语音识别技术概述

合集下载

语音识别技术的阐述并举例说明

语音识别技术的阐述并举例说明

语音识别技术的阐述并举例说明1. 语音识别技术的概述在当今这个信息爆炸的时代,语音识别技术可谓是一个火热的领域。

简单来说,它就是让计算机“听懂”人类说话,把语音转换成文字。

想想看,以前咱们打字得慢吞吞的,现在只要“嘿,你好”,手机就能把你说的话变成文字,简直就像是在和外星人聊天!这种技术背后的原理其实挺复杂的,但咱们不必深究,简单理解就好。

1.1 语音识别的工作原理语音识别技术的工作原理其实就是把声音信号变成数字信号,再通过一些算法分析这个信号,最后识别出你说的内容。

就像是把你在大街上听到的音乐变成乐谱,虽然中间的过程可能有点曲折,但最后能听出个所以然来。

不过,别以为这就简单,想让计算机分清楚“我爱你”和“我爱鱼”可得下不少功夫呢!1.2 语音识别的发展历程语音识别的发展也可谓是一波三折。

从最初的只支持简单命令的系统,到现在的智能助手,真是翻天覆地的变化。

记得早些年,咱们说话时,系统经常听错,结果出来的文字让人哭笑不得。

可是,现在的技术已经进步了不少,能适应不同的口音、语速,甚至能理解一些俚语,真是让人叹为观止!2. 语音识别的应用场景那么,语音识别到底能用在哪里呢?这就不得不提到它的广泛应用了。

无论是日常生活还是工作中,语音识别技术都在悄悄改变着我们的方式。

2.1 智能助手大家一定听说过 Siri、Alexa 这些智能助手吧?它们的工作原理就是利用语音识别技术,帮助我们完成各种任务。

想查天气、定闹钟,甚至找餐馆,只要说出来,助手就能帮你搞定。

试想一下,早上起床的时候懒得动,只要躺在床上说:“给我来杯咖啡”,不久后咖啡就送到手边,简直就是现代人的梦想生活啊!2.2 客服服务再比如在客服领域,语音识别技术也发挥了大作用。

想想打客服热线的情景,你说:“我想投诉。

” 这句话通过语音识别系统,能迅速进入正确的处理流程,不再让你等得心急火燎。

以往那些烦人的按键导航真是让人心累,现在只需说出你的需求,简单明了,真是让人感觉“技术改变生活”不是空话!3. 语音识别的未来发展当然,语音识别的未来还有更多可能。

语音识别技术

语音识别技术

基于DTW的语音识别
• DTW算法通过局部优化的方法实现加权距离和最小,即
D ( i , j ) = m in
C

N
n=1
d x , y Wn i n j n ( ) ( )
(
)
∑W
n =1
N
n
Wn 为加权函数,需考虑两个因素: ⑴ 根据第n对匹配点前一步局部路径的走向来选取; ⑵ 考虑语音各部分给予不同权值,以加强某些区别特征。
• 对于孤立词(或命令)识别,DTW算法与HMM算法在相同的 环境下,识别效果相差不大。 • 优点: -可靠性强 -复杂度低 • 关于DTW理论已作介绍
基于matlab的DTW识别算 法实现
• 实验模板:”a,b,c,d,e,你好“的wav文件(8k采样, 单声道,精度8位) • DTW算法采用两步约束:
・ 说话人识别常用参数分类:
(1) 线性预测参数及其判生参数 (2) 语音频谱直接导出的参数 (3) 混合参数 (4) 其他鲁棒性参数
说话人识别与语种辨识
・ 模式匹配的方法: (1) 概率统计方法; (2) 动态时间规整方法(DTW) (3) 矢量量化方法(VQ) (4) 隐马尔可夫模型方法(HMM) (5) 人工神经网络方法(ANN)
语音识别的概述
语音识别系统的分类
分类依据 语音的发音 方式 孤立词语音 识别系 统 连接字语音 识别系 统 非特定人语 音识别系 统 说话人 词汇量的大 小 小词汇量 (10-100) 识别的方法 动态时间规 整(DTW) 矢量量化 (VQ) 隐马尔可夫 模型 (HMM ) 隐马尔可夫 模型 (HMM)、 人工神经 网络 (ANN) 应用场合
y y
yk =
Y = y1 , y2 ,L , yTy , k = 1, 2,L , Ty

人工智能语音识别技术

人工智能语音识别技术

人工智能语音识别技术人工智能(Artificial Intelligence,简称AI)的快速发展已经给许多领域带来了巨大的影响,尤其是语音识别领域。

语音识别技术是人工智能技术中的一个重要方向,它使得计算机能够理解人类的语音指令并将其转化为可执行的操作。

在本文中,我们将探讨人工智能语音识别技术的应用与前景。

一、人工智能语音识别技术概述人工智能语音识别技术是一种通过模仿人类的听力系统来实现机器对语音信号进行处理和理解的技术。

其基本原理是将人类的语音信号转换为文本信息,以便计算机能够理解和响应。

这项技术已经在语音助手、智能家居、机器翻译、语音交互等领域得到广泛应用,并取得了显著的成果。

二、人工智能语音识别技术的应用2.1 语音助手语音助手已经成为人们生活中不可或缺的一部分,比如苹果的Siri、亚马逊的Alexa和谷歌的Google助手等。

这些语音助手利用人工智能语音识别技术,能够听懂人的语音指令并进行相应的回应,如查询天气、播放音乐、预约日程等。

语音助手的智能化和便捷性,使得人们的生活更加方便和高效。

2.2 智能家居随着人工智能技术的不断进步,智能家居已经成为一种趋势。

通过人工智能语音识别技术,人们可以通过语音指令来控制家中的各种设备,如电视、空调、灯光等。

这种智能化的家居系统使得人们能够更加便捷地管理和控制家庭设备,并实现家居环境的个性化定制。

2.3 机器翻译现在随着全球化的加速,机器翻译也变得格外重要。

人工智能语音识别技术可以帮助将外语口语转换为文字,并通过翻译引擎进行翻译。

这种技术的运用在国际交流与合作中起到了重要的推动作用,使得语言不再成为沟通的障碍。

2.4 语音交互人工智能语音识别技术还可以应用于语音交互领域。

例如,在客服行业,将语音识别与自然语言处理相结合,可以实现自动化的电话接待和客户服务。

这种语音交互的应用大大节省了人力成本,提高了服务质量。

三、人工智能语音识别技术的前景人工智能语音识别技术的应用前景十分广阔。

《语音识别技术介绍》课件

《语音识别技术介绍》课件
2 语音识别技术的局限性
在复杂环境、多语言等情况下,识别准确性仍存在挑战。
3 语音识别技术的前景展望
随着技术的不断进步,语音识别将在更多领域别技术的应用案例
智能语音助手
如Siri、小爱同学等,提供语音 交互、查询信息、控制设备等 功能。
电话客服系统
利用语音识别技术提供自动语 音导航、语音识别、智能推荐 等服务。
聊天机器人
通过语音识别技术实现与用户 的自然语言对话,提供智能问 答、娱乐等功能。
语音识别技术的挑战和未来
1 声音环境的复杂性
语音识别技术广泛应用于智能语音助手、电话客服系统、聊天机器人等领域。
3 语音识别技术与其他技术的关系
语音识别技术与自然语言处理、机器学习等技术密切相关,共同构成智能语音系统。
语音识别技术的原理
1 语音采样和信号处理
通过麦克风采集语音信号,并对信号进行去噪、增强等处理。
2 特征提取
从语音信号中提取语音特征,如音频频谱、梅尔频率倒谱系数等。
语音识别技术需要应对噪声、回声等干扰,提高在复杂环境下的识别准确性。
2 多语言语音识别技术的发展
对不同语言、方言的准确识别是多语音识别技术发展的重要方向。
3 语音识别技术的未来发展趋势
随着人工智能技术的发展,语音识别技术将更加智能化、个性化、多场景应用。
结论
1 语音识别技术的优点
提供了人机交互的新方式,方便快捷、便于特定场景操作。
《语音识别技术介绍》 PPT课件
# 语音识别技术介绍
语音识别技术是指通过计算机对人类语音进行自动识别和理解的技术。本课 件将介绍语音识别技术的概述、原理、常见技术、应用案例、挑战和未来。
概述
1 什么是语音识别技术?

语音识别技术研发与应用解决方案

语音识别技术研发与应用解决方案

语音识别技术研发与应用解决方案第1章语音识别技术概述 (3)1.1 语音识别技术的发展历程 (3)1.2 语音识别技术的应用领域 (3)1.3 语音识别技术的研究现状与趋势 (4)第2章语音信号处理基础 (4)2.1 语音信号的特点与表示 (4)2.2 语音信号的预处理 (5)2.3 语音信号的时频分析 (5)第3章声学模型与声学特征 (5)3.1 声学模型的演变 (5)3.1.1 隐马尔可夫模型(HMM) (6)3.1.2 支持向量机(SVM) (6)3.1.3 高斯混合模型(GMM) (6)3.1.4 深度神经网络(DNN) (6)3.2 声学特征的提取与选择 (6)3.2.1 常用声学特征 (6)3.2.2 声学特征的选择 (7)3.3 深度学习在声学模型中的应用 (7)3.3.1 深度神经网络(DNN) (7)3.3.2 卷积神经网络(CNN) (7)3.3.3 循环神经网络(RNN) (7)3.3.4 自编码器(AE)和受限波尔兹曼机(RBM) (7)第4章与解码器 (7)4.1 的构建与训练 (8)4.1.1 基本概念 (8)4.1.2 基于统计方法的训练 (8)4.1.3 神经网络的构建与训练 (8)4.2 解码器的设计与优化 (8)4.2.1 解码器原理与结构 (8)4.2.2 解码器优化策略 (8)4.2.2.1 搜索算法优化 (8)4.2.2.2 权重调整与剪枝策略 (8)4.2.2.3 并行计算与分布式解码 (8)4.3 与声学模型的融合 (8)4.3.1 与声学模型融合的必要性与可行性 (8)4.3.2 常见融合方法及其在实际应用中的表现 (8)4.3.2.1 权重融合方法 (8)4.3.2.2 结构融合方法 (8)4.3.2.3 融合策略的评估与选择 (8)第5章语音识别评价指标与实验设计 (8)5.1 语音识别评价指标 (8)5.1.1 准确率评价指标 (8)5.1.2 效率评价指标 (9)5.1.3 可用性评价指标 (9)5.2 语音识别实验设计 (9)5.2.1 数据集选择 (9)5.2.2 实验方法 (9)5.2.3 实验参数设置 (9)5.3 语音识别功能分析 (9)5.3.1 准确率分析 (10)5.3.2 效率分析 (10)5.3.3 可用性分析 (10)第6章噪声与说话人自适应 (10)6.1 噪声对语音识别的影响 (10)6.2 说话人自适应方法 (10)6.3 噪声鲁棒性语音识别技术 (10)第7章面向特定领域的语音识别技术 (11)7.1 说话人识别与说话人验证 (11)7.2 语音关键词检测与识别 (11)7.3 面向特定场景的语音识别应用 (11)第8章语音识别系统实现与优化 (12)8.1 语音识别系统架构设计 (12)8.1.1 系统整体架构 (12)8.1.2 声学模型设计 (12)8.1.3 设计 (12)8.2 语音识别算法实现与优化 (12)8.2.1 声学模型训练与优化 (12)8.2.2 训练与优化 (12)8.3 语音识别系统部署与测试 (13)8.3.1 系统部署 (13)8.3.2 系统测试 (13)第9章语音识别技术在垂直行业的应用 (13)9.1 智能客服与语音 (13)9.1.1 客户服务效率提升 (13)9.1.2 个性化服务与用户体验优化 (13)9.1.3 情感识别与客户满意度提升 (13)9.1.4 多轮对话管理与上下文理解 (13)9.2 语音识别在智能家居中的应用 (13)9.2.1 家庭设备控制与语音交互 (13)9.2.2 家庭安全与语音报警系统 (14)9.2.3 健康护理与语音 (14)9.2.4 娱乐与语音推荐系统 (14)9.3 语音识别在智能交通与无人驾驶中的应用 (14)9.3.1 驾驶员语音识别与指令执行 (14)9.3.2 语音识别在车载信息娱乐系统中的应用 (14)9.3.3 语音识别在无人驾驶环境感知与交互中的作用 (14)9.3.4 车联网与语音通信 (14)第10章语音识别技术的发展与挑战 (14)10.1 语音识别技术的未来发展趋势 (14)10.1.1 深度学习技术的进一步融合 (14)10.1.2 多语种及方言识别技术的发展 (14)10.1.3 语音识别与自然语言处理的结合 (14)10.2 语音识别技术面临的挑战与解决方案 (14)10.2.1 噪声环境下的识别准确率 (14)10.2.2 长时语音识别的实时性与资源消耗 (15)10.2.3 语音隐私与安全性 (15)10.3 语音识别技术的创新与突破方向 (15)10.3.1 无监督语音识别技术 (15)10.3.2 跨模态语音识别技术 (15)10.3.3 端到端语音识别技术 (15)第1章语音识别技术概述1.1 语音识别技术的发展历程语音识别技术起源于20世纪50年代,早期研究主要集中在基于模板匹配的方法。

语音识别技术在语言教育中的应用

语音识别技术在语言教育中的应用

语音识别技术在语言教育中的应用引言语言教育一直以来都是一个重要而且具有挑战性的任务,尤其是对于学习非母语的学生来说。

传统的语言教学方法往往侧重于课堂教学和书面测试,而忽视了口语交流的重要性。

然而,随着科技的发展与创新,语音识别技术逐渐应用到语言教育中,为学生提供了更加有效、个性化的学习方式。

本文将探讨语音识别技术在语言教育中的应用,并分析其带来的益处。

一、语音识别技术概述语音识别技术是一种将语音信号转换成文本的技术。

它利用计算机和算法来将声音信号转换为可识别的文字。

随着人工智能和机器学习的进步,语音识别技术已经取得了令人瞩目的成就。

如今,语音识别技术已经广泛应用于智能助理、语音控制、语音翻译等领域。

在语言教育中的应用也获得了越来越多的关注。

二、语音识别技术在听力训练中的应用听力是语言学习的基础,但学生在学习外语时常常面临听力理解困难的问题。

语音识别技术可以帮助学生训练听力,提高他们的听力理解能力。

通过利用语音识别技术,学生可以通过听音频材料并用自己的口语进行说话,系统可以实时地将学生的口语转换为文本,并进行评估和反馈。

这种个性化的听力训练方式可以根据学生的水平和需求进行相应调整,提高学生的听力水平。

三、语音识别技术在口语训练中的应用口语交流是语言学习的重要组成部分,但传统的口语测试往往只能提供有限的评估和反馈。

通过语音识别技术,学生可以在虚拟环境中进行口语训练,并通过系统的实时评估和反馈来提高口语表达能力。

语音识别技术可以识别学生的语音,然后根据发音、语调、语速等方面给出评分和建议,帮助学生改进口语表达。

四、语音识别技术在发音纠正中的应用发音是语言学习中的一个难点,尤其对于非母语学习者来说。

语音识别技术可以帮助学生改善发音,纠正错误。

学生可以通过重复模型的发音,并通过语音识别技术来评估自己的发音是否准确。

系统可以分析学生的发音,并给出相应的评分和建议,帮助学生纠正错误发音,提高口语流利度。

五、语音识别技术在写作训练中的应用写作能力是学习语言的一项重要能力,但很多学生在写作中常常面临词汇和语法的困扰。

《语音识别技术介绍》课件

《语音识别技术介绍》课件
智能家居安全
通过语音识别技术,可以实时监测家庭环境,及 时发现异常情况并发出警报,提高家庭安全系数 。
智能家居助手
语音识别技术可以应用于智能家居助手,提供天 气预报、日程提醒、语音记事等服务,方便用户 日常生活。
在医疗领域的应用前景
语音电子病历
通过语音识别技术,医生可以快速录入病历信息 ,提高工作效率,减少医疗差错。
01
语音识别技术面临 的挑战
环境噪音与口音差异
环境噪音
在现实生活中,语音识别技术常常面临着各种环境噪音的干扰,如汽车轰鸣声、 人群喧闹声等。这些噪音可能会影响语音识别的准确性,使技术难以分辨出清晰 、准确的语音信号。
口音差异
不同地区、不同人群的口音和语言习惯可能存在较大差异,这给语音识别技术带 来了挑战。例如,方言、俚语、口音等都可能影响语音识别的准确性。
语音识别技术介绍
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 语音识别技术概述 • 语音识别技术原理 • 语音识别技术面临的挑战 • 语音识别技术的发展趋势 • 语音识别技术的前景展望 • 语音识别技术案例分析
01
语音识别技术概述
定义与特点
定义
语音识别技术是一种将人类语音转化 为机器可读的文本或命令的技术。
随着传感器技术的发展和人工智能算法的进步,多模态语音识别与交互将成为未来语音识别技术的重 要发展方向。通过结合不同模态的信息,能够提高语音识别的性能,并为用户提供更加智能和自然的 交互体验。
01
语音识别技术的前 景展望
在智能家居领域的应用前景
1 2 3
智能音箱控制
语音识别技术可以应用于智能音箱,实现通过语 音指令控制家电设备,如灯光、空调、电视等。

语音识别技术综述

语音识别技术综述

语音识别技术综述一、引言语音识别技术是指通过计算机技术将人类的语音转化为计算机可识别的文本或命令的过程。

随着人工智能技术的不断发展,语音识别技术在各个领域得到了广泛应用,如智能家居、智能客服、语音助手等。

本文将对语音识别技术进行综述。

二、语音识别技术分类1.基于模板匹配的语音识别技术该方法是通过预先录制一系列标准的语音样本,然后将输入的语音与这些样本进行匹配,从而获得相应的文本或命令。

但是该方法需要大量存储空间和计算资源,并且对说话人的声音和环境噪声敏感。

2.基于统计模型的语音识别技术该方法是通过使用概率模型来描述声学特征与文本之间的关系,从而实现语音识别。

该方法包括隐马尔可夫模型(HMM)、条件随机场(CRF)等。

这些模型需要大量训练数据,并且对说话人和环境噪声有一定容忍度。

3.基于深度学习的语音识别技术该方法是通过使用深度神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型来实现语音识别。

该方法具有良好的鲁棒性和准确性,但需要大量训练数据和计算资源。

三、语音识别技术关键技术1.特征提取特征提取是将语音信号转换为计算机可处理的数字信号的过程。

常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。

2.声学模型声学模型是描述声学特征与文本之间关系的数学模型。

常用的声学模型包括隐马尔可夫模型(HMM)、条件随机场(CRF)等。

3.语言模型语言模型是描述文本序列出现概率的数学模型。

常用的语言模型包括n元语法、递归神经网络语言模型(RNNLM)等。

4.解码器解码器是将声学特征转化为文本序列的过程。

常用的解码器包括维特比算法、束搜索算法等。

四、语音识别技术应用领域1.智能家居语音识别技术可以实现智能家居的控制,如通过语音控制灯光、空调等。

2.智能客服语音识别技术可以实现智能客服的自助服务,如通过语音识别用户的问题并给出相应的答案。

3.语音助手语音识别技术可以实现语音助手的功能,如通过语音控制手机进行打电话、发短信等操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语音识别技术概述
摘要:本文简要介绍了语音识别技术理论基础及分类方式,所采用的关键技术以及所面临的困难与挑战,最后讨论了语音识别技术的发展前景和应用。

关键词:语音识别;特征提取;模式匹配;模型训练
Abstract:This text briefly introduces the theoretical basis of the speech-identification technology,its mode of classification,the adopted key technique and the difficulties and challenges it have to face.Then,the developing prospect ion and application of the speech-identification technology are discussed in the last part.
Keywords:Speech identification;Character Pick-up;Mode matching;Model training
一、语音识别技术的理论基础
语音识别技术:是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高级技术。

语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。

不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似,一个典型语音识别系统主要包括特征提取技术、模式
匹配准则及模型训练技术三个方面。

此外,还涉及到语音识别单元的选取。

(一)语音识别单元的选取
选择识别单元是语音识别研究的第一步。

语音识别单元有单词(句)、音节和音素三种,具体选择哪一种,由具体的研究任务决定。

单词(句)单元广泛应用于中小词汇语音识别系统,但不适合大词汇系统,原因在于模型库太庞大,训练模型任务繁重,模型匹配算法复杂,难以满足实时性要求。

音节单元多见于汉语语音识别,主要因为汉语是单音节结构的语言,而英语是多音节,并且汉语虽然有大约1300个音节,但若不考虑声调,约有408个无调音节,数量相对较少。

因此,对于中、大词汇量汉语语音识别系统来说,以音节为识别单元基本是可行的。

音素单元以前多见于英语语音识别的研究中,但目前中、大词汇量汉语语音识别系统也在越来越多地采用。

原因在于汉语音节仅由声母(包括零声母有22个)和韵母(共有28个)构成,且声韵母声学特性相差很大。

实际应用中常把声母依后续韵母的不同而构成细化声母,这样虽然增加了模型数目,但提高了易混淆音节的区分能力。

由于协同发音的影响,音素单元不稳定,所以如何获得稳定的音素单元,还有待研究。

(二)特征参数提取技术
语音信号中含有丰富的信息,但如何从中提取出对语音识别有用的信息呢?特征提取就是完成这项工作,它对语音信号进行分析处
理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。

对于非特定人语音识别来讲,希望特征参数尽可能多的反映语义信息,尽量减少说话人的个人信息(对特定人语音识别来讲,则相反)。

从信息论角度讲,这是信息压缩的过程。

线性预测(LP)分析技术是目前应用广泛的特征参数提取技术,许多成功的应用系统都采用基于LP技术提取的倒谱参数。

但线性预测模型是纯数学模型,没有考虑人类听觉系统对语音的处理特点。

Mel参数和基于感知线性预测(PLP)分析提取的感知线性预测倒谱,在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的一些研究成果。

实验证明,采用这种技术,语音识别系统的性能有一定提高。

也有研究者尝试把小波分析技术应用于特征提取,但目前性能难以与上述技术相比,有待进一步研究。

(三)模式匹配及模型训练技术
模型训练是指按照一定的准则,从大量已知模式中获取表征该模式本质特征的模型参数,而模式匹配则是根据一定准则,使未知模式与模型库中的某一个模型获得最佳匹配。

语音识别所应用的模式匹配和模型训练技术主要有动态时间归正技术(DTW)、隐马尔可夫模型(HMM)和人工神经元网络(ANN)。

DTW是较早的一种模式匹配和模型训练技术,它应用动态规划方法成功解决了语音信号特征参数序列比较时时长不等的难题,在孤立词语音识别中获得了良好性能。

但因其不适合连续语音大词汇量语音识
别系统,目前已被HMM模型和ANN替代。

HMM模型是语音信号时变特征的有参表示法。

它由相互关联的两个随机过程共同描述信号的统计特性,其中一个是隐蔽的(不可观测的)具有有限状态的Markor链,另一个是与Markor链的每一状态相关联的观察矢量的随机过程(可观测的)。

隐蔽Markor链的特征要靠可观测到的信号特征揭示。

这样,语音等时变信号某一段的特征就由对应状态观察符号的随机过程描述,而信号随时间的变化由隐蔽Markor链的转移概率描述。

模型参数包括HMM拓扑结构、状态转移概率及描述观察符号统计特性的一组随机函数。

按照随机函数的特点,HMM模型可分为离散隐马尔可夫模型(采用离散概率密度函数,简称DHMM)和连续隐马尔可夫模型(采用连续概率密度函数,简称CHMM)以及半连续隐马尔可夫模型(SCHMM,集DHMM和CHMM特点)。

一般来讲,在训练数据足够的,CHMM优于DHMM 和SCHMM。

HMM模型的训练和识别都已研究出有效的算法,并不断被完善,以增强HMM模型的鲁棒性。

人工神经元网络在语音识别中的应用是现在研究的又一热点。

ANN本质上是一个自适应非线性动力学系统,模拟了人类神经元活动的原理,具有自学、联想、对比、推理和概括能力。

这些能力是HMM模型不具备的,但ANN又不个有HMM模型的动态时间归正性能。

因此,现在已有人研究如何把二者的优点有机结合起来,从而提高整个模型的鲁棒性。

二、语音识别的困难与对策
目前,语音识别方面的困难主要表现在:
(一)语音识别系统的适应性差,主要体现在对环境依赖性强,即在某种环境下采集到的语音训练系统只能在这种环境下应用,否则系统性能将急剧下降;另外一个问题是对用户的错误输入不能正确响应,使用不方便。

(二)高噪声环境下语音识别进展困难,因为此时人的发音变化很大,像声音变高,语速变慢,音调及共振峰变化等等,这就是所谓Lombard效应,必须寻找新的信号分析处理方法。

(三)语言学、生理学、心理学方面的研究成果已有不少,但如何把这些知识量化、建模并用于语音识别,还需研究。

而语言模型、语法及词法模型在中、大词汇量连续语音识别中是非常重要的。

(四)我们对人类的听觉理解、知识积累和学习机制以及大脑神经系统的控制机理等分面的认识还很不清楚;其次,把这方面的现有成果用于语音识别,还有一个艰难的过程。

(五)语音识别系统从实验室演示系统到商品的转化过程中还有许多具体问题需要解决,识别速度、拒识问题以及关键词(句)检测技术等等技术细节要解决。

三、语音识别技术的前景和应用
语音识别技术发展到今天,特别是中小词汇量非特定人语音识别系统识别精度已经大于98%,对特定人语音识别系统的识别精度就更高。

这些技术已经能够满足通常应用的要求。

由于大规模集成电路技术的发展,这些复杂的语音识别系统也已经完全可以制成专用芯
片,大量生产。

在西方经济发达国家,大量的语音识别产品已经进入市场和服务领域。

一些用户交机、电话机、手机已经包含了语音识别拨号功能,还有语音记事本、语音智能玩具等产品也包括语音识别与语音合成功能。

人们可以通过电话网络用语音识别口语对话系统查询有关的机票、旅游、银行信息,并且取得很好的结果。

语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。

语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

相关文档
最新文档