的单位脉冲响应,可以得到闭环传函。
六. 二阶系统的时域分析
=e
ts T
( 取5%或2%)
t s 3T ( 5% ) t s 4T ( 2% )
T反映了系统的 惯性。 T越小惯性越小, 响应快! T越大,惯性越 大,响应慢。
2. 单位斜坡响应 [ r(t) = t ]
1 1 1 T T C ( s) 2 2 Ts 1 s s s s 1 T c( t ) t T Te t / T ( t 0)
1. 阶跃函数(位置函数) A r(t) 0 记为 1(t) t0 t0
f(t)
1
令 A 1 称单位阶跃函数, 1 s
R(s) L1(t)
0
t
2. 斜坡函数 (等速度函数)
At t 0 r (t ) 0 t0
A=1,称单位斜坡函数,记为 t· 1(t)
i t
i 1
n
y p (t) 是强迫响应, fi 由输入信号决定。 C
零输入响应是系统的输入为零时,系统的 初始状态所引起的响应。 零输入响应表示为:
y x (t) C xi e
i 1
n
i t
C xi 由初始状态决定。
两种分解方法的关系是:
y(t) Ci e y p (t) i 1 强迫响应
自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。
若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。
解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。
已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
自动控制原理第三章课后习题 答案()

3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C `闭环传递函数124.004.01)()()(2++==s s s R s C s φ单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s C t e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK !用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T sTs Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 203-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理(程鹏)第三章课件

目录
• 控制系统概述 • 控制系统稳定性分析 • 控制系统误差分析 • 控制系统性能分析 • 控制系统校正与优化
01
CATALOGUE
控制系统概述
控制系统的定义与分类
总结词
控制系统的定义与分类
详细描述
控制系统是指在一定环境条件下,在设定值与被控变量之间构成的闭环反馈回 路。根据不同的分类标准,控制系统可以分为多种类型,如线性与非线性、时 不变与时变、离散与连续等。
优化系统结构
通过优化系统结构,改善系统性能 ,减小误差。
04
04
CATALOGUE
控制系统性能分析
时域性能指标
峰值时间
指系统输出达到峰值所需要的时间。
调节时间
指系统输出从设定值变化到稳态值的95%所需的时间。
超调量
指系统输出超过设定值达到的最大偏差量。
稳态误差
指系统输出达到稳态值后与设定值的偏差量。
串联校正
在系统前向通道中加入补偿环节,改 善系统动态特性。
并联校正
在系统反馈回路中加入补偿环节,改 善系统静态特性。
复合校正
结合串联和并联校正,全面提升系统 性能。
控制系统优化方法
线性二次型最优控制
通过最小化某一二次型代价函数,实现控制 系统性能优化。
极点配置
通过调整系统极点位置,优化系统动态特性 。
频域分析法
通过分析系统的频率响应或波德图来判断系统 的稳定性。
根轨迹法
通过绘制系统的根轨迹图来判断系统的稳定性。
控制系统稳定性的意义
01
系统稳定性是控制系统正常工作 的前提条件,只有稳定的控制系 统才能实现有效的控制。
自动控制原理第3章 习题及解析

自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
自动控制原理第三章

P75 二阶系统的 结构图
20
2019/4/2
《自动控制原理》第三章
1、无阻尼情况 ( 0)
s 1 ct (t ) L [ 2 ] cos nt t 0 2 s n
等幅振 荡
特征方程有一对共轭虚根 s1,2 jn 2、欠阻尼情况 (0 1)
2019/4/2
《自动控制原理》第三章
7
三.劳斯稳定判据的应用
1、判断系统的稳定性 例: a3 s 3 a2 s 2 a1s a0 0 解:
判断稳定性。
s
3
a3 a2 a1a2 a3 a0 a2 a0
a1 a0 0
0 0
s2 s1 s
0
三阶系统稳定的充要条件是: ai
2019/4/2
瞬态ct (t ) e
ct (t )
t
T
, 稳态css (t ) 1(t )
css (t )
dc(t ) 1 e t /T dt t 0 T
c(t )
t 0
1 T
+
=
2019/4/2
《自动控制原理》第三章
18
二.一阶系统的动态性能指标
c(t )
t 3T
(1 e
t /T
)
t 3T
1 e
3T /T
0.95
T0 T 1 K0
ts 3T
ts 是一阶系统的动态性能指标。
增大系统的开环放大系数K0 会使T 减小,使ts 减小。
2019/4/2
《自动控制原理》第三章
19
第四节
二阶系统的动态性能指标
二阶标准型 或称典型二阶系 统传递函数
自动控制原理黄坚 第二版 第三章习题答案
第三章习题课 (3-13)
3-13 已知系统结构如图,试确定系统稳 定时τ值范围。 R(s) 10 C(s) 1 解: 10(1+ 1 ) s G(s)=s2+s+10 s τ 10(s+1) =s(s2+s+10 s) τ 10(s+1) Φ(s)= s3 +s2+10 s2+10s+10 τ 10(1+10 )-10 τ b31= 1+10 >0 τ
e
-1.8
第三章习题课 (3-6)
3-6 已知系统的单位阶跃响应: -60t -10t c(t)=1+0.2e -1.2e (1) 求系统的闭环传递函数。 (2) 求系统的阻尼比和无阻尼振荡频率。 1 + 0.2 - 1.2 = 600 解: C(s)= s s+60 s+10 s(s+60)(s+10) 1 C(s)= 600 R(s)= s R(s) s2+70s+600 ω n=24.5 ζ 2 ω n=70 ω n2 =600 ζ=1.43
第三章习题课 (3-17)
1 r(t)=I(t), t , 2 t2 (2) 求系统的稳态误差: 1 K1 τ = 1 G(s)= 2 解: s +Kτ s s( 1 Kτ s+1)
1
1 R(s)= s υ=1
Kp=∞ K =K υ
ess1=0 τ ess2= =0.24 ess3=∞
R(s)= s1 2 R(s)= s1 3
(3) 求d1(t)作用下的稳态误差. 1 K F(s)= Js G(s)=Kp + s -F(s) 1 essd= lim s1+G(s)F(s) s s→0 - 1 1 =0 Js = lim s K) 1 s s→0 1+(Kp+ s Js
自动控制原理第三章习题参考答案
Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自动控制原理习题及其解答 第三章
例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,4 30 t图3-34 二阶控制系统的单位阶跃h (t )而是3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K s (Ts 1)
C (s)
K 时, , % , N 。快速性好,振荡加剧; 4 T 时, , % , N , n , t s ( 2T ) n
改善二阶系统响应特性的措施
三、改善二阶系统响应特性的措施
c (t )
二阶系统超调产生过程 1. [0,t1]误差信号为正,产生正向修正作用, 以使误差减小,但因系统阻尼系数小, 正向速度大,造成响应出现正向超调。 e (t ) 2. [t1,t2]误差信号为负,产生反向修正作用, 但开始反向修正作用不够大,经过一段 时间才使正向速度为零,此时输出达到 最大值。 3. [t2,t3]误差信号为负,此时反向修正作用, 大,使输出返回过程中又穿过稳态值, (t ) c 出现反向超调。 4. [t3,t4]误差信号为正,产生正向修正作用, 但开始正向修正作用不够大,经过一段 时间才使反向速度为零,此时输出达到 e (t ) 反向最大值。
R( s )
K 2 K n T 2 [解]:闭环传递函数为:(s) 2 Ts s K s 2 1 s K s 2 n s n 2 T T K 2 K n n T T 2 1 1 n T 2 KT 下面分析瞬态性能指标和系统参数之间的关系:(假设 0 1 )
100% 16%
4 ts 1( s) n1 1 0.5 8
4
具有零点的二阶系统性能指标与实例
[例3-3]对典型的二阶系统( 0.25,n 8 )采用微分顺馈校正。 1 0.5 为使 ,试确定顺馈系数 和 。 1% ,ts1
非振荡瞬态过程的性能指标
当 1时,极点s2 n n 2 1 远离虚轴,且c(t)中包含极 点s2的衰减项的系数小,所以由极点s2引起的指数项衰减的很 快,因此,在瞬态过程中可以忽略s2的影响,把二阶系统近似 为一阶系统。
当 1 时,系统也具有单调非振荡的瞬间过程,是单调非振荡 的临界状态。在非振荡过程中,它的 t s 最小。
衰减振荡瞬态过程的性能指标
由分析知,在 0.4 ~ 0.8 之间,调节时间和超调量都较小。工程 上常取
1 0.707 作为设计依据,称为最佳阻尼常数。 2
非振荡瞬态过程的性能指标(了解)
(二)非振荡瞬态过程(以 1 为例) 对于 1,极点为:s1,2 n
t1 t2
t3
t4
改善二阶系统响应特性的措施
c (t ) 二阶系统超调产生原因 1. [0,t1] 正向修正作用太大,特别在靠近t1 点时。 2. [t1,t2] 反向修正作用不足。 减小二阶系统超调的思路 1. [0,t1] 减小正向修正作用。附加与原误差 e ( t ) 信号相反的信号。 2. [t1,t2] 加大反向修正作用。附加与原误 差信号同向的信号。 3. [t2,t3]减小反向修正作用。附加与原误差 信号相反的信号。 (t ) c 4. [t3,t4] 加大正向修正作用。附加与原误 差信号同向的信号。 即在[0,t2] 内附加一个负信号,在[t2,t4] 内附加一个正信号。减去输出的微分或 e (t ) 加上误差的微分都具有这种效果。
③ % 16%, 0.16 e
, 解得 , 0.5038 1 1 3.9388 当T不变时,T=0.25, K 2 2 4T 4 0.25 0.5038
1 2
瞬态过程的性能指标例3-2
[例3-2]:上例中,用速度反馈改善系统的性能。如下图所示。 为使 1 0.5 ,求 的值。并计算加入速度反馈后的瞬态指标。
5.84 n ts 4.75 n Δ 2 Δ 5
牛顿迭代公式:对 f ( x) 0
f ( xk ) 其根可迭代求出 xk 1 xk f ( xk )
非振荡瞬态过程的性能指标
nt s
24 22 20 18 16 14 12 10 8 6 4 2 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Δ =5的精确曲线 Δ =5的近似曲线 Δ =2的近似曲线 Δ =2的精确曲线
R( s )
-
-
k s (Ts 1)
C (s)
s
k T [解]:系统的闭环传递函数为:( s) 1 k k 2 s s T T k 2 k n1 n1 T T 则: 1 k 2 1 k 1 n1 1 T 2 kT
c(t ) 1 ent (1 nt )
这是一个单调上升的过程。用调节时间 t s就可以描述瞬态过程的 性能。利用牛顿迭代公式 e xk (1 xk ) 0.02 e xk (1 xk ) 0.05 xk 1 xk 或 xk 1 xk xk xk e xk e xk
2 n 与典型二阶系统的标准形式 ( s) 2 比较 2 s 2 n s n ⒈ 不改变无阻尼振荡频率 n n ⒉ 等效阻尼系数为 t
2 由于 t ,即等效阻尼系数加大,将使超调量δ%和调节时 间ts变小。
改善二阶系统响应特性的措施
b. 误差的比例+微分控制(顺馈控制)
t1 t2
t3
t4
改善二阶系统响应特性的措施
a. 输出量的速度反馈控制 R( s) 将输出量的速度信号c’(t)采 用负反馈形式反馈到输入端 并与误差信号e(t)比较,构 成一个内反馈回路。简称速 度反馈。
-
-
2 n s( s 2 n )
C (s)
s
b. 误差的比例+微分控制 以误差信号e(t)与误差 R( s) 信号的微分信号e’(t)的 和产生控制作用。简称 PI控制。又称微分顺馈
K T
R( s )
K s (Ts 1)
C (s)
16 1 1 8s 1 , 0.25 0.25 2 KT 2 16 0.25
1
2
②
% 100% e
100% 44%
4 4 2 s, (当 2) 8 0 . 25 n ts 3 3 1.5s, (当 5) 8 0.25 n
-
s
+
2 n s( s 2 n )
C (s)
为了改善系统性能而改变系统的结构、参数或附加具有一定功 能的环节的方法称为对系统进行校正。附加环节称为校正环节。 速度反馈和微分顺馈是较常用的校正方法。
改善二阶系统响应特性的措施
a. 输出量的速度反馈控制
R( s )
-
-
2 n s( s 2 n )
n 2 (1 s) ( s ) 2 2 2 s (2 n n )s n
与典型二阶系统的标准形式
2 n ( s ) 2 2 s 2 n s n
R( s )
-
s
+
2 C (s) n s( s 2 n )
R( s )
比较
-
1 s
ln(0.02) 3.912 4 ln(0.05) 2.996 3
所以
4 , 当Δ 2时 n ts 3 , 当Δ 5时 n
衰减振荡瞬态过程的性能指标
nt s
24 22 20 18 16 14 12 10 8 6 4 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.19 0.23 0.304 0.38 0.43 0.53 0.69 0.78 Δ =2的精确曲线 Δ =5的精确曲线 Δ =5的近似曲线 Δ =2的近似曲线
1 2
100% 只与 有关,所以一般根据 %来选择 。
ts
4
n
(或
3
n
), n越大,t s (当 一定时)
为了限制超调量,并使 t s较小, 一般取0.4~0.8,则超调量在 25%~1.5%之间。
瞬态过程的性能指标例子
[例]:求系统的特征参数 , n 并分析与性能指标的关系:
通常,都希望控制系统有较快的响应时间,即希望希统的阻尼 系数在0~1之间。而不希望处于过阻尼情况( 1) ,因为调节 时间过长。但对于一些特殊的系统不希望出现超调系统(如液 位控制)和大惯性系统(如加热装置),则可以处于( 1) 情况。
[总结] 阻尼系数 是二阶系统的一个重要参数,用它可以间接地判断 一个二阶系统的瞬态品质。在 1的情况下瞬态特性为单调变化 曲线,无超调和振荡,但 t s长。当 0 时,输出量作等幅振荡或 发散振荡,系统不能稳定工作。 在欠阻尼 (0 1) 情况下工作时,若 过小,则超调量大,振 荡次数多,调节时间长,瞬态控制品质差。 注意到 % e
衰减振荡瞬态过程的性能指标
⒋ 调节时间 t s: 根据调节时间的定义,当t≥ts时 |c(t)-c(∞)|≤ c(∞) ×Δ%。
e n t 1 2
2 1 sin( d t t g1 ) %
可见,写出调节时间的表达式 是困难的。由右图可知响应曲 线总在一对包络线之内。包络 线为
当t=ts时,有:
C(t)
1
1 1 2
1 e n t 1 2
e
n t s
1 2
%
1
1
Δ =5
ts
ln( 1 2 %)
n
e n t 1 2
0
t
1
1 1 2
ts t's
衰减振荡瞬态过程的性能指标
当 较小时,近似取: 1 2 1 ,且