恒定磁场题解
第8章 恒定磁场

第8章 恒定磁场一、填空题8.1、如图所示,平行的无限长直载流导线A 和B , Y 电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1)AB 中点(P 点)的磁感应强度P B= ; (2)磁感应强度B沿图中环路L 的线积分 ⎰⋅Ll d B= 。
8.2、一个绕有500匝导线的平均周长50cm 的细环,载有0.3A 电流时,铁芯的相对磁导率为600。
(1)铁芯中的磁感应强度B 为 ;(2)铁芯中的磁场强度H 为 。
(170104--⋅⋅⨯=A m T πμ)8.3、将条形磁铁插入与冲击电流计串联的金属环中时,有C q 5100.2-⨯=的电荷通过电流计。
若连接电流计的电路总电阻Ω=25R ,则穿过环的磁通的变化∆Φ= 。
8.4、如图所示,一长直导线中通有电流I ,有一与长直导线共面、垂直于导线的细金属棒AB ,以速度v平行于长直导线作匀速运动。
问 (1) 金属棒A 、B 两端的电势A U 和B U 哪一个较高 ? (2)若将电流I 反向,A U 和B U 哪一个较高 ?(3)若将金属棒与导线平行放置,结果又如何 ?8.5、真空中一根无限长直导线中流有电流强度为I 的电流,则距导线垂直距离为a 的某点的磁能密度m w = 。
8.6、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为∑⎰==⋅n i i sq s d D 1dt d L d E m L/Φ-=⋅⎰0=⋅⎰ss d B∑⎰=Φ+=⋅n i D i Ldt d I L d H 1/试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。
将你确定的方程式用代号填在相应结论后的空白处。
(1)变化的磁场一定伴随有电场 ; (2)磁感应线是无头无尾的 ;(3)电荷总伴随有电场 。
8.7、将半径为R 的无限长导线薄壁管(厚度忽略) 沿轴向割去一个宽度为h (h <<R )的无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为i , 则管轴线上磁感应强度的大小是 。
川师大学物理第十一章-恒定电流的磁场习题解

第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC I B dμββ=-^IB21图11–2图11–1…B(a )AE(b )0(cos30cos150)4π/3Ih μ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=-031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ=-】方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ===方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π22π26I I I I B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
《大学物理AⅠ》恒定磁场知识题,答案解析及解法

《大学物理A Ⅰ》恒定磁场习题、答案及解法一.选择题。
1.边长为a 的一个导体边框上通有电流I ,则此边框中心的磁感应强度【C 】 (A )正比于2a ; (B )与a 成正比; (C )与a 成反比 ; (D )与2I 有关。
参考答案:()210cos cos 4ββπμ-=a IB a I a I B πμπππμ002243cos 4cos 244=⎪⎭⎫ ⎝⎛-⨯=2.一弯成直角的载流导线在同一平面内,形状如图1所示,O 到两边无限长导线的距离均为a ,则O 点磁感线强度的大小【B 】(A) 0 (B)aI π2u )221(0+(C )a I u π20 (D )aIu o π42参考答案:()210cos cos 4ββπμ-=aIB ⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=2212cos 4cos 443cos 0cos 400021a I a I a I B B B πμπππμππμ3.在磁感应强度为B的均匀磁场中,沿半径为R 的圆周做一如图2所示的任意曲面S ,则通过曲面S 的磁通量为(已知圆面的法线n与B 成α角)【D 】(A )B 2r π (B )θπcos r 2BI(C )θπsin r -2B (D )θπcos r 2B -参考答案:⎰-=•=ΦSM B r S d B απcos 24.两根长直导线通有电流I ,如图3所示,有3个回路,则【D 】(A )IB 0a l d μ-=•⎰(B)I B 0b 2l d μ=•⎰(C) 0l d =•⎰ c B (D) IB C 02l d μ=•⎰参考答案: ⎰∑==•Ln i i I l d B 10μ5.在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的条数不同,但电流的代数和相同,则由安培环路定理可知【B 】(A)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (B)B沿闭合回路的线积分相同,回路上各点的磁场分布不同 (C)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (D)B沿闭合回路的线积分不同,回路上各点的磁场分布不同参考答案:6.恒定磁场中有一载流圆线圈,若线圈的半径增大一倍,且其中电流减小为原来的一半,磁场强度变为原来的2倍,则该线圈所受的最大磁力矩与原来线圈的最大磁力矩之比为【 C 】(A)1:1 (B)2:1 (C)4:1 (D)8:1参考答案: S I m= B m M ⨯=()()142420000000000max max =⎪⎭⎫⎝⎛==B S I B S I B S I ISB M M7.质量为m 的电子以速度v垂直射入磁感应强度大小为B 的均匀磁场中,则该电子的轨道磁矩为【A 】(A)B mv 22 (B)B v m π222 (C)π222v m (A)Bm ππ22参考答案: R v m evB 2= eBmvR = R ev R v e I ππ22== Bmv eB mv ev R ev R R ev IS m 222222=====ππ 8.下列对稳定磁场的描述正确的是【B 】(A) 由I B L∑=•⎰0l d μ可知稳定磁场是个无源场(B )由0S d =•⎰LB 可知磁场为无源场 (C )由I B L ∑=•⎰0l d μ可知稳定磁场是有源场 (D )由0S d =•⎰L B 可知稳定磁场为有源场参考答案: ⎰=•SS d B 0磁场是一个无源场⎰∑==•Ln i i I l d H 1磁场是一个有旋场9.一运动电荷Q ,质量为m ,垂直进入一匀强磁场中,则【C 】 (A )其动能改变,动量不变; (B )其动能和动量都改变; (C )其动能不变,动量改变; (D )其动能、动量都不变.参考答案:洛沦兹力提供向心力,该力不做功。
大学物理下 恒定磁场习题解答2016

2R
3.在半径为R的长直金属圆柱体内部挖去一个半径为r的长直金 属圆柱体,两柱体轴线平行,其间距为a (a>r),如图所示.今在此导 体上通以电流I,电流在截面上均匀分布,方向平行于轴线. 求: (1) 圆柱空腔轴线上磁感应强度; I (2) 空腔中任一点的磁感应强度. R
解:(1)用补偿法
原电流分布等效于: I1 实心圆柱电流 空腔部分反向电流 电流密度: j
8. 如图,半圆形线圈(半径为R)通有电流 I.线圈处在 与线圈平面平行向右的均匀磁场 B 中.则线圈的磁 矩为__________,线圈所受磁力矩的大小为 __________,方向为_______. O B
× d d F Idl B I ( dl ) B c c × I 2 IaB ×
3.真空中稳恒电流I流过两个半径分别为R1,R2的同心 半圆形导线,两半圆导线间由沿直径的直导线连接, 电流沿直导线流入。(1)如果两个半圆共面(图1),圆心 0 I 1 1 B0 方向为 O点的磁感强度 B0 的大小为____________, ( - ) 4 R R 2 1 ____________________; 垂直纸面向外
一、选择题
大作业题解
1. 在一平面内,有两条垂直交叉但相互绝缘的导线, 流过每条导线的电流 i 的大小相等, 其方向如图所 示,问哪些区域中某些点的磁感应强度B可能为零? ( ) A、仅在象限Ⅰ C、仅在象限Ⅰ、Ⅳ B、仅在象限Ⅱ D、仅在象限Ⅱ 、 Ⅳ i Ⅰ Ⅱ
恒定磁场
答案:D
Ⅲ
Ⅳ i
2.有一个圆形回路1及一个正方形回路2,圆直径和正 方形的边长相等,二者中通有大小相等的电流,它们在 各自中心产生的磁感应强度的大小之比B1/B2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. 答案:C
8,9章习题答案

十一、真空中的恒定磁场11-1 一均匀磁场沿x 轴正方向,磁感应强度21Wb/m B =。
求在下列 情况下,穿过面积为22m 的平面的磁通量:(1)平面与y z -面平面平行,(2)平面与x z -面平面,(3)平面与y 轴平行又与x 轴成045角。
解: (1) d sB S ⋅=Φ=⎰⎰d SB S ⋅⎰⎰=x x Be e BS s =⋅=2Wb(2)d d 0x y ssB S B S Be e S ⋅=⋅==Φ=⋅⎰⎰⎰⎰(3)0d d cos45x x ssB S B S Be e S ⋅=⋅==Φ=⋅⎰⎰⎰⎰11-2 一无限长直导线折成如图所示形状,已知I=10A ,P A =2cm, θ=600,求P 点的磁感应强度。
解:由毕奥—沙伐02d 4d r B I le r μπ=⨯尔定律,可知,导线II 在P 点产生的磁感应强度为0。
由课本P341页例子可知,导线I 在P 产生的磁感应强度为012(sin sin )4cos30IB PA μββπ=-700041010A (sin30sin0)40.02cos30ππ-⋅=-52.8810-=⨯ (T )11-3 两根无限长直导线互相平行的放置在真空中,其中通以同向的电流I 1=I 2=10A ,已知PI 1=PI 2=0.5m,PI 1垂直于PI 2,求P 点的磁感应强度。
解:根据安培环路定理,两导线在P 点形成的磁 感应强度大小相等,方向如图所示,两 导线产生的磁感应强度在Y 方向上互相 抵消。
12x x B B B =+ 0000cos45cos4522I Ir rμμππ=+7410100.52ππ-⋅⋅=65.6610-=⋅(T )11-4 一质点带有电荷q =8.0×10-19 C,以速度v=3.0×105m/s 做匀速圆周运动,轨道半径R=6.0×10-8m,求:(1)该质点在轨道圆心产生的磁感应强度大小;(2)质点运动产生的磁矩。
电动力学习题解答3

第三章 静磁场1. 试用A 表示一个沿z 方向的均匀恒定磁场0B ,写出A 的两种不同表示式,证明二者之差为无旋场。
解:0B 是沿 z 方向的均匀恒定磁场,即 z B e B 00=,由矢势定义B A =⨯∇得0//=∂∂-∂∂z A y A y z ;0//=∂∂-∂∂x A z A z x ;0//B y A x A x y =∂∂-∂∂三个方程组成的方程组有无数多解,如:○10==z y A A ,)(0x f y B A x +-= 即:x x f y B e A )]([0+-=; ○20==z x A A ,)(0y g x B A y += 即:y y g x B e A )]([0+= 解○1与解○2之差为y x y g x B x f y B e e A )]([)]([00+-+-=∆ 则 0)//()/()/()(=∂∂-∂∂+∂∂+∂-∂=∆⨯∇z x y y x x y y A x A z A z A e e e A 这说明两者之差是无旋场2. 均匀无穷长直圆柱形螺线管,每单位长度线圈匝数为n ,电流强度I ,试用唯一性定理求管内外磁感应强度B 。
解:根据题意,取螺线管的中轴线为 z 轴。
本题给定了空间中的电流分布,故可由⎰⨯='430dV r rJ B πμ 求解磁场分布,又 J 只分布于导线上,所以⎰⨯=304r Id r l B πμ1)螺线管内部:由于螺线管是无限长理想螺线管,所以其内部磁场是均匀强磁场,故只须求出其中轴 线上的磁感应强度,即可知道管内磁场。
由其无限长的特性,不z y x z a a e e e r ''sin 'cos ---=φφ, y x ad ad d e e l 'cos ''sin 'φφφφ+-= )''sin 'cos ()'cos ''sin '(z y x y x z a a ad ad d e e e e e r l ---⨯+-=⨯φφφφφφz y x d a d az d az e e e '''sin '''cos '2φφφφφ+--=取''~'dz z z +的一小段,此段上分布有电流'nIdz⎰++--=∴2/32220)'()'''sin '''cos '('4z a d a d az d az nIdz z y x e e e B φφφφφπμ ⎰⎰⎰+∞∞-+∞∞-=+=+=z z I n a z a z d nI nI z a dz a d e e 02/3202/3222200])/'(1[)/'(2)'(''4μμφπμπ2)螺线管外部:由于螺线管无限长,不妨就在过原点而垂直于轴线的平面上任取一点)0,,(φρP 为场点,其中a >ρ。
第八章_恒定电流的磁场作业及解答

结束
目录
(1) 解:
200×100×10-3 H0 = N I = =200(A /m ) -2 l 10×10
B0 = m0H0 = 4p×10-7×200=2.5×10-4(T )
(2) H = H0 =200(A /m ) H0 =mrB 0= 4200×2.5×10-4 B = m0 m r
0
结束
目录
8-26 在半径为R的无限长金属圆柱体内挖 去一半径为 r 无限长圆柱体,两圆柱体的轴线平 行,相距为 d,如图所示。今有电流沿空心柱体的 的轴线方向流动,电流 I 均匀分布在空心柱体的 横截面上。 (1)分别求圆柱轴线上和 空心部分轴线上的磁感应 强度的大小; (2)当R =1.0cm, r =0.5 mm,d =5.0mm,和I =31A, 计算上述两处磁感应强度的 值。 d
大柱体的电流在O点的磁感应强度为零, 所以O点的磁场等于小柱体反向电流在O点 所产生的磁场。 设O点的磁感应强度为B0 结束
目录
δ =π ( R 2 r 2 )
设小圆柱体中的电流为 I ´
I
× × × × ×
× × ×
× ×
d
× ×
× ×
πr I I ´ =δ π r = (R 2 r 2 ) π
0 0 0
目录
8-28 一个电子射入B =(0.2 i+0.5 j 的非均匀磁场中,当电子速度为v =5×106j m/s时,求电子所受的磁力。
结束
目录
已知: v =5×106 j m/s
求:F 解:
B =(0.2 i +0.5 j )T q = 1.6×10-19 C
F = q v ×B
= q (0.2 i +0.5 j )×( 5×106 j )
电磁场导论 第三章]
![电磁场导论 第三章]](https://img.taocdn.com/s3/m/531f55c7240c844769eaee8a.png)
恒定磁场
2) 1 2
得到
B dl 2πB 0 I l 0 I B e 2 π
3) 2 3,
2 32 2 2 2 I I I 2 I 2 2 2 3 2 3 2
图3.2.10 同轴电缆
0 I ( 32 2 ) l B dl 2πB 32 22
根据
B A
A
z Az
B
0 I l
2 2 32
4π ( z )
e
0 I l
4πr
sin e
第 三 章
恒定磁场
例 应用磁矢位 A,试求空气中长直载流细导线产生 的磁场。
A Aez 解: 定性分析场分布,
A
0 I
L
0 I L dz 4π L r
第 三 章
恒定磁场
例
真空中有一载流为 I,半径为R的圆环, 解:元电流 Idl 在 P 点产生的 B 为
试求其轴线上 P 点的 磁感应强度 B 。
0 Idl e r ( Idl dB 2
4 πr
dB
图3.1.3 圆形载流回路
er )
2 4π( R 2 x 2 )
0 Idl sin
图3.3.3 铁磁媒质与空 气分界面
与分界面近似垂直,铁磁媒质表面
近似为等磁面。
返 回
上 页
下 页
第 三 章
恒定磁场
磁矢位及其边值问题
1. 磁矢位 A 的引出 由
B 0 A 0 B A
A 磁矢位
Wb/m(韦伯/米)。
返 回
上 页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 恒定磁场(注意:以下各题中凡是未标明磁媒质的空间,按真空考虑)4-1 如题4-1图所示,两条通以电流的半无穷长直导线垂直交于O 点。
在两导线所在平面,以O 点为圆心作半径为的圆。
求圆周上A 、B 、C 、D 、E 、F 各点的磁感应强度。
解 参考教材71页的例4-1,可知,图4-2所示通有电流I 的直导线在P 点产生的磁感应强度为()αθθπμe B 120cos cos 4--=rI因此,可得(设参考正方向为指出纸面)R IR R I B A πμπμ422135cos 180cos 220cos 135cos 400=⎪⎪⎪⎪⎭⎫ ⎝⎛----= ()RIR I B B πμπμ410cos 90cos 400=--=用类似的方法可得 RI B C πμ40=,I R B C 0212μπ-=,RI B D πμ40=,R I B E πμ20=,I R B F 0212μπ+-= 4-2平面上有一正边形导线回路。
回路的中心在原点,边形顶点到原点的距离为。
导线中电流为。
1)求此载流回路在原点产生的磁感应强度;2)证明当趋近于无穷大时,所得磁感应强度与半径为的圆形载流导线回路产生的磁感应强度相同; 3)计算等于3时原点的磁感应强度 。
解 如图4-3中所示为正边形导线回路的一个边长,则所对应的圆心角为nπ2,各边在圆心产生的磁感应强度为()()()()()αααααααππμππμθπμθπμθπμθθπμθθπμe e e e e e e B ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛====---=--=n R I n r I r I r I rIr I r I tan 2sin 2cos 2cos 2cos 24cos cos 4cos cos 40010101011012011)n 条边在圆心产生的磁感应强度为 αππμe B ⎪⎭⎫⎝⎛=n R I n tan 20 2)当n ∞→时,圆心处的磁感应强度为 ααμππμe e B R I n R I n n 2tan 2lim 00=⎪⎭⎫⎝⎛=∞→3)当等于3时圆心处的磁感应强度为 ααπμππμe e B R I R I 2333tan 2300=⎪⎭⎫⎝⎛=4-3 设矢量磁位的参考点为无穷远处,计算半径为的圆形导线回路通以电流时,在其轴线上产生的矢量磁位。
解 如图4-4建立坐标系,可得轴线上z 处的矢量磁位为0d 4220=+=⎰l R z Il A πμ4-4 设矢量磁位的参考点在无穷远处,计算一段长为2米的直线电流在其中垂线上距线电流1米处的矢量磁位。
解 据76页例4-4,可得 ()()12210cos 1sin cos 1sin ln 4θθθθπμ--=I z e A ,其中,451=θ, 1352=θ,则 1212ln 42212222122ln 400-+=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛+=πμπμI I zz e e A4-5 在空间,下列矢量函数哪些可能是磁感应强度?哪些不是?回答并说明理由。
1)(球坐标系) 2)3) )(y x y x A e e - 4) (球坐标系) 5)(圆柱坐标系)解 1) 03)(132≠==∇•A A r r r∂∂A 2) 0 ==++∇•z A y A x A zy x ∂∂∂∂∂∂A 3) 01-1 ===++∇•z A y A x A zy x ∂∂∂∂∂∂A 4) 0sin 1)sin (sin 1)(122=++=∇•∂α∂θθ∂θ∂θ∂∂αθA r A r A r rr r A 5) 01)(1=++=∇•zA A r rA r r zr ∂∂∂α∂∂∂αA 2)~5)可能是磁感应强度表达式。
4-6 相距为的平行无限大平面电流,两平面分别在和平行于平面。
面电流密度分别为和,求由两无限大平面分割出的三个空间区域的磁感应强度。
解 如图建立坐标系,并作平行于xz 平面的闭合回线1l ,据安培环路定律,可得 2KH x =和平行于yz 平面的闭合回线2l ,可得 2KH y =考虑坐标系,及H B μ=可得当2dz -<,y x K K e e B 2200μμ+-=;当22d z d <<-,y x K K e e B 2200μμ--=;当2dz -<,y x K K e e B 2200μμ+=;4-7 求厚度为,中心在原点,沿平面平行放置,体电流密度为z J e 0的无穷大导电板产生的磁感应强度。
解 如图4-6建立坐标系,当2dx ≤,作闭合回线1l ,据安培环路定律,可得x J B 00μ=,当2dx >,作闭合回线2l ,据安培环路定律,可得200dJ B μ=,因此,可得⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=222222000000d x d J d x d x J d x dJ yyy e e e B μμμ4-8 如图4-7所示,同轴电缆通以电流。
求各处的磁感应强度。
解 作半径为r 的闭合回线,据安培环路定律,可得 012101222323223232220Ir r R R IR r R rI R r R r R r R R r R αααμπμπμπ⎧-≤⎪⎪⎪<≤⎪=⎨⎪-<≤⎪-⎪⎪>⎩e e B e4-9 如图4-8所示,两无穷长平行圆柱面之间均匀分布着密度为的体电流。
求小圆柱面内空洞中的磁感应强度。
解 设小圆柱面内空洞中的任意点p 至大、小圆柱面的轴心距离分别为1r 、2r ,当空洞内也充满体电流时,可得p 点的磁感应强度为11012e B Jrμ=,空洞内的体电流密度在p 点产生的磁感应强度为22022e B Jrμ=()x d Jr r J e e e B B B 2202211021μμ=-=+=4-10内半径为,外半径为,厚度为,磁导率为()的圆环形铁芯,其上均匀紧密绕有匝线圈,如图4-9所示。
线圈中电流为。
求铁芯中的磁感应强度和磁通以及线圈的磁链。
解 在铁芯中作与铁芯圆环同轴半径为r 的闭合回线,据安培环路定律,可得铁芯中磁感应强度为 απμe B rIN20=相应的磁通为 1200ln 2d 221R R INh r h r IN R R πμπμφ==⎰磁链为 1220ln2R R h IN N πμφψ== 4-11在无限大磁媒质分界面上,有一无穷长直线电流,如图4-10所示。
求两种媒质中的磁感应强度和磁场强度。
解 设z 轴与电流的方向一致,则据安培环路定律,可得 12H r H r I ππ+=, 据边界条件,可得 2211H H μμ=解以上两式,得 ()αμμπμe H rI2121+=,()αμμπμe H r I 2122+=,()αμμπμμe B B rI212121+==4-12如图4-11所示,无穷大铁磁媒质表面上方有一对平行直导线,导线截面半径为。
求这对导线单位长度的电感。
解 根据教材97页例题4-12、4-13,可得平行长线a 、b 的单为长度内自感为πμ40=i L 对于外自感,如图4-12取镜象,a 、b 之间的外磁链可视为a 、b 和c 、d 中的电流分别作用后叠加,即Rd I R R d I ln ln 0011πμπμφψ≈-==,22202202244ln 24ln 2h h d I h h d I +=+==πμπμφψ 外磁链为 2220222002144ln 44ln ln hh d R d I h h d I R d I +⋅=++=+=πμπμπμψψψ 外自感为 222044ln hh d R d I L o +⋅==πμψ 因此,自感为2220044ln 4h h d R d L L L o i +⋅+=+=πμπμ4-13如图4-13所示,若在圆环轴线上放置一无穷长单匝导线,求导线与圆环线圈之间的互感。
若导线不是无穷长,而是沿轴线穿过圆环后,绕到圆环外闭合,互感有何变化?若导线不沿轴线而是从任意点处穿过圆环后绕到圆环外闭合,互感解 设长直导线中有电流I ,则在铁芯线圈中产生的磁通和磁链分别为120ln 2R R Ih πμφ=,120ln 2R R NIh N πμφψ==因此,两线圈之间的互感为 120ln 2R R Nh I M πμψ==根据诺以曼公式,可知两线圈之间的互感也可视为铁芯线圈中的电流产生被直导线所链绕的磁通与电流的比值,则题设后两种情况中,直导线链绕的磁通没有发生变化,因此互感也不变。
4-14如图4-14所示,内半径为,外半径为,厚度为,磁导率为()的圆环形铁芯,其上均匀紧密绕有匝线圈。
求此线圈的自感。
若将铁芯切割掉一小段,形成空气隙,空气隙对应的圆心角度为,求线圈的自感。
解 当线圈中有电流I 时,设铁芯中的磁场强度为H 、气隙中为0H ,据安培环路定律,可得 ()NI r H r =⋅⋅∆⋅+∆-ααπ02H据边界条件,可得 00H H μμ=,代入上式,得()()[]αμαπμμαμμαπ∆+∆-=⎥⎦⎤⎢⎣⎡∆⋅+∆-=22000r NIr NIH相应的磁通为 ()[]αμαπμμμμ∆+∆-==200r NIH B则铁芯及气隙中的磁通为 ()[]1200ln 2d 21R Rr NhI r h B R R αμαπμμμφ∆+∆-==⎰线圈所链绕的磁通为 ()[]12020ln 2R Rr hI N N αμαπμμμφψ∆+∆-==则电感为 ()[]12020ln 2R R r h N I L αμαπμμμψ∆+∆-==4-15分别求如图4-15所示,两种情况中两回路之间的互感。
解 (a )如图建立坐标系,对于三角形部分,可得x bd y 2= 长直导线中的电流I 在三角形线圈中产生的磁感应强度为()x a I B +=πμ20,则磁通为⎪⎭⎫ ⎝⎛+-=+=⎰a b a a b b Id x xa xb Id b ln 2d 2000πμπμφ互感为 ⎪⎭⎫⎝⎛+-===a b a a b b d I I M ln 20πμφψ(b )如图建立坐标系,对于三角形部分,可得()b x bdy --=2 长直导线中的电流I 在三角形线圈中产生的磁感应强度为 ()x a IB +=πμ20,则磁通为 ()⎪⎭⎫⎝⎛-++=+--=⎰b a b a b a b Id x x a b x b Id b ln 2d 2000πμπμφ互感为 ()⎪⎭⎫⎝⎛-++===b a b a b a b d I I M ln20πμφψ 4-16试证明真空中以速度运动的点电荷所产生的磁场强度和电位移矢量之间关系为。
证明 如图4-16,点电荷q 在半径为r 处产生的电位移矢量为rrq e D 24π=,当点电荷q 以速度v 向z 方向运动时在半径为r 处产生的磁场强度为D v e v e v H ⨯=⨯=⨯=2244rq r q rr ππ 证毕。