天津海河中学九年级上册期末数学试题(含答案)
天津市九年级上册期末数学试卷(word解析版)

知,除了小明外,该班其他同学身高的平均数为 172 cm ,方差为 k cm2 ,第二天,小明来 到学校,老师帮他补测了身高,发现他的身高也是 172 cm ,此时全班同学身高的方差为
k ' cm2 ,那么 k ' 与 k 的大小关系是( )
A. k ' k
B. k ' k
C. k ' k
D.无法判断
8.不透明袋子中有 2 个红球和 4 个蓝球,这些球除颜色外无其他差别,从袋子中随机取出 1个球是红球的概率是( )
A. 1 3
B. 1 4
C. 1 5
D. 1 6
9.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )
A.20°
B.40°
C.70°
D.80°
10.如图,PA 是⊙O 的切线,切点为 A,PO 的延长线交⊙O 于点 B,连接 AB,若∠B=
D.4
12.如图,在矩形
中,
,
,若以 为圆心,4 为半径作⊙ .下列四个点
中,在⊙ 外的是( )
A.点
B.点
C.点
D.点
13.已知在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,CM 是它的中线,以 C 为圆
心,5cm 为半径作⊙C,则点 M 与⊙C 的位置关系为( )
A.点 M 在⊙C 上 B.点 M 在⊙C 内 C.点 M 在⊙C 外 D.点 M 不在⊙C 内
14.下列方程中,是一元二次方程的是( )
A.2x+y=1
B.x2+3xy=6
C.x+ 1 =4 x
D.x2=3x﹣2
15.二次函数 y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;
九年级上册天津数学期末试卷测试卷(含答案解析)

九年级上册天津数学期末试卷测试卷(含答案解析)一、选择题1.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .10 C .3 D .10 2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:3 3.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1) 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( )A .m=-2B .m>-2C .m≥-2D .m≤-25.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°6.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 8.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间9.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C 10D 31010.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2 B .a >2 C .a <﹣2 D .a >﹣2 11.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25C .251D 52二、填空题13.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 14.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 15.抛物线2(-1)3y x =+的顶点坐标是______.16.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .17.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.18.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.19.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.20.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.21.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.22.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.23.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.24.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.三、解答题25.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒26.如图,四边形OABC 为矩形,OA =4,OC=5,正比例函数y=2x 的图像交AB 于点D ,连接DC ,动点Q 从D 点出发沿DC 向终点C 运动,动点P 从C 点出发沿CO 向终点O 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s .(1)求点D 的坐标;(2)若PQ ∥OD ,求此时t 的值? (3)是否存在时刻某个t ,使S △DOP =52S △PCQ ?若存在,请求出t 的值,若不存在,请说明理由;(4)当t 为何值时,△DPQ 是以DQ 为腰的等腰三角形? 27.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 28.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.29.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.30.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?31.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.32.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, 22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.A解析:A 【解析】 【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可. 【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3), ∴-3=1-m+n , ∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3. ∴代数式mn +1有最小值-3. 故选A. 【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.8.D解析:D 【解析】 【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解. 【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++ ∵1a =-,抛物线开口向下;∴选项A 错误; ∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误; 令0y =,得2320x x -++=,解得:1x =,2x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D . 【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.9.C解析:C 【解析】 【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案. 【详解】 tan A =BCAC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C . 【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.10.B解析:B 【解析】 【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论. 【详解】∵1a =,2b =-,1c a =-, 由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2, 故选:B . 【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.11.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x 2−2x =5,配方得:x 2−2x +1=6,即(x−1)2=6.故选:A .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题13.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:(表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.14.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】 先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 15.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.16.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c 1=4,c 2=﹣4(舍去),∴线段c =4cm .故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.17.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴s inA=. 解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.18.140°. 【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC 的内切圆的圆心,∴OB 、OC 为∠ABC 和∠ACB 的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.19.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:3352+或3352-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH AH , 若点P 在CD 的右侧,同理可得AH =2,综上所述:AH . 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.20.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB长度的范围.21.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.22.2023【解析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.23.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2, ∵1x <0,∴1x =−1-2<0, ∵-4≤-3,∴3222-≤-≤-, ∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.24.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P ∽△BA2B3,△BB1Q ∽△BB2A2,再得到PB1和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B ,∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】 本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.三、解答题25.(1)x 1=-1,x 2=4;(2)原式=12 【解析】【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.26.(1)D (2,4);(2)52t =;(3)存在,t 的值为2 ;(4)当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形 【解析】【分析】(1)由题意得出点D 的纵坐标为4,求出y=2x 中y=4时x 的值即可得;(2)由PQ ∥OD 证△CPQ ∽△COD ,得CQ CP CD CO=,即555t t -=,解之可得; (3)分别过点Q 、D 作QE ⊥OC ,DF ⊥OC 交OC 与点E 、F ,对于直线y=2x ,令y=4求出x 的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t 的方程,解之可得; (4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4∴DF ∥QE∴△CQE ∽△CDF∴QE CQ DF CD=∴545QE t -= ∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD= ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t = 答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.27.2a 1-, -23. 【解析】【分析】先求出程x 2+x ﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x 2+x ﹣2=0,∴(x-1)(x+2)=0,∴x 1=1,x 2=-2,原式=()()211a a a +-•1a a +=2a 1-,∵a 是方程x 2+x ﹣2=0的解,∴a =1(没有意义舍去)或a =﹣2, 则原式=﹣23. 【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.28.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,x=4,52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan ∠OCB =OB CO =13,设HM =BM =x ,则CM =3x , BC =BM+CM =4x 10x =104, CH 10x =52,则点H(0,12), 同直线AC 的表达式的求法可得直线BH (Q )的表达式为:y =﹣12x+12…②, 联立①②并解得:﹣x2﹣2x+3=﹣12x+12,解得x=1(舍去)或﹣52,故点Q(﹣52,74).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.29.(1)详见解析;(2)⊙O的半径是13.【解析】【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.52+=, 即⊙O 13. 【点睛】 此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.30.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.31.(1)29;(2)59. 【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29; (2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.32.(1)D ;(2)见解析;20x -<<或2x >;(3)40t -<<.【解析】 【分析】 (1)根据函数解析式,分别比较1x ≤- ,10x -<<,01x <≤,1x >时,x 与1x的大小,可得函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像; (2)根据{}max ,a b 的定义,当0x <时,()22x -+图像在()22x --图像之上,当0x =时,()22x --的图像与()22x -+的图像交于y 轴,当0x >时,()22x --的图像在()22x -+之上,由此可画出函数()(){}22max 2,2y x x =---+的图像; (3)由(2)中图像结合解析式()22x --与()22x -+可得t 的取值范围.【详解】(1)当1x ≤-时,1x x ≤, 当10x -<<时,1x x >, 当01x <≤时,1x x <, 当1x >时,1x x> ∴函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像为故选:D .(2)函数()(){}22max 2,2y x x =---+的图像如图中粗实线所示:令()2=02x -+得,2x =-,故A 点坐标为(-2,0),令()2=02x --得,2x =,故B 点坐标为(2,0),观察图像可知当20x -<<或2x >时,y 随x 的增大而减小;故答案为:20x -<<或2x >;(3)将0x =分别代入()()2212, =22y x y x =---+,得12==4y y -,故C(0,-4), 由图可知,当40t -<<时,函数()(){}22max 2,2y x x =---+的图像与y t =有4个不同的交点.故答案为:40t -<<.【点睛】本题通过定义新函数综合考查一次函数、反比例函数与二次函数的图像与性质,关键是理解新函数的定义,结合解析式和图像进行求解.。
天津初三初中数学期末考试带答案解析

天津初三初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.方程(x-1)(x+2)=0的两根分别为( )A.=1,= -2B.=1,=2C.=-1,=-2D.=-1,=22.下列图形中,既是轴对称图形又是中心对称图形的是( )3.抛物线y=-2x2+1的对称轴是( )A.直线x=B.y轴C.直线x=2D.直线x=-4.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是( )A.1B.-1C.D.5.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是( )A.289(1-x)2=256B.256(1-x)2=289C.289(1-2x)=256D.256(1-2x)=2896.二次函数y=x2-4x+5的最小值是( )A.-1,B.1,C.3,D.57.下列一元二次方程中没有实数根的是()A.B.C.D.8.已知x=2是一元二次方程的一个解,则m值是 ( )A.-3B.3C.0D.0或39.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于( )A.15° B.30° C.20° D.70°10.正三角形的外接圆半径与内切圆的半径之比是( )A.1∶ 2B.1∶C.∶1D.2∶111.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A. B. C. D.12.如图,抛物线的对称轴为直线.下列结论中,正确的是( )A.a<0B.当时, y随x的增大而增大C.D.当时,y的最小值是二、填空题1.若关于的一元二次方程有实数根,则k的取值范围是.2.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.3.设抛物线y=x2+4x-k的顶点在x轴上,则k的值为 .4.若点P的坐标为(x+1,y-1),其关于原点对称的点P′的坐标为(-3,-5),则(x,y)为.5.当宽为2cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 cm.6.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上另一点.且AB//x 轴,则以AB为边的等边三角形ABC的周长为 .三、解答题1.运用适当的方法解方程(1)(2)(3)(4)(x+8)(x+1)=-122.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求二次函数的图象与x轴的交点坐标;(3)将(1)中求得的函数解析式用配方法化成的形式.3.如图,点B在的直径AC的延长线上,点D在上,AD=DB,∠B=30°,若的半径为4.(1)求证:BD是的切线;(2)求CB的长.4.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.5.如图,已知平面直角坐标系中,⊙O的圆心在坐标原点,直线l与轴相交于点P,与⊙O相交于A、B两点,∠AOB=90°.点A和点B的横坐标是方程x2-x-k="0" 的两根,且两根之差为3.(1)求方程x2-x-k="0" 的两根;(2)求A、B两点的坐标及⊙O的半径;(3)把直线l绕点P旋转,使直线l与⊙O相切,求直线l的解析式.天津初三初中数学期末考试答案及解析一、选择题1.方程(x-1)(x+2)=0的两根分别为( )A.=1,= -2B.=1,=2C.=-1,=-2D.=-1,=2【答案】A【解析】x-1=0,或x+2=0,∴x1=1,x2=-2;故选A.【考点】解一元二次方程.2.下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】B【解析】A、C、D是中心对称图形,不是轴对称图形;B既是轴对称图形又是中心对称图形;故选B.【考点】1、轴对称图形;2、中心对称图形.3.抛物线y=-2x2+1的对称轴是( )A.直线x=B.y轴C.直线x=2D.直线x=-【答案】B【解析】抛物线y=-2x2+1的对称轴是y轴;故选B.【考点】抛物线的对称轴.4.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是( )A.1B.-1C.D.【答案】B【解析】由已知△=0,即22-4×1×(-a)=0,解得a=-1;故选B.【考点】根的判别式.5.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是( )A.289(1-x)2=256B.256(1-x)2=289C.289(1-2x)=256D.256(1-2x)=289【答案】A【解析】第一次降价后的价格为289(1-x),第一次降价后的价格为289(1-x)(1-x),即289(1-x)2=256;故选A.【考点】一元二次方程的应用.6.二次函数y=x2-4x+5的最小值是( )A.-1,B.1,C.3,D.5【答案】B【解析】y=x2-4x+5=(x-2)2+1,所以最小值是1;故选B.【考点】二次函数的最值.7.下列一元二次方程中没有实数根的是()A.B.C.D.【答案】D【解析】A、△=22-4×1×(-4)=20>0,有两个不相等的实数根;B、△=(-4)2-4×1×4=0,有两个相等的实数根;C、△=(-2)2-4×1×(-5)=24>0,有两个不相等的实数根;D、△=32-4×1×4=-7<0,没有实数根;故选D.【考点】一元二次方程根的情况.8.已知x=2是一元二次方程的一个解,则m值是 ( )A.-3B.3C.0D.0或3【答案】A【解析】将x=2代入方程得,22+2m+2=0,解得m=-3;故选A.【考点】一元二次方程的根.9.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于( )A.15° B.30° C.20° D.70°【答案】C【解析】∵BC是⊙O的切线,∴∠OBC=90°,∵∠ABC=70°,∴∠ABO=∠OBC-∠ABC=20°,又∵OB=OA,∴∠A=∠ABO=20°;故选C.【考点】1、切线的性质;2、圆的性质.10.正三角形的外接圆半径与内切圆的半径之比是( )A.1∶ 2B.1∶C.∶1D.2∶1【答案】D【解析】如图,OA为正三角形外接圆的半径,OD为正三角形内切圆的半径,∴∠ADO=90°,∠OAD=30°,∴OA:OD=2:1;故选D.【考点】三角形的外接圆与内切圆.11.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A. B. C. D.【答案】C【解析】连接AC,则AC=AB=1,∵AB=BC,∴△ABC是等边三角形,∴∠BAC=60°,∴弧BC的长为:=;故选C.【考点】1、菱形的性质;2、等边三角形的判定;3、弧长公式.12.如图,抛物线的对称轴为直线.下列结论中,正确的是( )A.a<0B.当时, y随x的增大而增大C.D.当时,y的最小值是【答案】D【解析】由抛物线的开口向上,∴a>0,故A错误;当x<-时, y随x的增大而减小,故B错误;由图象可知当x=1时,a+b+c<0,故C错误;当x=-时,y的最小值是,又-=-,∴b=a,∴==,故D正确;故选D.【考点】二次函数的性质.二、填空题1.若关于的一元二次方程有实数根,则k的取值范围是.【答案】k≤1【解析】由题意得△≥0,即(-2)2-4k≥0,解得k≤1;【考点】根的判别式.2.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.【答案】25°【解析】∵OA=OB,AB⊥CD,∴∠BOD=∠AOB=×100°=50°,∠BED=90°,∵OB=OD,∴∠D=∠OBD=(180°-∠BOD)=65°,∴∠ABD=90°-∠D=25°.【考点】1、垂径定理;2、圆的性质.3.设抛物线y=x2+4x-k的顶点在x轴上,则k的值为 .【答案】-4【解析】∵y=x2+4x-k=(x-2)2-4-k,∴抛物线的顶点为(2,-4-k),∵抛物线y=x2+4x-k的顶点在x轴上,∴-4-k=0,∴k=-4.【考点】抛物线的顶点.4.若点P的坐标为(x+1,y-1),其关于原点对称的点P′的坐标为(-3,-5),则(x,y)为.【答案】(2,6)【解析】由题意得,x+1+(-3)=0,y-1+(-5)=0,∴x=2,y=6,∴(x,y)为(2,6).【考点】关于原点对称的点的坐标特征.5.当宽为2cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 cm.【答案】5【解析】如图过点O作OB⊥AC,垂足为B,交⊙O于点D,则有BD=2,AB=AC=×(9-1)=4,在Rt△AOB中有AO2=OB2+AB2,即AO2=(AO-2)2+42,解得 AO=5.【考点】垂径定理的应用.6.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上另一点.且AB//x 轴,则以AB为边的等边三角形ABC的周长为 .【答案】18【解析】∵抛物线y=a(x-3)2+k的对称轴是直线x=3,点A与点B是抛物线上的点,且AB//x轴,∴点A与点B关于直线x=3对称,∵点A的横坐标为0,∴点B的横坐标为6,∴AB=6,∴等边三角形ABC的周长为18.【考点】1、抛物线的对称性;2、等边三角形的周长.三、解答题1.运用适当的方法解方程 (1) (2) (3) (4)(x+8)(x+1)=-12 【答案】(1)5,1;(2),;(3)4,;(4)-4,-5.【解析】(1)用直接开平方法即可得解; 用公式法求解;用因式分解法求解; 用因式分解法求解.试题解析:(1)((x-3)2=4,x-3=±2,∴x-3=2,x-3=-2,∴x 1=5,x 2=1; a=4,b=-6,c=-3,b 2-4ac=(-6)2-4×4×(-3)=84,∴x===,∴x 1=,x 2=; (2x-3)(2x-3-5)=0,∴x 1=,x 2=4;x 2+9x+8+12=0,(x+4)(x+5)=0,∴x 1=-4,x 2=-5. 【考点】一元二次方程的解法.2.已知:二次函数y=x 2+bx-3的图象经过点A(2,5). (1)求二次函数的解析式;(2)求二次函数的图象与x 轴的交点坐标; (3)将(1)中求得的函数解析式用配方法化成的形式.【答案】 (1)y=x 2+2x-3; (-3,0),(1,0); y=(x+1)2-4【解析】(1)将A (2,5)代入即可得;在解析式在令y=0,即可得到二次函数的图象与x 轴的交点坐标; 配方即可得到.试题解析:(1)∵二次函数y=x 2+bx-3的图象经过点A(2,5),∴5=22+2b-3,∴b=2,∴二次函数的解析式为:y=x 2+2x-3;在y=x 2+2x-3中令y=0,则有,x 2+2x-3=0,解得x 1=-3,x 2=1,∴二次函数的图象与x 轴的交点坐标为(-3,0),(1,0);y=x 2+2x-3=(x+1)2-4.【考点】1、待定系数法;2、二次函数的图象与坐标轴的交点;3、二次函数的顶点式.3.如图,点B 在的直径AC 的延长线上,点D 在上,AD=DB ,∠B=30°,若的半径为4.(1)求证:BD 是的切线;(2)求CB 的长. 【答案】(1)证明见解析; (2)4.【解析】(1)连接OD ,由AD=BD ,∠B=30°,可得∠A=30°,由OA=OD ,可得∠DOC=60°,从而可得OD 与BD 垂直,得到BD 是圆的切线;(2)在在Rt △OBD 中,利用30度角所对在直角边等于斜边的一半即可得解. 试题解析:(1)连接OD , ∵AD=DB ,∠B=30°∴∠A=∠B=30°,∵OA=OD ,∴∠ODA=∠A=30°,∴∠COD=∠A+∠ODA=60°,∴∠ODB=180°-30°-60°=90°∴OD ⊥BD ,∵OD 是☉O 的半径,∴BD 是☉O 的切线.(2)在Rt △OBD 中,∵∠ODB=90°,∠B=30°,∴OB=2OD=8, ∵OB="4" ,∴CB=4【考点】1、切线的性质与判定;2、直角三角形中30°角所对直角边等于斜边一一半.4.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与售价x (单位:元/件)之间的函数解析式. (2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?求出最大利润.【答案】(1)y=-10x 2+1300x-30000;(2)550件, 8250元;(3)50元;(4)65元,12250元.【解析】(1)根据设每件衬衣售价为x 元,由这种书包的售价每上涨1元,其销售量就减少10个,列出函数关系式;(2)销售价为45元,即上涨了5元,代入即可月销售量和销售利润; (3)令y=10000,解方程即可;(4)用配方法求出二次函数的最大值即可. 试题解析:(1)y=(x-30)(600-10×)=-10x 2+1300x-30000;销售价为45元,即上涨了5元,所以月销量=600-10×5=550(件), 销售利润:y=-10×452+1300×45-30000=8250(元);(3)在y=-10x 2+1300x-30000 中,令y=10000,得-10x 2+1300x-30000="10000" , ∴x 2-130x+4000=0,∴(x-50)(x-80)=0,∴x=50或x=80, 当售价x=50时,销售量=600-10×(50-40)=500,当售价x=80时,销售量=600-10×(80-40)=200<300,不合题意,应舍去; (4)∵y=-10x 2+1300x-30000=-10(x-65)2+12250, ∴当x=65时,y 有最大值12250,即当每件衬衣售价为65元时,月最大利润为12250元. 【考点】二次函数的应用.5.如图,已知平面直角坐标系中,⊙O 的圆心在坐标原点,直线l 与轴相交于点P ,与⊙O 相交于A 、B 两点,∠AOB=90°.点A 和点B 的横坐标是方程x 2-x-k="0" 的两根,且两根之差为3.(1)求方程x 2-x-k="0" 的两根;(2)求A 、B 两点的坐标及⊙O 的半径;(3)把直线l 绕点P 旋转,使直线l 与⊙O 相切,求直线l 的解析式. 【答案】(1)2和-1 (2)A(-1,2),B(2,1) (3)【解析】(1)设方程的两根分别为x 1,x 2(x 1>x 2),由根与系数的关系可得x 1+x 2=1,由两根之差为3,可点x 1-x 2=3,解方程组即可得方程的根;过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,通过△AOC ≌△OBD 得到A 点坐标,利用勾股定理得OA 的长;由A 、B 在坐标利用待定系数法求出直线AB 的解析式,从而得到点P 的坐标,过点P 的直线与圆相切,有两种情况,因此分切点在第一象限与第四象限两种情况求切线的解析式. 试题解析:(1)设方程的两根分别为x 1,x 2(x 1>x 2),由已知得,解得,∴方程的两根分别为2和-1;(2)过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,易证:△AOC ≌△OBD ,∴BD=OC=1,AC=OD=2∴A(-1,2),B(2,1) ,∴OA=(3)设直线AB 的解析式为y=k 1x+b 1,则,解得,∴y=,当y=0时,=0,解得x=5,∴P(5,0);当直线l 与⊙O 的切点在第一象限时,设直线l 与⊙O 相切于点E ,过点E 作EF ⊥x 轴于点F,∵PE 是⊙O 的切线,∴OE ⊥PE,∴PE=,∵S △POE =OP·EF=OE·PE,∴5EF=,∴EF=2,∴OF==1,E(1,2);设直线l 的解析式为y=k 2x+b 2,则,解得,∴y= -;当直线l 与⊙O 的切点在第四象限时,同理可求得y=.【考点】1、根与系数的关系;2、三角形全等的判定与性质;3、待定系数法;4、圆的切线.。
【5套打包】天津市初三九年级数学上期末考试测试卷(含答案)

最新人教版九年级数学上册期末考试试题(含答案)一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如果2m=3n(n≠0),那么下列比例式中正确的是 (A)(B) (C) (D)2.将抛物线2y x 向下平移2个单位长度,得到的抛物线为(A) y=x 2+2 (B)y=x 2-2 (C)y=(x-2)2 (D) y=(x+2)2 3.在Rt △ABC 中,∠C= 90°,,若AC=1,AB=2,则cosA 的值为 (A)21(B)22 (C)23 (D)25 4.如图,AB 是圆O 的弦,OD ⊥AB 于点C ,交圆O 于点D ,若AB=6,OC=1,则圆O 的半径为(A)5(B)22(C)10(D)375.如图,将△ABO 的三边扩大一倍得到△CED (顶点均在格点上),它们是以点P 为位似中心的位似图形,则点P 的坐标是(A) (0,3) (B) (0,0) (C) (0,2) (D) (0,-3)6.在平行四边形ABCD 中,E 是AD 上一点,AC, BE 交于点O ,若AE:ED= 1:2,OE=2,则OB 的长为(A) 4 (B) 5 (C) 6 (D) 77.如图,在平面直角坐标系xOy中,二次函数y=ax2 +bx+1的图象经过点A, B,对系数a和b判断正确的是(A) a>0,b>0 (B) a<0,b<0(C) a>0,b<0 (D) a<0,b>08.如图,等边三角形和正方形的边长均为a,点B,C,D, E在同一直线上,点C与点D重合.△ABC 以每秒1个单位长度的速度沿BE向右匀速运动.当点C与点E重合时停止运动.设△ABC的运动时间为t秒,△ABC与正方形DEFG重叠部分的面积为S,则下列图象中,能表示S 与t的函数关系的图象大致是二、填空题(本题共16分,每小题2分)9.如图,△ABC∽△A'B'C', AH, A'H'分别为△ABC和△A'B'C'对应边上的高,若AB:A'B'=2:3,则AH:A'H'=__________.10.请写出一个反比例函数的表达式,满足条件“当x>0时,y随x的增大而增大”,则此函数的表达式可以为__________.11.如图,圆O是正方形ABCD的外接圆,若E是上一点,则∠DEC=______________°.12.如图,DE是△ABC的中位线,若△ADE的面积为1,则四边形DBCE的面积为__________.13.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子,如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,则组成的封闭图形就是“莱洛三角形”若AB=3,则此“莱洛三角形”的周长为______________.14.如图,在平面直角坐标系xOy中,函数y==(x> 0)的图象经过点A, B, AC⊥x轴于点C, BD ⊥y轴于点D,连接OA, OB,则△OAC与△OBD的面积之和为____________.15.如图,某中学综合楼入口处有两级台阶,台阶高AD= BE= 15cm,,深DE=30cm,在台阶处加装一段斜坡作为无障碍通道,设台阶起点为A,斜坡的起点为C,若斜坡CB的坡度i=1:9,则AC的长为____________.cm.2下面有四个论断:①抛物线y= ax2+ bx+c(a≠0)的顶点为(2,-3);②b2- 4ac=0;③关于x的方程ax2 +bx+c=-2的解为x1=1,x2=3;④m=-3.其中,正确的有____________________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28 题,每小题7分)解答应写出文字说明,演算步骤或证明过程.17.下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.已知: P为外一点,求作:经过点P的的切线.作法:如图,①连接OP,作线段OP 的垂直平分线交OP 于点A; ②以点A 为圆心,OA 的长为半径作圆,交于B, C 两点;③作直线PB, PC .所以直线PB,PC 就是所求作的切线. 根据小飞设计的尺规作图过程,(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面的证明(说明:括号里填写推理的依据).证明:连接OB, OC, ∵PO 为圆A 的直径,∴∠PBO=∠PCO =______(_______________ ). ∴PB ⊥OB,PC ⊥OC . ∴PB, PC 为的切线(_________________).18.计算: 3tan30° + sin45°-2sin 60° . 19.如图,在Rt △ABC 中,∠ABC=90°,cosA=32,AB=4,过点C 作CD //AB ,且CD=2,连接BD ,求BD 的长.20.如图,△ABC的高AD, BE 交于点F.写出图中所有与△AFE相似的三角形,并选择一个进行证明.21.如图,在平面直角坐标系xOy中,二次函数y=x2 + bx+c的图象与x轴,y 轴的交点分别为(1,0)和(0,-3).(1)求此二次函数的表达式;(2)结合函数图象,直接写出当y>-3时,x的取值范围.22.某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA= 30°,已知测角仪的高AE= BD=1m, E, D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据: ≈1.41,≈1.73).23.在平面直角坐标系xOy 中,一次函数y=21x+b 的图象经过点A(43),与反比例函数y==(k≠0)图象的一个交点为B(2,n) .(1)求一次函数与反比例函数的表达式;(2)若点P 在x 轴上,且PB= AB ,则点P 的坐标是________________.24.小明用篱笆围出一块周长为12m 的矩形空地做生物试验,已知矩形的一边长为x (单位: m),面积为y (单位: m 2).(1)求y 与x 的函数表达式,并写出自变量x 的取值范围: (2)当x 为何值时,矩形的面积最大?并求出此最大面积. 25.如图,AB 是的直径,C 为AB 延长线上一点,过点C 作的切线CD ,D 为切点,点F 是的中点,连接OF 并延长交CD 于点E,连接BD, BF .(1)求证: BD // OE; (2)若OE =3,tanC=43,求的半径.26. 在平面直角坐标系xOy 中,直线)0(≠+=k b kx y 与抛物线a ax ax y 342+-=的对称交于点A (m ,-1),点A 关于x 轴的对称点恰为抛物线的顶点。
天津市九年级上册期末数学试题(word版,含解析)

天津市九年级上册期末数学试题(word 版,含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 4.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)5.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠. B .m 1=.C .m 1≥D . m 0≠.6.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011 B .2015C .2019D .20207.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .408.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.59.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =10.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>11.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变 12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60 C .80 D .100 13.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .314.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度15.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.已知∠A =60°,则tan A =_____.18.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.19.若a 是方程223x x =+的一个根,则代数式263a a -的值是______. 20.若a b b -=23,则ab的值为________. 21.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;22.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________23.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).24.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .25.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.26.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 27.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.28.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.三、解答题31.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.32.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 33.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.34.已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程), 35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9, ∴它们的周长比为4923. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.D【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.4.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标.解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).5.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.7.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.8.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..9.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a=10a 2 =25x 2. 故选C .【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.10.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .14.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.15.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.19.9【解析】【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 20.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.21.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴6AC===,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴1AC BCCE CD=,即1684CE=,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.22.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E2【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:22m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.23.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.24.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.25.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.26.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.27.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.28.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.29.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m =12(1﹣2)2+1=112,n =12(4﹣2)2+1=3,∴A (1,112),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,112),∴AC =4﹣1=3.∵曲线段AB 扫过的面积为12(图中的阴影部分),∴AC •AA ′=3AA ′=12,∴AA ′=4,即将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y =12(x ﹣2)2+5.故答案为y =0.5(x ﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA ′是解题的关键.三、解答题31.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以QR QHAR PH= =0.6,设Q[n,0.6(n+1)],代入y=mx+m中,mn+m=0.6(n+1),m(n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y2=(x-1-m)2+0.6m-4,所以点D由点C向右平移m个单位,再向上平移0.6m个单位所得,过D作y轴的平行线,交x轴与K,再作CT⊥KD,交KD延长线与T,所以KD QRSK AR==0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【点睛】。
天津市届九级上期末考试数学试题含答案

初三期末考试数学试卷一、选择题〔3×8=24〕 1. 正六边形的中心角是 A. 30°B. 45°C. 60°D. 360°2. 掷一枚质地均匀的骰子,向上一面的点数为 6 的概率为 1 1 1 1 A.B.C.D.64323. 以下事件中,必然事件是 A. 水在 0℃结冰B. 购置 100 张彩票,中奖C. 三角形的内角和等于 180°D. 随意翻开书,页码是奇数4. 一个圆锥的底面直径是 8cm ,母线长 9cm ,那么它的侧面展开图的面积为 A. 36πcm 2B. 48πcm 2C. 72πcm 2D. 144πcm 25. 如图,正方形的边长为 2,以各边为直径在正方形内画半圆,那么图中阴影局部的面积为 A. π-2B. 2π-4C. 2π-3D. 2π-26. y 是 x 的反比例函数,并且当 x=3 时,y=-6,那么当 x=-2 时,y 的值为 A. -1B. 1C. -9D. 91 7. 假设点〔x 1,y 1〕,〔x 2,y 2〕,〔x 3,y 3〕都是反比例函数 y = 中正确的选项是- 图像上的点,并且 y 1<0<y 2<y 3,那么以下各式xA. x 1<x 3<x 2B. x 3<x 2<x 1C. x 2<x 1<x 3D. x 2<x 3<x 18. 以下说法中,正确的有①周长和面积都相等的两个图形是全等形;②周长和面积都相等的两个三角形是全等三角形;③等腰三角形都相 似;④相似三角形的周长和面积的比都等于相似比 A. 0 个B. 1 个C. 2 个D. 3 个二、填空题〔3×6=18〕9. 在 10 件外观相同的产品中有 2 件不合格,现从中随机抽取 1 件进行检测,抽到不合格产品的概率为10. 如图,以点 O 为位似中心,将△ABC 放大得到△DEF ,假设 AD=OA ,那么△ABC 与△DEF 的面积之比为11. 如图,在平面直角坐标系中,过点 M 〔-3,2〕分别做 x 轴、y 轴的垂线与反比例函数 y A ,B 两点,那么四边形 MAOB 的面积为4的图像交于x12. 如图,在△ABC 中,点 D,E 分别在边 AB,AC 上,∠ADE=∠C,AB=6,AC=4,AD=2,那么 EC=13. 有两把不同的锁和三把钥匙,其中两把钥匙能翻开同一把锁,第三把钥匙能翻开另一把锁,任意取出一把钥匙去开任意的一把锁,一次翻开锁的概率为14. 如图,在 Rt△OAC 中,O 为坐标原点,直角顶点 C 在 x 轴的正半轴上,反比例函数y k 〔k≠0〕x在第一象限的图像经过 OA 的中点 B,交 AC 于点 D,连 OD,假设△OCD∽△ACO,那么直线 OA 的解析式为三、解答题〔58 分〕15. 〔8 分〕如图,点 A 的坐标是〔2,0〕,△ABO 是等边三角形,点 B 在第一象限,假设反比例函数y k 的x图像经过点 B,球这个反比例函数的解析式16. 〔8 分〕如图,如果从半径为 9 的圆形纸片减去1 圆周的一个扇形,将留下的扇形〔阴影局部〕围成一个圆3锥〔接缝处不重叠〕,求这个圆锥的高17. 〔10 分〕如图,在△ABC 中,AB=AC,∠A=36°,CD 平分∠ACB,求证:BC2=BA·BD18. 〔10 分〕某中学方案举办某项活动,需要从学生中选拔主持人,经过比赛,有 2 名男生和 1 名女生成为候选主持人〔I〕某同学认为,如果从 3 名候选主持人中随机选拔 1 名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?〔II〕如果从 3 名候选主持人中随机选拔 2 名主持人,请通过列表或树状图的方法求选拔出的 2 名主持人恰好是1 名男生和 1 名女生的概率19. 〔10 分〕如图,在△ABC 中,AB=AC,点 P、D 分别是 BC,AC 边上的点,且∠APD=∠B,求证:AC·CD=CP·BP20. 〔12 分〕如图,反比例函数y=k 〔k>0,k 是常数〕的图像经过点 A〔1,4〕,点 B〔m,n〕,其中xm>1,AM⊥x 轴,垂足为 M,BN⊥y 轴,垂足为 N,直线 AM 与直线 BN 的交点为 C〔I〕求证:△ACB∽△NOM〔II〕当△ACB 与△NOM 的面积之比为 4:1 时,求点 B 的坐标。
2019-2020学年九年级上学期期末数学试题及答案解析(天津市)

2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=02.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A y=2(x﹣1)2﹣3 B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+35.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙ ⊙A. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙B. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙C. “⊙⊙⊙0.0001⊙⊙⊙”⊙⊙⊙⊙⊙⊙D. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙10⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙5⊙7.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MNBC等于().A. 5B.C. D.8.下列方程没有实数根的是( )A. x 2﹣x ﹣1=0B. x 2﹣6x +5=0C. x 2﹣+3=0D. x 2+x +1=09.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.1210.边长为2的正六边形的面积为( ) A.B.C. 6D.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( ) A. 2(1)4400x += B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x +=12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.18.如图,在半径为2⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.的21.现有A ,B ,C ,D 四张不透明卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.22.已知AB 是⊙O 的直径,C ,D 是⊙O 上AB 同侧两点,∠BAC =26°. (⊙)如图1,若OD ⊥AB ,求∠ABC 和∠ODC 的大小;(⊙)如图2,过点C 作⊙O 切线,交AB 的延长线于点E ,若OD ∥EC ,求∠ACD 的大小.的23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm . (⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?24.在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 边AC 中点,求证:四边形BFDE 是平行四边形.25.在平面直角坐标系中,已知抛物线y =x 2﹣2ax +4a +2(a 是常数), (⊙)若该抛物线与x 轴的一个交点为(﹣1,0),求a 的值及该抛物线与x 轴另一交点坐标; (⊙)不论a 取何实数,该抛物线都经过定点H . ①求点H 的坐标;②证明点H 是所有抛物线顶点中纵坐标最大的点.是2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=0【答案】D【解析】【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高【答案】A【解析】【分析】根据事件发生可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;的B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A. y=2(x﹣1)2﹣3B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+3【答案】C【解析】【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+3.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx +c ,顶点式:y=a(x -h)2+k ;两根式:y=()12).a x x x x --(5.已知⊙O 中最长弦为8cm ,则⊙O 的半径为( )cm . A. 2 B. 4C. 8D. 16【答案】B 【解析】 【分析】⊙O 最长的弦就是直径从而不难求得半径的长.【详解】⊙⊙O 中最长的弦为8cm ,即直径为8cm⊙ ⊙⊙O 的半径为4cm⊙ 故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键. 6. 下列说法中正确的是( )A. “任意画出一个等边三角形,它是轴对称图形”是随机事件B. “任意画出一个平行四边形,它是中心对称图形”是必然事件C. “概率为0.0001的事件”是不可能事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 【答案】B 【解析】试题分析:A .“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B .“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确; C .“概率为0.0001的事件”是随机事件,选项错误;D .任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误. 故选B .考点:随机事件.7.如图,已知AB 、AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M ,N ,若MNBC 等的于()A. 5B.C.D.【答案】C【解析】【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:⊙OM⊙AB,ON⊙AC,垂足分别为M、N,⊙M、N分别是AB与AC的中点,⊙MN是⊙ABC的中位线,⊙BC=2MN=故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8.下列方程没有实数根的是()A. x2﹣x﹣1=0B. x2﹣6x+5=0C. x2﹣x+3=0D. x2+x+1=0【答案】D【解析】【分析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△= 2b-4ac的值的符号即可.【详解】解:A、⊙⊙=b2﹣4ac=1+4=5>0,⊙方程有两个不相等的实数根,故本选项错误;B、⊙⊙=b2﹣4ac=36﹣20=16>0,⊙方程有两个不相等的实数根,故本选项错误;C 、⊙⊙=b 2﹣4ac =12﹣12=0,⊙方程有两个相等的实数根,故本选项错误;D 、⊙⊙=b 2﹣4ac =1﹣4=﹣3<0,⊙方程没有实数根,故本选项正确. 故选:D .【点睛】本题考查根的判别式.一元二次方程2+00ax bx c a +=≠()的根与⊙= 2b -4ac 有如下关系:(1) ⊙>0⊙方程有两个不相等的实数根;(2) ⊙=0⊙方程有两个相等的实数根;(3) ⊙<0⊙方程没有实数根. 9.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.12【答案】D 【解析】 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:绿球的概率:P =510=12, 故选:D .【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键. 10.边长为2的正六边形的面积为( )A. B.C. 6【答案】A 【解析】 【分析】首先根据题意作出图形,然后可得△OBC 是等边三角形,然后由三角函数的性质,求得OH 的长,继而求得正六边形的面积.【详解】解:如图,连接OB ,OC ,过点O 作OH⊙BC 于H , ⊙六边形ABCDEF 是正六边形, ⊙⊙BOC =16×360°=60°, ⊙OB =0C ,⊙⊙OBC 是等边三角形,⊙BC =OB =OC =2,⊙它的半径为2,边长为2;⊙在Rt⊙OBH 中,OH =OB•sin60°=2×2,⊙⊙S 正六边形ABCDEF =6S ⊙OBC =6×12 故选:A .【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( )A. 2(1)4400x +=B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x += 【答案】B【解析】【分析】直接根据题意得出第三季度投放单车的数量为:(1+x )2=1+0.44,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x ,根据题意可得:(1+x )2=1.44.故选:B .【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】分析】 根据图象可直接判断a 、c 的符号,再结合对称轴的位置可判断b 的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:0a >,0c <,由于对称轴02b a ->,∴0b <,∴0abc >,故①正确; ②∵抛物线过(3,0),∴3x =时,930y a b c =++=,故②正确; ③顶点坐标为:24,24b ac b a a ⎛⎫-- ⎪⎝⎭.由图象可知:2424ac b a -<-,∵0a >,∴248ac b a -<-,即248b ac a ->,故③错误; ④由图象可知:12b a ->,0a >,∴20a b +<, ∵930a b c ++=,∴93c a b =--,∴5593422(2)0a b c a b a b a b a b ++=+--=--=-+>,故④正确; 故选C .【点睛】本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、【灵活运用数形结合的思想方法是解题的关键.二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.【答案】x1=5,x2=7【解析】【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.【答案】1 2【解析】【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=12.故答案为12.【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙【答案】-6【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.【答案】15【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣15)2+25,∵10≤x≤20,∴当x=15时,二次函数有最大值25,故答案是:15.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.【答案】120°【解析】【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:1816··233rππ=,∴r=4,∴2416 3603 nππ=∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.【答案】(1). (2). -1【解析】【分析】①在Rt△AOE中,解直角三角形求出AE即可解决问题.OF≤,由此即可解②取AC的中点H,连接OH,OF,HF,求出OH,FH,根据OF≥FH-OH,即1决问题.【详解】解:⊙如图,连接OA.⊙OA=OC=2,⊙⊙OCA=⊙OAC=30°,⊙⊙AOE=⊙OAC+⊙ACO=60°,⊙AE=OA•sin60°,⊙OE⊙AB,⊙AE=EB⊙AB=2AE=,故答案为⊙取AC的中点H,连接OH,OF,HF,⊙OA=OC,AH=HC,⊙OH⊙AC,⊙⊙AHO=90°,⊙⊙COH=30°,⊙OH=12OC=1,HCAC=⊙CF⊙AP,⊙⊙AFC=90°,⊙HF=12 AC⊙OF≥FH﹣OH,即1,⊙OF﹣1.1.【点睛】本题考查轨迹,圆周角定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.【答案】y=x2-2x-3⊙顶点坐标为(1⊙-4⊙.【解析】【分析】把A、B两点坐标代入抛物线解析式,利用待定系数法可求得其解析式,再化为顶点式即可求得其顶点坐标. 【详解】∵抛物线经过A⊙-1⊙0⊙⊙B⊙3⊙0)两点,∴10 930b cb c-+⎧⎨++⎩==⊙解得b= -2⊙c= -3⊙⊙ 抛物线解析式为y=x2-2x-3 ⊙⊙ y=x2-2x-3=⊙x-1⊙2-4⊙∴抛物线的顶点坐标为(1⊙-4⊙.【点睛】本题考查了待定系数法、二次函数的性质.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【答案】(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).【解析】【分析】(1)利用点A和1A坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1 A2,B1 B2,C1 C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.【详解】解:(1)如图,⊙A1B1C1为所作;(2)如图,⊙A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)⊙A1B1C1与⊙A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.现有A,B,C,D四张不透明的卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.【答案】(⊙)14;(⊙)12【解析】【分析】(⊙)根据题意,直接利用概率公式求解可得;(⊙)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(⊙)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14,故答案为:14;(⊙)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,则两次所抽取的卡片恰好都是轴对称图形的概率为612=12.【点睛】本题考查列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(⊙)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(⊙)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.【答案】(⊙)∠ABC=64°,∠ODC=71°;(⊙)∠ACD=19°.【解析】【分析】(I)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线性质即可得到结论.【详解】解:(⊙)连接OC,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙⊙BAC=26°,⊙⊙ABC=64°,⊙OD⊙AB,⊙⊙AOD=90°,⊙⊙ACD=12⊙AOD=12×90°=45°,⊙OA=OC,⊙⊙OAC=⊙OCA=26°,⊙⊙OCD=⊙OCA+⊙ACD=71°,⊙OD=OC,⊙⊙ODC=⊙OCD=71°;(⊙)如图2,连接OC,⊙⊙BAC=26°,⊙⊙EOC=2⊙A=52°,⊙CE是⊙O的切线,⊙⊙OCE=90°,⊙⊙E=38°,⊙OD⊙CE,⊙⊙AOD=⊙E=38°,⊙⊙ACD=12AOD=19°.【点睛】本题考查切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm .(⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?【答案】(⊙)13m 或19m ;(⊙)当AB =16时,S 最大,最大值为:256.【解析】【分析】(⊙)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(⊙)设花园的面积为S ,根据矩形的面积公式得到S=x (28-x)=- 2x +28x=–()214x -+196,于是得到结果.【详解】解:(⊙)⊙AB =xm ,则BC =(32﹣x )m ,⊙x (32﹣x )=252,解得:x 1=13,x 2=19,答:x 的值为13m 或19m ;(⊙)设花园的面积为S ,由题意得:S =x (32﹣x )=﹣x 2+32x =﹣(x ﹣16)2+256,⊙a =﹣1<0,⊙当x=16时,S最大,最大值为:256.【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.24.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.【答案】(1)15°;(2)证明见解析.【解析】【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=12AC,利用含30度的直角三角形三边的关系得到BC=12AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=12(180°−30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°−60°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=12 AC,∵∠BAC=30°,∴BC=12 AC,∴BF=BC,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE为等边三角形,∴BE=AB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.25.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(⊙)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(⊙)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.【答案】(⊙)a=﹣12,抛物线与x轴另一交点坐标是(0,0);(⊙)①点H的坐标为(2,6);②证明见解析.【解析】【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(⊙)⊙抛物线y=x2﹣2ax+4a+2与x轴一个交点为(﹣1,0),⊙0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,⊙y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(⊙)⊙⊙抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),⊙不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);⊙证明:⊙抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,⊙该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.的。
2022-2023学年天津市海河中学九年级上学期期末考试数学试卷含详解

初三年级数学学科期末考试一、选择题(本大题共12小题,共36.0分.在每小题列出的选项中,选出符合题目的一项)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.2.用配方法解方程2420x x ++=,下列配方正确的是()A.()222x -= B.()222x += C.()222x -=- D.()226x -=3.已知O 的半径为2cm ,点P 到圆心O 的距离为3cm ,则点P 和O 的位置关系为()A.点P 在圆外B.点P 在圆上C.点P 在圆内D.不能确定4.如图,AB 是O 的弦,OC AB ⊥于点H ,若60AOC ∠=︒,2OH =,则弦AB 的长为()A.4B.C. D.5.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A.()16x x -= B.()16x x += C.()1162x x -= D.()1162x x +=6.若()14,A y -,()23,B y -,()31,C y 为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是()A.123y y y <<B.213y y y << C.312y y y << D.132y y y <<7.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是() A.AC AD = B.AB EB ⊥ C.BC DE=D.A EBC∠=∠8.如图,边长为3的正六边形ABCDEF 内接于O ,则扇形OAB (图中阴影部分)的面积为()A.πB.32π C.3π D.94π9.如图,AB 是O 的切线,B 为切点,AO 与O 交于点C ,若35BAO ∠=︒,则OCB ∠的度数为()A .42.5︒B.55.5︒C.62.5︒D.75︒10.已知一个圆锥的底面半径是5cm ,侧面积是285cm π,则圆锥的母线长是()A.6.5cmB.13cmC.17cmD.26cm11.如图,四边形ABCD 是O 的内接四边形,O 的半径为5,125B ∠=︒,则AOC ∠的度数()A.60︒B.70︒C.90︒D.110︒12.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc <;②20a b +=;③320b c -<;④2am bm a b +≥+(m 为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,共18.0分)13.点P (﹣1,2)关于原点的对称点的坐标为____.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.15.将抛物线22y x =-向左平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是________.16.已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是___.17.如图,O 是ABC 的内切圆,若58A ∠=︒,则BOC ∠=________.18.如图,在Rt OAB V 中,90,8,10AOB OA AB ∠=︒==,O 的半径为4,点P 是AB上的一动点,过点P 作O 的一条切线PQ ,Q 为切点,则PQ 的最小值为________.三、计算题(本大题共2小题,共12.0分)19.解下列方程:(1)2230x x --=(2)2(3)7(3)x x x -=-20.如图,已知:AB 是O 的直径,点C 在O 上,CD 是O 的切线,AD CD ⊥于点D ,E 是AB 延长线上的一点,CE 交O 于点F ,连接OC ,AC ,若105DAO ∠=︒,30E ∠=︒.(1)求OCE ∠的度数;(2)若O 的半径为,求线段EF 的长.四、解答题(本大题共5小题,共40.0分.解答应写出文字说明,证明过程或演算步骤)21.2021年10月16日,神舟十三号载人飞船成功发射,这是中国空间站关键技术验证阶段第六次飞行,也是该阶段最后一次飞行任务.为了让同学们了解更多的航天知识,某校举办航天知识讲座,需要两名引导员,学校决定从A 、B 、C 、D 四名志愿者中,通过抽签的方式确定两人.抽签规则如下:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“选中A 志愿者”是______事件(填“随机”“不可能”或“必然”);(2)求同时选中A 、B 两名志愿者的概率.22.已知AB 是O 的直径,C 为O 上一点,连接BC ,过点O 作OD BC ⊥于D ,交 BC于点E ,连接AE ,交BC 于F .(1)如图1,求证:2BAC E ∠∠=.(2)如图2,连接OF ,若1OF AB DF ⊥,=,求AE 的长.23.如图,D ,E ,F 是Rt ABC △三边上的点,且四边形CDEF 为矩形,6BC =,30A ∠=︒.(1)求AB 的长;(2)设AE x =,则DE =________,EF =________(用含x 的表达式表示);(3)求矩形CDEF 的面积的最大值.24.在平面直角坐标系中,点()4,0A ,点()0,4B 分别是坐标轴上的点,连接AB .把ABO 绕点B 逆时针旋转得A BO ''△.点A ,O 旋转后的对应点为A ',O '.记旋转角为α.(1)如图①,当点O '落在AB 边上时,求α的值和点O '的坐标;(2)如图②,当60α=︒时,求AA '的长和点O '的坐标;(3)连接AO ',直接写出在旋转过程中AO A ''△面积的最大值.25.已知点A (2,-3)是二次函数2(21)2y x m x m =+--图象上的点.(1)求二次函数图象的顶点坐标:(2)当14x -≤≤时,求函数的最大值与最小值的差:(3)当3t x t +≤≤时,若函数的最大值与最小值的差为4,求t 的值.初三年级数学学科期末考试一、选择题(本大题共12小题,共36.0分.在每小题列出的选项中,选出符合题目的一项)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.D【分析】根据把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选:D .【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.用配方法解方程2420x x ++=,下列配方正确的是()A.()222x -= B.()222x += C.()222x -=- D.()226x -=B【分析】先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方的形式即可.【详解】解:2420x x ++=,242x x +=-,24424x x ++=-+,()222x +=.故选:B .【点睛】本题考查了解一元二次方程-配方法:掌握用配方法解一元二次方程的步骤是解决问题的关键.3.已知O 的半径为2cm ,点P 到圆心O 的距离为3cm ,则点P 和O 的位置关系为()A.点P 在圆外B.点P 在圆上C.点P 在圆内D.不能确定A【分析】根据点与圆的位置关系进行判断.【详解】解:∵⊙O 的半径为2cm ,点P 到圆心O 的距离为3cm ,即3cm OP =,∴点P 在O 外,故选:A .【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设O 的半径为r ,点P 到圆心的距离OP d =,则有:若点P 在圆外,则d r >;若点P 在圆上,则d r =;若点P 在圆内,则d r <,反之也成立.4.如图,AB 是O 的弦,OC AB ⊥于点H ,若60AOC ∠=︒,2OH =,则弦AB 的长为()A.4B.C. D.D【分析】根据含30度角的直角三角形的性质,勾股定理可得AH ==AH BH =,即可得出答案.【详解】解:∵OC AB ⊥,∴AH BH =,∵60AOC ∠=︒,2OH =,∴30OAH =︒∠,∴4OA =,∴AH ===,∴2AB AH ==,故选:D .【点睛】本题考查了根据垂径定理求值,含30度角的直角三角形的性质,勾股定理,难度不大.5.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A.()16x x -=B.()16x x += C.()1162x x -= D.()1162x x +=C【分析】设该小组有x 支球队,则每个队参加(1)x -场比赛,则共有1(1)2x x -场比赛,从而可以列出一个一元二次方程.【详解】解:设该小组有x 支球队,则共有1(1)2x x -场比赛,由题意得:1(1)62x x -=,故选:C .【点睛】此题考查了一元二次方程的应用,关要求我们掌握单循环制比赛的特点:如果有n 支球队参加,那么就有1(1)2n n -场比赛,此类虽然不难求出x 的值,但要注意舍去不合题意的解.6.若()14,A y -,()23,B y -,()31,C y 为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是()A.123y y y <<B.213y y y << C.312y y y << D.132y y y <<B【分析】把三个点的横坐标代入函数解析式,求出对应函数值,比较大小即可.【详解】解:把()14,A y -,()23,B y -,()31,C y 分别代入245y x x =+-得,1164(4)55y =+⨯--=-;294(3)58y =+⨯--=-;314150y =+⨯-=;则1y ,2y ,3y 的大小关系是213y y y <<,故选:B .【点睛】本题考查了二次函数比较函数值大小,准确求出二次函数对应函数值是解题关键.7.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是()A.AC AD= B.AB EB ⊥ C.BC DE = D.A EBC∠=∠D【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确再根据等腰三角形的性质即可得出A EBC ∠=∠,所以选项D 正确;再根据∠EBC =∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可.【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090,∴选项B 不一定正确;故选D .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.8.如图,边长为3的正六边形ABCDEF 内接于O ,则扇形OAB (图中阴影部分)的面积为()A.πB.32π C.3π D.94πB【分析】根据已知条件可得出AOB 60∠=︒,圆的半径为3,再根据扇形的面积公式2S 360r απ=(α为圆心角的度数)求解即可.【详解】解: 正六边形ABCDEF 内接于O ,60AOB ∴∠︒=,OA OB =,AOB ∴ 是等边三角形,OA OB AB ∴===3,∴扇形AOB 的面积260333602ππ⨯==,故选:B .【点睛】本题考查的知识点求扇形的面积,熟记面积公式并通过题目找出圆心角的度数与圆的半径是解题的关键9.如图,AB 是O 的切线,B 为切点,AO 与O 交于点C ,若35BAO ∠=︒,则OCB ∠的度数为()A.42.5︒B.55.5︒C.62.5︒D.75︒C【分析】首先根据切线的性质,可得90OAB ∠=︒,即可求得O ∠的度数,再根据等腰三角形的性质及三角形内角和定理,即可求得OCB ∠的度数.【详解】解:AB 是O 的切线,B 为切点,90OBA ∴∠=︒,35BAO ∠=︒ ,90903555O BAO ∴∠=︒-∠=︒-︒=︒,OB OC = ,()()111801805562.522OBC OCB O ∴∠=∠=︒-∠=︒-︒=︒,故选:C .【点睛】本题考查了切线的性质,直角三角形的性质,等边对等角及三角形内角和定理;熟练掌握切线的性质是解决问题的关键.10.已知一个圆锥的底面半径是5cm ,侧面积是285cm π,则圆锥的母线长是()A.6.5cmB.13cmC.17cmD.26cmC【分析】根据圆锥侧面积公式S rl π=,其中r 为圆锥的底面半径,l 为圆锥的母线长,将数据直接代入求出即可.【详解】解:∵圆锥的底面半径是5cm ,侧面积为285cm π,圆锥侧面积公式S rl π=,∴585l ππ=,解得:()17cm l =,故选:C .【点睛】此题主要考查了圆锥侧面积公式的有关计算,解决问题的关键是正确记忆圆锥的侧面积公式,以及各字母所代表的意义.11.如图,四边形ABCD 是O 的内接四边形,O 的半径为5,125B ∠=︒,则AOC ∠的度数()A.60︒B.70︒C.90︒D.110︒D【分析】连接OA 、OC ,根据“圆内接四边形对角互补”可求得D ∠的度数,根据圆周角定理即可求得AOC ∠.【详解】解:连接OA 、OC ,∵四边形ABCD 是O 的内接四边形,125B ∠=︒,∴18012555D ∠=︒-︒=︒,∴2110AOC D ∠=∠=︒,故选D【点睛】本题考查的是圆周角定理的应用,熟练的掌握“圆的内接四边形的对角互补”及圆周角定理是关键.12.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc <;②20a b +=;③320b c -<;④2am bm a b +≥+(m 为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个C【分析】由抛物线的对称轴的位置判断a b ,的符号,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定20a b +=;当=1x -时,y a b c =-+;然后由图象顶点坐标得出2am bm a b +≥+.【详解】解:①∵对称轴在y 轴右侧,∴a 、b 异号,∴0ab <,∵0c <,∴0abc >,故①错误;②∵对称轴12bx a=-=,∴20a b +=;故②正确;③∵20a b +=,∴12a b =-,∵当=1x -时,0y a b c =-+>,∴102b bc --+>,∴320b c -<,故③正确;④根据图象知,当1x =时,y 有最小值;当m 为实数时,有2am bm c a b c ++≥++所以2am bm a b +≥+(m 为实数).故④正确.本题正确的结论有:②③④,3个;故选:C .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当0a >时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0ab >),对称轴在y 轴左;当a 与b 异号时(即0ab <),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于()0,c .二、填空题(本大题共6小题,共18.0分)13.点P (﹣1,2)关于原点的对称点的坐标为____.(1,-2)【分析】直接利用关于原点对称点的性质,横坐标、纵坐标都互为相反数,进而得出答案.【详解】解:点P (﹣1,2)关于原点的对称点的坐标为(1,-2).故答案为:(1,-2).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.37【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37,故答案为37.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .15.将抛物线22y x =-向左平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是________.()211y x =++【分析】根据二次函数“左加右减、上加下减”的平移规律即可得答案.【详解】解:∵将抛物线22y x =-向左平移1个单位长度,再向上平移3个单位长度后,∴平移后的抛物线解析式是()22(1)2311y x x =+-+=++,故答案为:()211y x =++.【点睛】本题主要考查了二次函数图象的平移,熟练掌握平移的规律:“左加右减,上加下减”,并用规律求函数解析式.16.已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是___.13a >-且0a ≠【分析】由方程有两个不相等的实数根,则运用一元二次方程2230ax x +-=(a≠0)的根的判别式是240b ac ->即可进行解答【详解】由关于x 的方程2230ax x +-=有两个不相等的实数根得2Δ44430b ac a =-=+⨯>,解得13a >-则13a >-且0a ≠故答案为13a >-且0a ≠【点睛】本题重点考查了一元二次方程根的判别式,在一元二次方程2230ax x +-=(a ≠0)中,(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.17.如图,O 是ABC 的内切圆,若58A ∠=︒,则BOC ∠=________.119︒##119度【分析】根据O 是ABC 的内切圆,得出12OBC ABC ∠=∠,12OCB ACB ∠=∠,进而得出122ABC ACB ∠+∠=︒,即可得出答案.【详解】解:∵O 是ABC 的内切圆,∴12OBC ABC ∠=∠,12OCB ACB ∠=∠,∵58A ∠=︒,∴180122ABC ACB A ∠+∠=︒-∠=︒,∴()()11801802BOC OBC OCB ABC ACB ∠=︒-∠+∠=︒-∠+∠11801221192=︒-⨯︒=︒故答案为:119︒.【点睛】本题考查三角形的内切圆的性质与三角形内角和定理,此题难度不大.18.如图,在Rt OAB V 中,90,8,10AOB OA AB ∠=︒==,O 的半径为4,点P 是AB 上的一动点,过点P 作O 的一条切线PQ ,Q 为切点,则PQ 的最小值为________.5连接OP ,OQ ,由PQ 为圆O 的切线,利用切线的性质得到OQ 与PQ 垂直,利用勾股定理列出关系式,由OP 最小时,PQ 最短,根据垂线段最短得到OP 垂直于AB 时最短,利用面积法求出此时OP 的值,再利用勾股定理即可求出PQ 的最小值.【详解】解:连接OP ,OQ ,∵PQ 与圆O 相切,∴∠PQO =90°,∵OQ 不变,∴当OP 最小时,PQ 最小,此时OP 与AB 垂直,∵OA =8,AB =10,∴OB =6,∴OP =OA OB AB⨯=245,∴PQ 4115,故答案为:5.【点睛】此题考查了切线的性质,勾股定理的应用,熟练掌握切线的性质是解本题的关键,注意:圆的切线垂直于过切点的半径.三、计算题(本大题共2小题,共12.0分)19.解下列方程:(1)2230x x --=(2)2(3)7(3)x x x -=-(1)123,1x x ==-(2)172x =-,23x =【分析】(1)先求解24160,b ac =-= >再利用求根公式解方程即可;(2)把原方程化为()()23730,x x x -+-=再利用因式分解的方法解方程即可.【小问1详解】1,2,3a b c ==-=- 解:则24160,b ac =-= >4216,22b x a -±±∴==123,1x x ∴==-【小问2详解】解:()()23730x x x ---=,∴()()23730,x x x -+-=∴()()2730x x +-=解得172x =-,23x =【点睛】本题考查的是一元二次方程的解法,掌握“利用公式法与因式分解法解一元二次方程”是解本题的关键.20.如图,已知:AB 是O 的直径,点C 在O 上,CD 是O 的切线,AD CD ⊥于点D ,E 是AB 延长线上的一点,CE 交O 于点F ,连接OC ,AC ,若105DAO ∠=︒,30E ∠=︒.(1)求OCE ∠的度数;(2)若O 的半径为,求线段EF 的长.(1)45︒(2)2【分析】(1)根据切线的性质得出OC CD ⊥,从而得出AD OC ∥,由平行线的性质可得:105EOC DAO ∠=∠=︒,根据三角形内角和定理即可得出答案;(2)作OG CE ⊥于点G ,根据垂径定理可得FG CG =,根据30度角直角三角形即可求出GE =,进而可得EF 的长.【小问1详解】证明:∵CD 是O 的切线,∴OC CD ⊥,∵AD CD ⊥,∴AD OC ∥,∵105DAO ∠=︒,∴105EOC DAO ∠=∠=︒,∵30E ∠=︒,∴1801053045OCE ∠=︒-︒-︒=︒;【小问2详解】解:如图,作OG CE ⊥于点G ,根据垂径定理,得FG CG =,∵OC =,45OCE ∠=︒.∴2CG OG ==,∴2FG =,在R t OGE △中,∵30E ∠=︒,∴4OE =,∴GE =,∴2EF GE FG =-=-.【点睛】本题考查了切线的性质,勾股定理,垂径定理,解决本题的关键是综合掌握以上知识.四、解答题(本大题共5小题,共40.0分.解答应写出文字说明,证明过程或演算步骤)21.2021年10月16日,神舟十三号载人飞船成功发射,这是中国空间站关键技术验证阶段第六次飞行,也是该阶段最后一次飞行任务.为了让同学们了解更多的航天知识,某校举办航天知识讲座,需要两名引导员,学校决定从A 、B 、C 、D 四名志愿者中,通过抽签的方式确定两人.抽签规则如下:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“选中A 志愿者”是______事件(填“随机”“不可能”或“必然”);(2)求同时选中A 、B 两名志愿者的概率.(1)随机;(2)16.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)画树状图,共有12种等可能的结果,其中A ,B 两名志愿者同时被选中的结果有2种,再由概率公式求解即可.【小问1详解】解: 卡片背面朝上,洗匀后放在桌面上,从中随机抽取一张卡片,∴“A 志愿者被选中”是随机事件,故答案为:随机;【小问2详解】解:画树状图如下:共有12种等可能的结果,其中A 、B 两名志愿者同时被选中的结果有2种,∴P (A 、B 两名志愿者同时被选中)21126=.【点睛】此题考查的是树状图法求概率以及随机事件的概念,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意区分题目是放回试验还是不放回试验是解题的关键.22.已知AB 是O 的直径,C 为O 上一点,连接BC ,过点O 作OD BC ⊥于D ,交 BC于点E ,连接AE ,交BC 于F .(1)如图1,求证:2BAC E ∠∠=.(2)如图2,连接OF ,若1OF AB DF ⊥,=,求AE 的长.(1)见解析(2)6【分析】(1)先证OE AC ∥,推出CAF AEO ∠=∠,由OA OE =推出OAE E ∠=∠即可证明结论;(2)先证30B EAO E ∠=∠=∠=︒,求出EF AF 、,最后根据AE AF EF =+求解即可.【小问1详解】证明:如图1∵AB 是直径,∴90ACB ∠=︒,∵OE BC ⊥,∴90ODB ACB ∠=∠=︒,∴OE AC ∥,∴CAF AEO ∠=∠,∵OA OE =,∴AEO OAE ∠=∠,∴2BAC E ∠=∠.【小问2详解】解:如图2:∵OF AB OA OB ⊥=,,∴FA FB=∴FAB FBA ∠=∠,∵CAF EAB ∠=∠,∴2CAB ABC∠=∠∵90ACB ∠=︒∴90CAB B ∠+∠=︒,∴30B EAO E ∠=∠=∠=︒,∴120AOE ∠=︒∴30FOE E ∠=∠=︒∴FO EF =,∵FD OE ⊥,∴2224EF OF DF AF OF =====,,∴426AE AF EF =+=+=.【点睛】本题主要考查了圆周角定理、解直角三角形等知识,灵活运用特殊三角形的性质是解答本题的挂机.23.如图,D ,E ,F 是Rt ABC △三边上的点,且四边形CDEF 为矩形,6BC =,30A ∠=︒.(1)求AB 的长;(2)设AE x =,则DE =________,EF =________(用含x 的表达式表示);(3)求矩形CDEF 的面积的最大值.(1)12(2)12x ,2x(3)【分析】(1)直接利用直角三角形中,30︒角所对的直角边等于斜边的一半进行求解即可;(2)根据矩形的性质得到90ADE ∠=︒,EF DC =,然后利用勾股定理进行求解即可;(3)利用矩形的面积公式列出式子,再进行配方求解即可【小问1详解】解: 在Rt ABC △中,90C ∠=︒,6BC =,30A ∠=︒,22612AB BC ∴==⨯=;【小问2详解】解: 在Rt ABC △中,90C ∠=︒,6BC =,12AB =,AC ∴=,四边形CDEF 为矩形,90ADE ∴∠=︒,EF DC =,30A ∠=︒ ,1122DE AE x ∴==,2AD x ∴===,2EF DC AC AD ∴==-=,故答案为:12x ,2x -;【小问3详解】解: 四边形CDEF 为矩形,12DE x =,32EF x =,CDEF S DE EF ∴=⋅矩形1322x x ⎛⎫=⋅ ⎪ ⎪⎝⎭24x =-+()21236364x x =--+-()2364x =--+∴当6x =时,矩形CDEF 的面积最大,最大值为.【点睛】本题主要考查的是列代数式,二次函数的最值,矩形的性质,含30度角的直角三角形,勾股定理的有关知识,正确列出代数式是解决本题的关键.24.在平面直角坐标系中,点()4,0A ,点()0,4B 分别是坐标轴上的点,连接AB .把ABO 绕点B 逆时针旋转得A BO ''△.点A ,O 旋转后的对应点为A ',O '.记旋转角为α.(1)如图①,当点O '落在AB 边上时,求α的值和点O '的坐标;(2)如图②,当60α=︒时,求AA '的长和点O '的坐标;(3)连接AO ',直接写出在旋转过程中AO A ''△面积的最大值.(1)45α=︒,(-;(2)()2O ',AA '=;(3)面积最大时,8AA O S ''=+ 【分析】(1)先判断ABO 是等腰直角三角形,当点O '落在边AB 上时,45α=︒,如图,过O '作O K OB '⊥于K ,则BO K ' 是等腰直角三角形,利用勾股定理可得点O '的横坐标,纵坐标;(2)根据勾股定理求出AB ,如图,过点O '作O H OB '⊥于点H ,再利用含30︒的直角三角形的性质与勾股定理,可得点A '的坐标;再说明ABA '△为等边三角形,可得AA '的长;(3)先判断AO A ''△面积的最大值时,A BO ''△的位置,再求出面积即可.【小问1详解】解:∵点()4,0A ,点()0,4B ,∴4OA OB ==,ABO 是等腰直角三角形,∴AB ==45ABO ∠=︒.当点O '落在边AB 上时,45α=︒,如图,过O '作O K OB '⊥于K ,则BO K ' 是等腰直角三角形,∴BK O K '=,而4O B OB '==,∴28O K '=,则O K BK '==∴4OK =-,∴点O '的坐标是(-.【小问2详解】如图,过点O '作O H OB '⊥于点H ,在Rt O BH ' 中,∵4O B '=,60OBO '∠=︒,∴30HO B '∠=︒,∴122BH O B '==,O H '==∴422OH =-=,∴()2O ';当60α=︒时,∴60ABA '∠=︒,而AB A B '=,∴ABA '△为等边三角形,∴AA A B AB ''===【小问3详解】如图,以A O ''为底,当高最大时,A O A '' 的面积最大,即当A O B '' 旋转到如图所示的位置时,高最大.则4AO AB BO ''=+=,∴此时(1144822AA O S A O AO '''''==⨯+=+【点睛】本题主要考查了旋转的性质,等边三角形的性质和判定,坐标与图形,二次根式的化简,勾股定理等,判断A O B '' 的位置是求A O A '' 的面积最大的关键.25.已知点A (2,-3)是二次函数2(21)2y x m x m =+--图象上的点.(1)求二次函数图象的顶点坐标:(2)当14x -≤≤时,求函数的最大值与最小值的差:(3)当3t x t +≤≤时,若函数的最大值与最小值的差为4,求t 的值.(1)(3,-4)(2)当-1≤x ≤4时,函数的最大值与最小值的差为16(3)t =1或2【分析】(1)把点A 代入解析式中,解得52m =-,再利用配方法化成顶点式解析式即可解得顶点坐标;(2)分别解得当-1≤x ≤4时,函数的最大值与最小值,再求差;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而减小;②当0≤t <3时,顶点的横坐标在取值范围内;③当t >3时,y 随着x 的增大而增大,分别解得函数对应的最大值,再由函数的最大值与最小值的差为4,列方程,解方程即可解答.【小问1详解】解:∵已知A (2,-3)是二次函数()2212y x m x m =+--图象上的点∴44223m m +--=-解得52m =-∴此二次函数的解析式为:2265(3)4y x x x =-+=--∴顶点坐标为(3,-4);【小问2详解】∵顶点坐标为(3,-4),∴当x =3时,y 最小值=-4,当x =-1时,y 最大值=12∴当-1≤x ≤4时,函数的最大值与最小值的差为16;【小问3详解】当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而减小,当x =t 时,y 最大值=t 2-6t +5当x =t +3时,y 最小值=(t +3)2-6(t +3)+5=t 2-4,t 2-6t +5-(t 2-4)=4﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9=4,解得56t =(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴y 最小值=-4,i)当0≤t≤32时,在x=t时,y最大值=t2-6t+5,∴t2-6t+5-(-4)=4,解得t1=1,t2=5(不合题意,舍去);ii)当32<t<3时,在x=t+3时,y最大值=t2-4,∴t2-4-(-4)=4,∴解得t1=2,t2=-2(不合题意,舍去),③当t>3时,y随着x的增大而增大,当x=t时,y最小值=t2-6t+5,当x=t+3时,y最大值=t2-4,∴t2-4-(t2-6t+5)=4解得136t (不合题意,舍去),综上所述,t=1或2.【点睛】本题考查二次函数的图象与性质、待定系数法求二次函数解析式、将一般式解析式转化为顶点式解析式、解一元二次方程等知识,是重要考点,掌握相关知识是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津海河中学九年级上册期末数学试题(含答案)一、选择题1.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 2.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)3.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=4.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④5.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:16.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高7.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .238.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 9.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣202110.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .111.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-12.下列方程是一元二次方程的是( ) A .2321x x =+B .3230x x --C .221x y -=D .20x y +=13.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223314.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .215.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .18.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x … -1 0 1 2 3 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.21.抛物线21(5)33y x =--+的顶点坐标是_______. 22.抛物线2(-1)3y x =+的顶点坐标是______.23.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.24.一组数据:2,5,3,1,6,则这组数据的中位数是________.25.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.26.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.27.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…28.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.29.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.30.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm32.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB . (1)证明:△ADC ∽△ACB ;(2)若AD =2,BD =6,求边AC 的长.33.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.34.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下: 命中环数6 7 8 9 10 甲命中相应环数的次数 0 1 3 1 0 乙命中相应环数的次数221(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)35.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点 ①求ADE ∆面积最大值并写出此时点D 的坐标;②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.38.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.2.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.3.D解析:D【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.4.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.5.B解析:B 【解析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案. 【详解】∵四边形ABCD 为平行四边形, ∴DC ∥AB , ∴△DFE ∽△BFA , ∵DE :EC=3:1, ∴DE :DC=3:4, ∴DE :AB=3:4, ∴S △DFE :S △BFA =9:16. 故选B .6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.D解析:D 【解析】 【分析】根据概率公式直接计算即可. 【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.8.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x=-+.故选A.9.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键10.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122ba,故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 12.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.13.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =43,∴PD =2834333⨯=, ∴点H 的横坐标b =83, ∴a +b =8314323+=; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.15.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题16.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,18.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x 1,再利用夹逼法可确定x 1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b 2-4ac=12-4×1×(-3)=13,∴x=122b a -±-±=, ∵1x <0,∴1x =−1<0, ∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.19.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠AD B=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt △PBF 中,tan ∠BOF=BF OF=2, ∵∠AOD=∠BOF ,∴tan ∠AOD=2.故答案为2【点睛】 此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.21.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 22.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.23.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m , 解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3.故答案为:x 3=0,x 4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.24.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.25.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.26.8【解析】【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.27.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.28.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.29.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.30.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题31.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°, 如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.32.(1)见解析; (2)4.【解析】【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可.【详解】(1)证明:∵∠A =∠A ,∠ADC =∠ACB ,∴△ADC ∽△ACB .(2)解:∵△ADC∽△ACB,∴ACAB =ADAC,AB=AD+DB=2+6=8∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.33.两次摸到的球都是红球的概率为1 9 .【解析】【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=19.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解. 34.(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小【解析】【分析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;。