高二数学空间向量及其运算
专题1.1 空间向量及其运算(七个重难点突破)(解析版)-高二数学上学期重难点和易错点突破

专题1.1空间向量及其运算知识点1空间向量的有关概念1.空间向量的定义及表示名称方向模表示法零向量任意0记为0单位向量11a =或=1AB 相反向量相反相等记为a 共线向量相同或相反//a b 或//AB CD 相等向量相同相等=a b 或=AB CD知识点2空间向量的线性运算1.空间向量的加减运算加法运算三角形法则语言叙述首尾顺次相接,首指向尾为和图形叙述平行四边形法则语言叙述共起点的两边为邻边作平行四边形,共起点对角线为和图形叙述减法运算三角形法则语言叙述共起点,连终点,方向指向被减向量图形叙述2.空间向量的数乘运算定义与平面向量一样,实数λ与空间向量a 的乘积a λ仍然是一个向量,称为空间向量的数乘几何意义λ>a λ 与向量a 的方向相同a λ 的长度是a 的长度的λ倍0λ<a λ 与向量a 的方向相反λ=0a λ=,其方向是任意的3.空间向量的运算律知识点3共线向量与共面向量1.直线l 的方向向量定义:把与a平行的非零向量称为直线l 的方向向量.2.共线向量与共面向量的区别共线(平行)向量共面向量定义位置关系表示若干空间向量的有向线段所在的直线互相平行或重合,这些向量叫做共线向量或平行向量平行于同一个平面的向量叫做共面向量特征方向相同或相反特例零向量与任意向量平行充要条件共线向量定理:对于空间任意两个向量()0a b b ≠ ,,//a b 的充要条件是存在实数λ使=a bλ 共面向量定理:若两个向量a b,不共线,则向量p 与向量a b ,共面的充要条件是存在唯一的有序实数对(x ,y ),使p xa yb=+对空间任一点O ,)1(OP xOA yOB x y =++=空间中,,,P A B C 四点共面的充要条件是存在有序实数对(,,)x y z ,使得对空间中任意一点O ,都有(1OP xOA yOB zOC x+y +z ==++其中)重难点1空间向量的线性运算1.如图,在空间四边形ABCD 中,F ,M ,G 分别是BD ,BC ,CD 的中点,化简下列各式:(1)()12AB BC BD ++ ;(2)()12AG AB AC -+ ;(3)AC GD MB ++ .【答案】(1)AG(2)MG(3)AF【分析】(1)由于G 是CD 的中点,所以()12BC BD BG +=,再根据空间向量的加法运算即可求出结果;(2)由于M 是BC 的中点,所以()12AB AC AM +=,再根据空间向量的减法运算即可求出结果;(3)由于M ,G 分别BC ,CD 的中点,所以11,22MB CB GD CD == ,又F 是BD 的中点,()12CD CB CF +=,再根据空间向量的加法运算即可求出结果;(1)解:因为G 是CD 的中点,所以()12BC BD BG +=,所以,()12AB BC BD AB BG AG ++=+=;(2)解:因为M 是BC 的中点,所以()12AB AC AM +=,所以,()1=2AG AB AC AG AM MG -+-= ;(3)解:因为M ,G 分别BC ,CD 的中点,所以11,22MB CB GD CD == ,又F 是BD 的中点,()12CD CB CF +=,所以,()111222AC GD MB AC CD CB AC CD CB AC CF AF ++=++=++=+=.2.如图,点M ,N 分别是四面体ABCD 的棱AB 和CD 的中点,求证:()12MN AD BC =+.【答案】详见解析.【分析】取BD 的中点P ,连接PM ,PN ,由12MP AD = ,12PN BC = ,MN MP PN =+即可求证.【详解】取BD 的中点P ,连接PM ,PN ,在ABD △中,12MP AD = ,在BCD △中,12PN BC =,所以()111222AD BC MN MP P D N A BC =+=+=+ .3.在正六棱柱111111ABCDEF A B C D E F -中,化简1AF AB BC -+,并在图中标出化简结果.【答案】1BE,作图见解析【分析】先利用正六棱柱的性质证得11BC F E =,从而利用空间向量的线性运算即可得解.【详解】因为六边形ABCDEF 是正六边形,所以//BC EF ,BC EF =,又在正六棱柱111111ABCDEF A B C D E F -中,1111,//E F EF E F EF =,所以1111//,BC E F BC E F =,故11BCE F 是平行四边形,则11BC F E =,所以111111AF AB BC AF F E AB AE AB BE -+=+-=-= ,向量1BE在图中标记如下,4.如图.空间四边形OABC 中,OA a,OB b,OC c === ,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =()A .121232a b c-+ B .221332a b c+-C .111222a b c+- D .211322a b c-++ 【答案】D【分析】根据空间向量的加减和数乘运算直接求解即可.【详解】()1221123322MN ON OM OB OC OA a b c =-=+-=-++.故选:D.5.如图所示,在长方体ABCD 一A 1B 1C 1D 1中,11111,,A B a A D b A A c ===,E ,F ,G ,H ,P ,Q 分别是AB ,BC ,CC 1,C 1D 1,D 1A 1,A 1A 的中点,求证:0EF GH PQ ++=.【答案】证明见解析.【分析】先利用基底,,a b c 表示出,,EF GH PQ ,进而证得0EF GH PQ ++=成立.【详解】11111,,A B a A D b A A c ===,则111111,,222222EF a b GH a c PQ c b =+=--=-,则1111110222222EF GH PQ b a c c b⎛⎫⎛⎫++=++--+-= ⎪ ⎪⎝⎭⎝⎭.6.如图,设A 是BCD △所在平面外的一点,G 是BCD △的重心.求证:()13AG AB AC AD =++.【答案】证明见解析.【分析】连接BG ,延长后交CD 于点E ,利用G 是BCD △的重心即可得到AG与,,AB AC AD 之间的关系.【详解】连接BG ,延长后交CD 于点E ,连接AE,由G 为BCD △的重心,可得CE DE =,=2BG GE,则()=2AG AB AE AG -- ,则21=33AG AE AB + ,又()1=2AE AC AD + ,则()21111=32233AG AC AD AB AB AC AD ⎛⎫++=++ ⎪⎝⎭.7.如图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点.记AB a =,AD b = ,1AA c =则下列正确的是()A .1122AM a b c=-++ B .1122AM a b c=+-C .1122AM a b c=++ D .1122AM a b c=++ 【答案】C【分析】利用平行六面体的性质以及空间向量的线性运算即可求解.【详解】由题意可知:在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,所以M 为11A C 的中点,则1121122A M A C AC ==,所以1111111122AM AA A M AA A C AA AC=+=+=+ 111112222AA AB AC a b c =++=++ ,故选:C .重难点2共线问题8.设a ,b 是空间中两个不共线的向量,已知9AB m =+ a b ,2BC =-- a b ,2DC =-a b ,且A ,B ,D 三点共线,则实数m =;【答案】3-;【分析】A ,B ,D 三点共线,故存在实数λ,使得AB BD λ= ,再由已知条件表示出BD 与AB,建立方程组可求出m 和λ值.【详解】因为2BC =-- a b ,2DC =-a b ,所以()223BD BC CD BC DC =+=-=----=-+a b a b a b ,因为A ,B ,D 三点共线,所以存在实数λ,使得AB BD λ=,即()93m λ+=-+a b a b ,所以93m λλ=-⎧⎨=⎩,解得3m λ==-.【点睛】本题考查了空间向量中三点共线问题,共线向量定理常常用来解决此问题.9.在正方体1111ABCD A B C D -中,点E ,F 分别是底面1111D C B A 和侧面11CC D D 的中心,若()10EF A D λλ+=∈R,则λ=.【答案】12-/-0.5【分析】作图,连接连接11A C ,1C D ,构造三角形中位线解题﹒【详解】如图,连接11A C ,1C D ,则点E 在11A C 上,点F 在1C D 上,易知1EF A D ,且112EF A D =,∴112EF A D = ,即1102EF A D -= ,∴12λ=-.故答案为:12-10.(多选)若空间中任意四点O ,A ,B ,P 满足OP=m OA +n OB ,其中m+n=1,则结论正确的有()A .P ∈直线ABB .P ∉直线ABC .O ,A ,B ,P 四点共面D .P ,A ,B 三点共线【答案】ACD【解析】由题意可得1m n =-,代入向量式化简可得AP nAB =,可得向量共线,进而可得三点共线,可得结论.【详解】解:因为1m n +=,所以1n =-,所以OP=()1OA B n n O -⋅+⋅ ,即OP OA -=n (OB OA - ),即AP =n AB,所以AP AB 与共线.又AP AB ,有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB.因为OP=m OA +n OB ,故O ,A ,B ,P 四点共面.故答案为:ACD【点睛】本题考查平面向量的共线问题,熟练表示出向量共线的条件是解决问题的关键,属中档题.11.已知5a = ,a b λ=.(1)若b 与a的方向相同,且7b = ,则λ的值为;(2)若b 与a的方向相反,且7b = ,则λ的值为.【答案】5757-【分析】根据向量共线可得答案.【详解】由于57a b = ,所以当a ,b 同向时,57λ=;当a ,b 反向时,57λ=-.故答案为:①57;②57-.12.已知{,,}a b c 是空间的一个基底,下列不能与m a b =- ,n b c =-构成空间的另一个基底的是()A .a c- B .a c+C .a b+D .a b c++ 【答案】A【分析】根据基底向量任意两向量不共线,三个向量不共面可判断求解.【详解】由m a b =- ,n b c =- ,两式相加可得a c m n -=+,即a c -r r 与,m n →→共面故a c -r r不能与m a b =- ,n b c =- 构成空间的另一个基底.故选:A13.已知平面单位向量1e ,2e 满足1212e e ⋅= ,且12a xe e =+,x R ∈,122(1)b e e λλ=+- ,若使1b a -= 成立的正数λ有且只有一个,则x 的取值范围为.【答案】{}2/2x =【分析】由向量的模的计算公式得223310x x λλ-+-=,再根据一元二次方程的根的判别式可求得答案.【详解】解:12a xe e =+,x R ∈,122(1)b e e λλ=+- ,则12||(2)(11)1b a x e e λλ-=-+--= ,所以212(2)1x e e λλ--= ,所以22(2)(2)1x x λλλλ---+=,故223310x x λλ-+-=.由于使||1b a -=成立的正数λ有且只有一个,故关于以λ为未知数的一元二次方程有且只有一个正实数根,故()2291210x x ∆=--=,解得2x =±,当2x =-时,0λ<故舍去,则2x =.故x 的范围是唯一一个实数{}2,故答案为:{}2.14.如图,在正方体1111ABCD A B C D -中,E 在11A D 上,且112A E ED =,F 在对角线A 1C 上,且12.3A F FC = 若1,,AB A b c a D AA === .(1)用,,a b c表示EB .(2)求证:E ,F ,B 三点共线.【答案】(1)23a EB c b =--;(2)证明见解析.【分析】(1)由已知得111112++++3EB EA A A AB D A A A AB == ,由此可得答案;(2)由已知得FB 35EB = ,由此可得证.【详解】解:(1)因为112A E ED =,1,,AB A b c a D AA === ,所以1111122+++++33EB EA A A AB D A A b A c a AB ===--,所以23a EB cb =-- ;(2)12.3A F FC = 11112++++5FB FA A A AB CA A A AB== ()112++++5CB BA AA A A AB =()2++5b ac c a =--- 323323555535a b a b c c EB ⎛⎫=--=--= ⎪⎝⎭,又EB 与FB相交于B ,所以E ,F ,B 三点共线.15.如图,已知,,,,,,,,O A B C D E F G H 为空间的9个点,且OE kOA = ,OF kOB = ,OH kOD =,AC AD m AB =+ ,EG EH mEF =+,0,0k m ≠≠.求证:(1)//AC EG;(2)OG kOC = .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由题意,EG EH mEF =+ ,转化,EH OH OE EF OF OE =-=- ,代入结合题干条件运算即得证;(2)由题意,OG OE EG =+,又,OE kOA EG k AC == ,运算即得证【详解】证明:(1)()EG EH mEF OH OE m OF OE =+=-+-()()k OD OA km OB OA =-+- ()k AD km AB k AD m AB k AC=+=+= ∴//AC EG .(2)()OG OE EG kOA k AC k OA AC kOC =+=+=+= .重难点3向量的共面问题16.已知空间A 、B 、C 、D 四点共面,且其中任意三点均不共线,设P 为空间中任意一点,若64BD PA PB PC λ=-+,则λ=()A .2B .2-C .1D .1-【答案】B【分析】根据空间四点共面的充要条件代入即可解决.【详解】64BD PA PB PC λ=-+,即64PD PB PA PB PCλ=-+- 整理得63PD PA PB PCλ=-+由A 、B 、C 、D 四点共面,且其中任意三点均不共线,可得631λ-+=,解之得2λ=-故选:B17.已知点M 在平面ABC 内,并且对空间任一点O ,1132OM xOA OB OC =++,则x =.【答案】16【分析】根据四点共面的知识列方程,由此求得x .【详解】由于M ∈平面ABC ,所以11132x ++=,解得16x =.故答案为:1618.已知,,A B M 三点不共线,对于平面ABM 外的任意一点O ,判断在下列各条件下的点P 与点,,A B M 是否共面.(1)3OB OM OP OA +=- ;(2)4OP OA OB OM =-- .【答案】(1)共面(2)不共面【分析】(1)根据空间向量的共面定理及推论,即可求解;(2)根据空间向量的共面定理及推论,即可求解;【详解】(1)解:因为,,A B M 三点不共线,可得,,A B M 三点共面,对于平面ABM 外的任意一点O ,若3OB OM OP OA +=-,即111333OP OA OB OM =++ ,又因为1111333++=,根据空间向量的共面定理,可得点P 与,,A B M 共面.(2)解:因为,,A B M 三点不共线,可得,,A B M 三点共面,对于平面ABM 外的任意一点O ,若4OP OA OB OM =--,此时41121--=≠,根据空间向量的共面定理,可得点P 与,,A B M 不共面.19.已知12e e,为两个不共线的非零向量,且12AB e e =+ ,1228AC e e =+ ,1233AD e e =- ,求证:A B C D ,,,四点共面.【答案】证明见解析【分析】用共面向量定理证明,,AC AB AD共面,即可得四点共面.【详解】设AC x AB y AD =+,则()()1212122833e e x e e y e e +=++- ,()()1223830x y e x y e ∴--+-+= ,又12e e,为两个不共线的非零向量,230830x y x y --=⎧∴⎨-+=⎩,51x y =⎧∴⎨=-⎩,5AC AB AD ∴=- ,A B C D ∴,,,四点共面,故原命题得证.20.i ,j ,k是三个不共面的向量,22AB i j k =-+ ,23BC i j k =-+ ,35CD i j k λ=+- ,且A ,B ,C ,D 四点共面,则λ的值为.【答案】-3【分析】由题知存在实数s ,t ,使得CD sAB tBC =+,代入条件,比较系数列方程求解.【详解】若A ,B ,C ,D 四点共面,则存在实数s ,t ,使得CD sAB tBC =+,即()()35222-+3i j k s i j k t i j k λ+-=-++ ,所以232-52+3s ts t s t λ=+⎧⎪=-⎨⎪-=⎩,解得1s =-,-1t =,-3λ=.故答案为:-3.21.下列条件中,一定使空间四点P 、A 、B 、C 共面的是()A .OA OB OC OP++=-uu r uu u r uuu r uu u r B .OA OB OC OP++=uu r uu u r uuu r uu u r C .2OA OB OC OP++=uu r uu u r uuu r uu u r D .3OA OB OC OP++= 【答案】D【分析】要使空间中的P 、A 、B 、C 四点共面,只需满足OP xOA yOB zOC =++uu u r uu r uu u r uuu r,且1x y z ++=即可.【详解】对于A 选项,OP OA OB OC =---uu u r uu r uu u r uuu r,()()(1)1131-+-+-=-≠,所以点P 与A 、B 、C 三点不共面;对于B 选项,OP OA OB OC =++,11131++=≠,所以点P 与A 、B 、C 三点不共面;对于C 选项,111222OP OA OB OC =++,111312222++=≠,所以点P 与A 、B 、C 三点不共面;对于D 选项,111333OP OA OB OC =++ ,1111333++=,所以点P 与A 、B 、C 三点共面.故选:D.22.若{a ,b ,c}构成空间的一个基底,则下列向量不共面的是()A .b c +,b ,b c -r r B .a ,a b + ,a b - C .a b + ,a b - ,c D .a b +,a b c ++ ,c 【答案】C【分析】由平面向量基本定理逐项判断可得答案.【详解】由平面向量基本定理得:对于A 选项,12= b ()+ b c 12+()-b c ,所以()+ b c ,b ,()- b c 三个向量共面;对于B 选项,12= a ()+ b a 12+()a b -,a ,a b + ,a b - 三个向量共面;对于C 选项,则存在实数,x y 使得()()()()=++-=++-c x a b y a b x y a x y b ,则,,a b c共面,与已知矛盾,因此C 选项中向量不共面;对于D 选项,()++=++ c a b a b c ,所以三个向量共面;故选:C .知识点1空间向量的夹角如图,已知两个非零向量a b ,,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a b ,的夹角,记作a b ,,夹角的范围:[]0,π,特别地,如果π2a b = ,,那么向量a b ,互相垂直,记作a b ⊥ 知识点2空间向量的数量积运算1.空间向量的数量积已知两个非零向量a b ,,则cos ,a b a b 〈〉叫做a b,的数量积,记作a b ⋅ ,即cos ,a b a b a b ⋅= 〈〉.零向量与任意向量的数量积为0,即00a ⋅=.2.数量积的运算律数乘向量与数量积的结合律()()a b a b Rλλλ⋅⋅∈=,交换律a b b a ⋅=⋅ 分配律()a b c a b a c⋅⋅⋅ +=+3.投影向量在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ||,bc a a b b =〈〉,向量c 称为向量a 在向量b 上的投影向量.4.数量积的性质若a,b 为非零向量,则(1)0a b a b ⊥⇔⋅= ;(2)()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向;(3)2a a a ⋅= ,a a a =⋅;(4)a b cos a,b a b⋅〈〉=;(5)a b a b⋅≤ 重难点4空间向量数量积的运算23.在正四面体-P ABC 中,棱长为1,且D 为棱AB 的中点,则PD PC ⋅的值为().A .14-B .18-C .12-D .12【答案】D【分析】在正四面体-P ABC 中,由中点性质可得()12PD PA PB =+ ,则PD PC ⋅ 可代换为()12P PA B C P ⋅+,由向量的数量积公式即可求解.【详解】如图,因为D 为棱AB 的中点,所以()12PD PA PB =+,()()1122PD PC P P C P A PB PA P C PC B ⋅=⋅⋅⋅+=+ ,由正四面体得性质,PA 与PC 的夹角为60°,同理PB 与PC的夹角为60°,1PA PB PC === ,111cos602PA PC P PB C ⋅⋅==⨯⨯︒= ,故21211122PC PD ⎛⎫⋅=⨯+= ⎪⎝⎭ ,故选:D.24.如图,在直三棱柱111ABC A B C -中,13BB =,E 、F 分别为棱AB 、11A C 的中点,则1EF BB =⋅.【答案】9【分析】分析可知1BB AB ⊥,111BB A C ⊥,利用空间向量数量积的运算性质可求得1EF BB ⋅的值.【详解】因为1BB ⊥平面ABC ,AB ⊂平面ABC ,则1BB AB ⊥,同理可知111BB A C ⊥,所以,()111111111122EF BB EA AA A F BB BA BB A C BB ⎛⎫⋅=++⋅=++⋅ ⎪⎝⎭2211111111922BA BB BB A C BB BB =⋅++⋅==.故答案为:9.25.在棱长为1的正方体1111ABCD A B C D -中,M 为棱1CC 上任意一点,则AM BC ⋅ =.【答案】1【分析】根据空间向量的线性运算及数量积的运算性质求解.【详解】如图,在正方体中,M 为棱1CC 上任意一点,则11CM CC AA λλ==,01λ≤≤,()()21001AM BC A AC CM AB AD AA D D AD A λ∴=+⋅=++⋅⋅=++= .故答案为:1.26.给出下列命题:①空间中任意两个单位向量必相等;②若空间向量,a b 满足a b =r r ,则a b = ;③在向量的数量积运算中()()a b c a c b ⋅=⋅r r r r r r;④对于非零向量c ,由a c b c ⋅=⋅ ,则a b =,其中假命题的个数是.【答案】4.【详解】对于①:空间中任意两个单位向量的方向不能确定,故不一定相等,故①错误;对于②:空间向量,a b 满足a b =r r ,但方向可能不同,故不能得到a b =,故②错误;对于③:数量积运算不满足结合律,故③错误;对于④:由a c b c ⋅=⋅,可得cos ,cos ,a c a c b c b c <>=<> ,所以cos ,cos ,a a c b b c <>=<> ,无法得到a b =,故④错误.所以错误的命题个数为4.故答案为:427.已知空间四面体D -ABC 的每条棱长都等于1,点E ,F 分别是AB ,AD 的中点,则FE CD ⋅等于()A .14B .14-CD.【答案】B【分析】由题意可得2DB FE =,再利用空间向量的数量积运算即可得到答案.【详解】因为点,E F 分别是,AB AD 的中点,所以//DB FE ,2DB FE =,所以2DB FE =,则12FE DB = ,又因为空间四面体D -ABC 的每条棱长都等于1,所以DBC △是等边三角形,则60BDC ∠=︒,所以111cos 60224FE CD DB DC DB DC ⋅=-⋅=-⋅︒=- .故选:B ..28.设a 、b为空间中的任意两个非零向量,有下列各式:①22a a = ;②2a b baa⋅=;③()222a b a b ⋅=⋅ ;④()2222a b a a b b -=-⋅+ .其中正确的个数为()A .1B .2C .3D .4【答案】B【分析】利用空间向量数量积的定义可判断①、②、③;利用空间向量数量积的运算律可判断④.【详解】对于①,222cos 0a a a == ,①正确;对于②,向量不能作比值,即ba错误,②错误;对于③,设a 、b的夹角为θ,则()()2222222cos cos a ba b a b a b θθ⋅=⋅=⋅≤⋅,③错误;对于④,由空间向量数量积的运算性质可得()2222a ba ab b -=-⋅+,④正确.故选:B.【点睛】本题考查利用空间向量数量积的定义与运算性质判断等式的正误,属于基础题.29.已知向量a b ⊥ ,向量c 与,a b 的夹角都是60︒,且1,2,3a b c ===,试求(1)()22a b c +-;(2)()()323a b b c -⋅-.【答案】(1)11(2)72-【分析】(1)计算30,,32a b a c b c ⋅=⋅=⋅=,展开计算得到答案.(2)()()2323333223a b b c a b a c b b c -⋅-=⋅-⋅-+⋅ ,代入计算得到答案.【详解】(1)向量a b ⊥ ,向量c 与,a b 的夹角都是60︒,且1,2,3a b c ===,22231,4,9,0,cos60,cos6032a b c a b a c a c b c b c ===⋅=⋅=⋅︒=⋅=⋅︒=,()()22222222241169031211a b c a b c a b a c b c +-+++⋅-⋅-⋅=+++--==;(2)()()2277323333223081822a b b c a b a c b b c -⋅-=⋅-⋅-+⋅=--+=-30.在三棱锥D ABC -中,已知2AB AD ==,1BC =,3AC BD ⋅=-,则CD =【分析】用,AB AD 表示BD,根据条件列出方程建立,,AC BAC DAC ∠∠的关系,利用等量代换计算22||CD AD AC =- 即得.【详解】设,BAC DAC αβ∠=∠=,显然||||1AC AB BC -==,则222||||cos 1AC AB AC AB α+-⋅= ,即24||cos 3AC AC α-=-,而3AC BD ⋅=-,即()3AC AD AB AC AD AC AB ⋅-=⋅-⋅=- ,于是得2||cos 2||cos 3AC AC βα-=- ,2||cos 32||cos AC AC βα=-+,22222||244||cos CD AD AC AD AC AD AC AC AC β=-=+-⋅=+-2242(32||cos )104||cos 7AC AC AC AC αα=+--+=+-=,则有||CD =,所以CD =.重难点5用数量积解决夹角问题31.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,侧棱AA 1的长度为4,且∠A 1AB =∠A 1AD =120°.用向量法求:(1)BD 1的长;(2)直线BD 1与AC .【答案】(1)【分析】(1)利用向量模的计算公式和向量的数量积的运算即得出BD 1的长;(2)分别求出11||,||,AC BD AC BD ⋅的值,代入数量积求夹角公式,即可求得异面直线BD 1与AC 所成角的余弦值.【详解】(1)∵111111BD BB B A A D =++,()22111111BD BB B A A D =++ 222111111111111111222BB B A A D BB B A BB A D B A A D =+++⋅+⋅+⋅ 222422242cos 60242cos120222cos 90=+++⨯⨯+⨯⨯+⨯⨯=24,∴1BD的长为(2)∵AC AB BC =+,∴()22222222208AC AB BCAB BC AB BC =+=++⋅=++=,∴AC =∵1BD =()()111111111111111124cos12022cos18022cos9024cos1202AC BD AB BC BB B A A D AB BB AB B A AB A D BC BB BC B A BC A D ⋅=+⋅++=⋅+⋅+⋅+⋅+⋅+⋅=⨯+⨯+⨯+⨯+2cos9022cos 08⨯+⨯=-,∴111cos ,=AC BD AC BD AC BD ⋅⋅所以直线BD 1与AC所成角的余弦值为3.32.(多选)如图所示,平行六面体1111ABCD A B C D -,其中AB AD ==11AA =,60DAB ∠=︒,1145DAA BAA ∠=∠=︒,下列说法中正确的是()A.1AC B .1AC DB⊥C .直线AC 与直线1BD 是相交直线D .1BD 与AC所成角的余弦值为3【答案】ABD【分析】对选项A ,根据11AC AB AD AA =++,再平方即可判断A 正确,对选项B ,根据()110()AC DB AB AD AA AB AD ⋅=++⋅-=,即可判断B 正确,对选项C ,根据图形即可判断C 错误,对选项D ,根据空间向量夹角公式即可判断D 正确.【详解】对选项A ,111AC AB BC CC AB AD AA =++=++,则22221111222AC AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅221cos 6021cos 4521cos 4511=+++︒+⨯︒+⨯︒=,所以1AC A 正确;对选项B ,()221111()AC DB AB AD AA AB AD AB AA AB AA AD AD⋅=++⋅-=+⋅-⋅-2112022=+-⨯-=,所以1AC DB ⊥,故B 正确;对C ,直线AC 与直线1BD 是异面直线,C 错误;对D ,111BD BA AD DD AB AD AA =++=-++ ,AC AB AD =+,1BD==AC = ()221111()BD AC AB AD AA AB AD AB AD AA AB AA AD⋅=-++⋅+=-++⋅+⋅2211222=-+++=,所以,111cos ,3||BD AC BD AC BD AC ⋅〉===〈,于是1BD 与AC所成角的余弦值为3.故选:ABD33.已知向量,a b r r 都是空间向量,且π,=3a b ,则3,4=a b -.【答案】2π3【分析】利用向量夹角公式、范围及已知求<3,4>a b -的大小.【详解】由题设1cos<,>==2||||a b a b a b ⋅,而121cos<3,4>==212||||a b a b a b -⋅-- ,<3,4>(0,π)a b -∈,所以2π<3,4>=3a b -.故答案为:2π334.已知不共面的三个向量,,a b c 都是单位向量,且夹角都是3π,则向量a b c -- 和b 的夹角为()A .6πB .4πC .34πD .56π【答案】C【分析】根据题意计算得a b c --= ()1a b c b --⋅=-,进而计算夹角即可得答案.【详解】解:由题意,得11,2a b c a b a c b c ===⋅=⋅=⋅= ,所以a b c --()21a b c b a b b b c --⋅=⋅--⋅=-设向量a b c -- 和b 的夹角为θ,则()cos 2a b c b a b c bθ--⋅==---⋅ ,又[]0,θπ∈,所以34πθ=.故选:C.35.如图,在平行六面体1111ABCD A B C D -中,1160A AD A AB BAD ∠=∠=∠=︒,2AB AD ==,11AA=,点P 为线段BC 中点.(1)求1D P ;(2)求直线1AB 与1D P 所成角的余弦值.【答案】(1)1D P =【分析】(1)首先设AB a = ,AD b = ,1AA c =,得到112D P a b c =-- ,再平方即可得到答案;(2)由1AB a c =+,得1AB = 111111cos ,AB D P AB D P AB D P⋅=计算即可.【详解】(1)因为在平行六面体1111ABCD A B C D -中,点P 在线段BC 上,且满足BP PC =.设AB a = ,AD b = ,1AA c =,这三个向量不共面,{},,a b c 构成空间的一个基底.所以()()111D P AP AD AB BP AD AA =-=+-+ ()1122a b b c a b c ⎛⎫=+-+=-- ⎪⎝⎭ .112D P a b c =-- ,22222111224D P a b c a b c a b a c b c⎛⎫∴=--=++-⋅-⋅+⋅ ⎪⎝⎭1111441222212141122134222=+⨯+-⨯⨯-⨯⨯⨯+⨯⨯=++--+=,1D P ∴=(2)由(1)知112D P a b c =--,1D P = 1a AB c =+ ,1AB === ()11111112cos ,a c a b c AB D PAB D P AB D P⎛⎫+⋅-- ⎪⋅∴=2211322214a ab ac a c b c c-⋅-⋅+⋅-⋅-== ,直线1AB 与1D P 所成角的余弦值为14.36.如图,二面角l αβ--的棱上有两个点A ,B ,线段BD 和AC 分别在这个二面角的两个面内,并且都垂直于棱l .若4,6,8,AB AC BD CD ====α与平面β夹角的余弦值为.【答案】13【分析】设这个二面角的度数为α,由题意得CD CA AB BD =++,从而得到cos α.【详解】解:设平面α与平面β的夹角的度数为α,由题意得CD CA AB BD =++,且,CA AB AB BD ⊥⊥ ,即0,0CA AB AB BD ⋅=⋅= ∴22222||||cos(π)CD CA AB BD CA BD α=+++⋅-,2361664268cos α∴=++-⨯⨯⨯,解得1cos 3α=,∴平面α与平面β的夹角的余弦值为13.故答案为:13.重难点6投影向量37.在标准正交基{},,i j k 下,已知向量2a i =-+83j k + ,52b i k =-+ ,则向量2a b + 在i 上的投影为,在,j k上的投影之积为.【答案】-1256【分析】根据向量的加法求得21287a b i j k +=-++ ,即可得2a b + 在i ,j ,k上的投影分别为-12,8,7,即可得答案.【详解】解:易得21287a b i j k +=-++,所以2a b + 在i ,j ,k上的投影分别为-12,8,7,其在j ,k上的投影之积为8756⨯=.故答案为:-12;56.38.已知4a = ,向量e 为单位向量, 120a e <>=,,则空间向量a 在向量e 方向上投影为.【答案】2-【分析】根据投影的定义结合已知条件求解即可.【详解】因为4a = ,向量e为单位向量, 120a e <>= ,,所以向量a 在向量e 方向上投影为1cos1204()22a =⨯-=-.故答案为:2-39.如图,在长方体ABCD A B C D -''''中,已知1AB =,2AD =,3AA '=,分别求向量AC ' 在AB 、AD 、AA '方向上的投影数量.【答案】向量AC ' 在AB、AD 、AA ' 方向上的投影数量分别为1、2、3.【分析】分析可得A AB AD A C A =+'+' ,利用投影数量公式可求得向量AC ' 在AB、AD 、AA ' 方向上的投影数量.【详解】解:非零向量a 在非零向量b方向上的投影数量为cos ,a b a b a a b a a b b⋅⋅<>=⋅=⋅,由空间向量的平行六面体法则可得A AB AD A C A =+'+',在长方体ABCD A B C D -''''中,0AB AD AB AA AD AA ''⋅=⋅=⋅=,因此,向量AC ' 在AB方向上的投影数量为()1AB AD AA AB AC AB AB AB AB'++⋅'⋅===,向量AC ' 在AD 方向上的投影数量为()2AB AD AA AD AC ADAD AD AD'++⋅'⋅===,向量AC ' 在AA ' 方向上的投影数量为()3AB AD AA AA AC AA AA AA AA ''++⋅''⋅'===''.40.如图,已知PA ⊥平面ABC ,120ABC ∠= ,6PA AB BC ===,则向量PC 在BC上的投影向量等于.【答案】32BC【分析】先求出PC BC ⋅,再根据投影向量的公式计算即可.【详解】PA ⊥ 平面ABC ,则PA BC ⊥,21()0666542PC BC PA AB BC BC PA BC AB BC BC BC ⋅=++⋅=⋅+⋅+⋅=+⨯⨯+= 向量PC 在BC 上的投影向量为||PC BC BC ⋅543.362||BC BC BC BC ⋅==故答案为:32BC.41.在棱长为1的正方体1111ABCD A B C D -中,向量AB在向量11A C方向上的投影向量的模是.【分析】由正方体的性质可得向量AB 与向量11A C 夹角为cos 45 ,先求出1111AB A C A C ⋅的值,进而可得答案.【详解】棱长为1的正方体1111ABCD A B C D -中向量AB 与向量11A C 夹角为cos 45,所以1111AB A C A C =⋅111111cos ,cos ,AB A C AB AB A C A B ⋅=1cos 452=⨯=向量AB在向量11A C 方向上的投影向量是11111111AB A C A C A C A C ⋅⨯=1111A C A C向量AB在向量11A C1111A C A C =故答案为:242.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,CB AB ⊥,AB BC a ==,PA b =.(1)确定PC在平面ABC 上的投影向量,并求⋅ PC AB ;(2)确定PC 在AB上的投影向量,并求⋅ PC AB .【答案】(1)PC在平面ABC 上的投影向量为AC ,2PC AB a ⋅= ;(2)PC 在AB 上的投影向量为AB,2PC AB a ⋅= .【分析】(1)根据PA ⊥平面ABC 可得PC在平面ABC 上的投影向量,由空间向量的线性运算以及数量积的定义计算()AB PC A B B P B C A A =++⋅⋅的值即可求解;(2)由投影向量的定义可得PC 在AB上的投影向量,由数量积的几何意义可得⋅ PC AB 的值.【详解】(1)因为PA ⊥平面ABC ,所以PC在平面ABC 上的投影向量为AC ,因为PA ⊥平面ABC ,AB ⊂面ABC ,可得PA AB ⊥,所以0PA AB ⋅=,因为CB AB ⊥,所以0BC AB ⋅=,所以()PC AB PA AB PA AB AB BC AB BC AB AB =++=+⋅⋅⋅⋅+⋅ 2200a a =++=.(2)由(1)知:2PC AB a ⋅= ,AB a =r ,所以PC 在AB上的投影向量为:2cos ,AB PC AB AB PC AB AB a AB PC PC AB PC AB a a AB PC AB AB AB AB⋅⋅⋅⋅=⋅⋅=⋅=⋅=⋅,由数量积的几何意义可得:2PC AB AB a AB ⋅=⋅= .重难点7用数量积求线段长度43.棱长为1的正四面体(四个面都是正三角形)OABC 中,若M 是BC 的中点,N 在OM 上且ON MN =,记OA a = ,OB b = ,OC c =.(1)用向量a ,b,c 表示向量AN ;(2)若13AP AN =,求OP .【答案】(1)1144AN a b c =-++;(2)||OP =【分析】(1)根据空间向量基本定理进行求解即可;(2)根据空间向量数量积的运算性质和定义、结合空间向量基本定理进行求解即可.【详解】(1)因为M 是BC 的中点,N 在OM 上且ON MN =,所以11111()22244AN AO ON OA OM OA OB OC a b c =+=-+=-+⨯+=-++;(2)由(1)可知:1144AN a b c =-++ ,因为13AP AN =,所以1111211()334431212OP OA AP OA AN OA a b c a b c =+=+=+-++=++,而OP = OABC 的棱长为1,所以OP ==44.如图,在平行六面体1111ABCD A B C D -中,1AB =,1AD =,11AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,则线段1AC 的长为()A .5B .3CD【答案】C 【分析】11AC AB BC CC =++ ,然后平方可算出答案.【详解】在平行六面体1111ABCD A B C D -中,1AB =,1AD =,11AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,∵11AC AB BC CC =++ ,∴()2211AC AB BC CC =++ 222111222AB BC CC AB BC AB CC CC BC=+++⋅+⋅+⋅ 111110*********=++++⨯⨯⨯+⨯⨯⨯=,∴1AC =故选:C.45.如图,在平行六面体1111ABCD A B C D -中,AB a = ,AD b = ,1AA c = ,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,1a b c === ,则用{},,a b c 表示1AC uuu r 及线段1AC 的长为分别为()A .1AC c a b =++ ,15AC = B .1AC a b c =+- ,13AC =C .1AC c a b =++ ,1AC =D .1AC a b c =+- ,1AC =【答案】C【分析】用向量的线性运算可直接求得1AC uuu r ;求整体的模长可平方再开根.【详解】在平行六面体1111ABCD A B C D -中,1AB =,1AD =,11AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,∵11AC AB BC CC a b c =++=++ ,∴()2222111121222AC AB BC CC AB BC CC AB BC AB CC CC BC=++=+++⋅+⋅+⋅ 111110*********=++++⨯⨯⨯+⨯⨯⨯=,∴1AC = 故选:C .46.如图,在直三棱柱111—ABC A B C 中,E F G ,,,分别为11A B ,1CC ,1BB 的中点,分别记AB ,AC ,1AA为a ,b ,c .(1)用a ,b ,c 表示EF ,EG ;(2)若12AB AC AA ===,AB AC ⊥,求2EF EG + .【答案】(1)1122EF a b c -=-+ ;1()2EG a c -= .【分析】(1)用空间向量的加减运算分别表示EF ,EG ,111111EF EA A F EA AC C F +=+=+ ,11EG EB B G =+ ,再转化为a ,b ,c 表示即可;(2)先把2EF EG + 用a ,b ,c 表示,然后平方,把向量的模和数量积分别代入,计算出结果后再进行开方运算求得2EF EG + .【详解】(1)连结1A F .在直三棱柱111—ABC A B C 中,11AB A B a == ,11AC AC b == ,111AA BB CC c === ,则1111111111111112222EF EA A F EA A C C F A B A C CC a b c ===-+-=+++-+- .11111111()222EG EB B G A B BB a c =+=--= .(2)如图,在直三棱柱111—ABC A B C 中,1AA ABC ⊥底面,AB ABC ⊂底面,AC ABC ⊂底面,所以1AA AB ⊥,1AA AC ⊥,又AB AC ⊥,所以10B AA A c a =⋅⋅= ,10C AA A c b =⋅⋅= ,0A A B a C b ⋅⋅== .1113()22222a b c a c F G b E a E c -+-++=-=+- ,()2222213193314912422442a b c a b c a b a c EF EG b c ⎛⎫=+-=+++⋅-⋅-⋅=++= ⎪⎝⎭+ ,所以2EF EG +=47.如图所示,在平行四边形ABCD 中,1AB AC ==,=90ACD ∠︒,将它沿对角线AC 折起,使AB 与CD 成60︒角,则,B D 间的距离等于()A B .1C 2D .1【答案】C 【分析】先利用向量的加法可得BD BA AC CD =++ ,等式两边进行平方,可求出24BD = 或22BD = ,从而可得结果.【详解】90,0ACD AC CD ∠=︒∴⋅= ,同理,0AC BA ⋅= ,又因为AB 与CD 成60︒角,,60BA CD ∴=︒ 或,120BA CD =︒ ,AC CD BD BA =++ ,2222222BD AC CD BA AC BA CD AC CD BA =+++⋅+⋅+⋅ 3211cos ,BA CD =+⨯⨯⨯= 31±,24BD = 或22BD = ,2BD = 或BD = 故选:C.48.平行六面体ABCD A B C D -''''中,4,3,5,9060,AB AD AA BAD BAA DAA ===∠=∠=''∠='︒︒,则AC '的长为()A .10B C D【答案】B【分析】由AC AB AD AA '=++' ,两边平方,利用数量积运算性质即可求解.【详解】如图,216AB = ,29AD = ,225AA '= ,43cos 900AB AD ⋅=⨯⨯︒= ,45cos 6010AB AA ⋅'=⨯⨯︒= ,1535cos 602AD AA ⋅'=⨯⨯︒= . AC AB AD AA '=++',∴2222222AC AB AD AA AB AD AB AA AD AA '=++'+⋅+⋅'+⋅'1516925202102852=+++⨯+⨯+⨯=,∴||AC '=即AC '故选:B .49.棱长为2的正方体中,E ,F 分别是1DD ,DB 的中点,G 在棱CD 上,且13CG CD =,H 是1C G的中点.(1)求1cos ,EF C G .(2)求FH 的长.【答案】153【分析】(1)将1,EF C G 分别用1,,DA DC DD 表示,再根据数量积的运算律分别求出11,,EF C G EF C G ⋅ ,再根据111cos ,EF C G EF C G EF C G⋅= 即可得解;(2)将FH 用1,,DA DC DD 表示,再根据数量积的运算律即可得解.【详解】(1)由题意,()11122EF ED DF DD DA DC =+=-++ ,11113C G C C CG DD DC =+=-- ,则EF ====1C G ,()111111223EF C G DD DA DC DD DC ⎡⎤⎛⎫⋅=-++⋅-- ⎪⎢⎥⎣⎦⎝⎭22111111111142626263DD DD DC DD DA DA DC DD DC DC =+⋅-⋅-⋅-⋅-= ,所以11143cos ,EF C G EF C G EF C G ⋅= (2)()11111122FH FB BC CC C H DA DC DA DD C G =+++=+-++ ()11111223DA DC DA DD DD DC ⎛⎫=+-++-- ⎪⎝⎭1111232DA DC DD =-++ ,所以FH =3=,所以FH.。
【课件】空间向量及其线性运算+课件高二上学期数学人教A版(2019)选择性必修第一册

D
C
A
B
H
G
求证:E, F,G, H四点共面.
E
F
法三: 四边形ABCD是平行四边形,
AD BC, OE OF OG OH k.
OA OB OC OD
EH OH OE,
kOD OA
kAD 同理可得,FG kBC
简结果.
D
F
B
E
C
4.如图,已知正方体 ABCD ABCD, E, F分别是上底面 AC
和侧面CD中心.求下列各式中 x, y的值.
(1)AC xAB BC CC
B'
A'
D'
E
C'
(2)AE AA xAB yAD
Байду номын сангаас
F
(3)AF AD xAB yAA
A
D
B
C
课堂小结:
1.空间向量及其相关概念. 2.空间向量的线性运算. 3.空间向量的线性运算的运算律. 4.空间向量共线的充要条件. 5.空间向量共面的充要条件.
OH kOD, 四边形ABCD平行四边形
AC AB AD
EG OG OE kOC kOA kAC
kAB AD kOB OA OD OA
EG, EF, EH共面 E, F,G, H四点共面.
kOB kOA kOD kOA OF OE OH OE EF EH
如图,已知平行四边形ABCD,过平面AC
性不一定成立.
(4)此定理可以用来证明两 直线平行或三点共线 .
如图,O是直线l上一点,在直线l上取非零向量a,
则对于直线 l上任意一点 P,
高二数学空间向量及其运算

例1 利用空间向量的方法证明直线与 平面垂直的判定定理:
如果一条直线与平面内的两相 交直线都垂直,则这条直线与这个平 面垂直.
例2 已知:在空间四边形OABC中,
OA⊥BC,OB⊥AC, 求证: OC⊥AB
例3 已知线段AB在平面α内, 线段AC⊥α,线段BD⊥AB,且 与所成的角为30O,如果AB=a, AC=BD=b,求C、D间的距离.
重 心。
其中不正确的命题的序号是
.
2、已知
a,b,c
是空间向量的
一组基底,则下列向量中可以与向量
p
a b,q a
(A) a
(C)
a 2b
b
构成基底的是(
(B)
b
(D) a 2c
)
a3、b若|向a 量|| ba|与是向b均量为a非与零b向平量行,的则( )
(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)非充分非必要条件
4、已知正方体ABCD-A1B1C1D1, 点F是侧面CD1的中心,若 ,则
AFm=AD mAB,nn=AA1
。
5、 对空间任意一点O,若 OP 3 OA 1 OB 1 OC , 则 A 、 B 、
第 课时
2
空间如向果量三基个本向定量理a:, b, c 不共面, p 那么对空间任一向量 ,存在一
个唯一的有序实数对x、y、z,使
p xa yb zc
推论: 设O、A、B、C是不共面的四
个点,则对空间任一点P,都存在 唯一的三个有序实数x、y、z,使
OP xOA yOB zOC
488
C、P四点( )
111空间向量及其线性运算课件-2023高二上学期数学人教A版(2019)选择性必修第一册

如图,在平行六面体ABCD-A'B'C'D'中,分别标出 AB AD AA' , AB AA' AD 表示的向量. 从中你能体会向量加法运算的交换律和结合律 吗?一般地,三个不共面的向量的和与这三个向量有什么关系?
C
Pα
所以 AP AB AC ,
A
B
即 OP OA (OB OA) (OC OA) ,
化简得 OP (1 )OA OB OC ,
O
所以有 OP xOA yOB zOC (x y z 1) .
1.判断下列命题的真假. (1)空间向量就是空间中的一条有向线段; (2)不相等的两个空间向量的模必不相等; (3)两个空间向量相等,则它们的起点相同,终点也相同; (4)向量 AB 与向量B A 的长度相等.
第一章 空间向量与立体几何
1.1 空间向量及其运算
1.1.1 空间向量及其线性运算
1.了解空间向量的概念. 2.掌握空间向量的加减运算、数乘运算. (重点) 3.共线向量及共面向量的应用.(重点、难点)
平面向量
1.定义:既有大小又有方向的量叫向量.
几何表示法:用有向线段表示.
字母表示法:用字母 a ,b 等或者用有向线段的起点与终点字母 AB 表示.
任意一点P,由数乘的定义及向量共线的充要条件可知,
存在实数 λ,使得 OP a . 我们把与向量 a 平行的
非零向量称为直线l 的方向向量.
这样,直线l 上任意一点都可以由直线l 上的
a
l P
一点和它的方向向量表示,也就是说,直线 可以由其上一点和它的方向向量确定.
高二上学期数学人教A版选择性必修第一册1.1.1空间向量及其线性运算课件

高中数学
选择性必修第一册
RJ·A
问题1
空间向量是平面向量的推广。
我们已经学过平面向量的概念和线性运算,你能类比平面向量,给
出空间向量的概念和线性表示吗?
高中数学
选择性必修第一册
RJ·A
新知讲解:
一 空间向量的概念、表示
1.空间向量的概念:在空间,具有 大小 和 方向 的量叫做空间向量.
2.空间向量的长度或模:向量的 大小 .
→ →
4.向量AB与AC是共线向量,则 A,B,C 三点必在一条直线上.( √ )
高中数学
选择性必修第一册
RJ·A
四 空间向量的运算律
1.运算律
交换律:+=+;
结合律:+(+)=(+)+,λ(μ)=(λμ);
分配律:(λ+μ)=λ+μ,λ(+)=λ+λ.
高中数学
而不是一个数.
(2)混淆向量共线与线段共线、点共线.
高中数学
选择性必修第一册
RJ·A
典例剖析
例1
(多选题)下列说法中正确的是(
)
A.若|a|=|b|,则a,b的长度相同,方向相同或相反
B.若向量a是向量b的相反向量,则|a|=|b|
C.空间向量的加法满足结合律
D.任一向量与它的相反向量不相等
解析
||=||,说明与模相等,但方向不确定;对于的相反向量=-,故||=||,从而B正确;
→ →
→
→
→
→
→
→
→ →
共面. 由OP=OA+xAB+yAC,可得AP=xAB+yAC,所以向量AP与向量AB,AC共面,
故点 P 与点 A,B,C 共面.
高中数学
选择性必修第一册
空间向量及其线性运算(课件)(人教A版2019选修一)高二数学同步精品

自主学习
三.空间向量的线性运算
空 加法 间
三角形法则:a+b=O→A +A→B = O→B 平行四边形法则:a+b=O→A +O→C = O→B
向 量
减法
a-b=O→A -O→C =C→A
的 线
当 λ>0 时,λa(λa 的长度为 a 的|λ|a 倍)=λO→A
性 运 算
数乘 运算
=P→Q (与 a 同向)
当堂达标
2.向量 a,b 互为相反向量,已知|b|=3,则下列结论正确的是( ) A.a=b B.a+b 为实数 0 C.a 与 b 方向相同 D.|a|=3
D 解析:向量 a,b 互为相反向量,则 a,b 模相等、方向相反,故选 D.
当堂达标
3.已知正方体 ABCD-A1B1C1D1 中,A→1E=14A→1C1,若A→E=xA→A1+y(A→B+A→D),则(
自主学习
六.共面向量 定义:平行于___同__一__个__平__面_____的向量叫做共面向量.
1.证明空间三个向量共面,常用如下方法: (1)设法证明其中一个向量可以表示成另两个向量的线性组合, 即若 a=xb+yc,则向量 a,b,c 共面; (2)寻找平面 α,证明这些向量与平面 α 平行.
)
A.x=1,y=12
B.x=12,y=1
C.x=1,y=13
D.x=1ቤተ መጻሕፍቲ ባይዱy=14
D 解析:A→E=A→A1+A→1E=A→A1+14A→1C1=A→A1+14(A→B+A→D).所以 x=1,y=14.
当堂达标
4.如图,在长方体 ABCD-A′B′C′D′中,AB=3,AD=2,AA′=1, 则分别以长方体的顶点为起点和终点的向量中: ①单位向量共有多少个? ②试写出模为 5的所有向量. ③试写出与向量A→B相等的所有向量. ④试写出向量-A-→A′的所有相反向量.
高二数学选择性必修 第1章 空间向量及其线性运算 课件(共71张PPT)

b 共面的充要条件是存在唯一的有序实数对(x,y),使_p_=__x_a_+__y_b_.
(3)空间一点 P 位于平面 ABC 内的充要条件:存在有序实数对(x,
y), 使A→P=_xA_→_B_+__yA_→C__或对空间任意一点 O,有O→P=O_→_A_+__xA_→_B_+__yA_→_C.
返 首 页
21
4.在三棱锥 A-BCD 中,若△BCD 是正三角形,E 为其中心,则A→B+12B→C -32D→E-A→D化简的结果为________.
0 [延长DE交边BC于
A.1 个 B.2 个 C.3 个 D.4 个 D [共四条 AB,A1B1,CD,C1D1.]
返 首 页
20
3.点 C 在线段 AB 上,且|AB|=5,|BC|=3,A→B=λB→C,则 λ= ________.
-53 [因为 C 在线段 AB 上,所以A→B与B→C方向相反,又因|AB| =5,|BC|=3,故 λ=-53.]
充要条件是存在实数 λ 使_a_=__λ_b_.
(4)如图,O 是直线 l 上一点,在直线 l 上取非零向量 a,则对于 直线 l 上任意一点 P,由数乘向量定义及向量共线的充要条件可知, 存在实数 λ,使得O→P=λa.
返 首 页
14
5.共面向量
(1)定义:平行于_同__一__个_平__面__的向量叫做共面向量.
定理及推论的应用.(重点、难 观想象和逻辑推理的核心素养.
点)
返 首 页
3
情景 导学 探新 知
返 首 页
4
国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观 赏黄浦江,然后抵达东方明珠(B)游玩,如图 1,游客的实际位移是什 么?可以用什么数学概念来表示这个过程?
高二上学期数学人教A版选择性必修第一册1.1.1空间向量及其线性运算课件

B
C
O
B
C
向量加法结合律在空间中仍成立
A
A
推广
(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;
向量加法运算的推广
*
例2
练习:
*
课堂小结(1分钟)
1.空间向量的相关定义:2.空间向量的线性运算法则及运算律:
三角形法则和平行四边形法则
当堂检测(12分钟)
C
问题3 平面向量的加法、减法运算法则是什么?
向量加法的三角形法则
减向量终点指向被减向量终点
导学问题1(2分钟)
阅读课本p2:类比平面向量的定义,你能得到空间向量的相关定义吗?
大小
方向
大小
模
有向线段
点拨运用1(4分钟)
相等
相反
相同
相等
互相平行或重合
共线向量
平行向量
*
练习:(多选)下列关于空间向量概念的命题中,正确的是
BC
导学问题2(5分钟)
阅读课本p3并思考:1.空间向量的线性运算及其法则与平面向量有区分吗?为什么?2.如何借助平行六面体理解空间向量的加法运算的运算律?
加法:三角形法则或平行四边形法则
减法:三角形法则
加法结合律
成立吗?
点拨运用2(18分钟)
1.1.1空间向量及其线性运算 第一课时(加减数乘)
学习目标(1分钟)
1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。2.掌握空间向量的加减数乘运算。
*
问题1 平面向量是什么?我们是如何表示平面向量的?
平面中既有大小又有方向的量
复习回顾(2分钟)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量及其运算●考试目标 主词填空1.空间向量基本定理及应用空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对空间任一向量p 存在惟一的有序实数组x 、y 、z ,使p =x a + y b + z c .2.向量的直角坐标运算: 设a =(a 1,a 2,a 3), b =(b 1,b 2,b 3), A (x 1,y 1,z 1),B (x 2,y 2,z 2). 则a +b = ),,(332211b a b a b a +++. a -b = ),,(332211b a b a b a ---. a ·b =332211b a b a b a ++.若a 、b 为两非零向量,则a ⊥b ⇔a ·b =0⇔ 332211b a b a b a ++=0.●题型示例 点津归纳【例1】 已知空间四边形OABC 中,∠AOB =∠BOC = ∠AOC ,且OA =OB =OC .M ,N 分别是OA ,BC 的中点,G 是 MN 的中点.求证:OG ⊥BC .【解前点津】 要证OG ⊥BC ,只须证明0=•BC OG 即可.而要证0=•BC OG ,必须把OG 、BC 用一组已知的空间基向量来表示.又已知条件为∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,因此可选例1题OC OB OA ,,为已知的基向量.【规范解答】 连ON 由线段中点公式得:),(41)(212121)(21OC OB OA OC OB OA ON OM OG ++=⎥⎦⎤⎢⎣⎡++=+=又OB OC BC -=, 所以•OG OB OC OB OB OA OC OC OB OC OA OB OC OC OB OA OB •--•-+•+•=-•++=22(41)()(41) =41(OA 22OB OC OB OA OC -+•-•). 因为AOC OC OA OC OA ∠••=•cos .AOB OB OA OB OA ∠••=•cos且OAOB OC==,∠AOB =∠AOC .所以BC OG •=0,即OG ⊥BC .【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力.【例2】 在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:异面直线BA 1与AC 所成的角.【解前点津】 利用><⨯•=•AC BA AC BA AC BA ,cos 111,求出向量1BA 与AC的夹角〈1BA ,AC 〉,再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角.【规范解答】 因为BC AB AC BB BA BA +=+=,11, 所以)()(11BC AB BB BA AC BA +•+=• =BC BB AB BB BC BA AB BA •+•+•+•11因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC ,例2图所以AB BB BC BA •=•1,0=0,AB BA BC BB •=•,01=-a 2.所以AC BA •1=-a 2. 又,,cos 111><••=•AC BA AC BA AC BA.2122,cos 21-=⨯->=<aa a AC BA 所以〈AC BA ,1〉=120°.所以异面直线BA 1与AC 所成的角为60°.【解后归纳】 求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.【例3】 如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分 别是BB 1、DC 的中点.(1)求AE 与D 1F 所成的角; (2)证明AE ⊥平面A 1D 1F .【解前点津】 设已知正方体的棱长为1,且DA =e 1,DC =e 2,1DD =e 3,以e 1,e 2,e 3为坐标向量,建立空间直角坐标系D —xyz ,则:(1)A (1,0,0),E (1,1,21),F (0,21,0),D 1(0,0,1), 所以 AE =(0,1,21),FD 1 =(0,21 ,-1). 所以AE ·F D 1=(0,121),·(0, 21,-1)=0.例3所以AE ⊥F D 1,即AE 与D 1F 所成的角为90°. (2)又DA =(1,0,0)=11A D , 且11A D ·AE =(1,0,0)·(0,1,21)=0. 所以 AE ⊥D 1A 1,由(1)知AE ⊥D 1F ,且D 1A 1∩D 1F =D 1. 所以AE ⊥平面A 1D 1F .【解后归纳】本题考查应用空间向量的坐标运算求异面直线所成的角和证线面垂直的方法.【例4】 证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心).【规范解答】∵E ,G 分别为AB ,AC 的中点, ∴EGBC 21,同理HFBC 21,∴EG HF .从而四边形EGF H 为平行四边形,故其对角线EF , GH 相交于一点O ,且O 为它们的中点,连接OP ,OQ .只要能证明向量OP =-OQ 就可以说明P ,O ,Q 三点共线且O为PQ 的中点,事实上,HQ OH OQ GP OG OP +=+=, ,而O 为GH 的中点, 例4图∴GP OH OG ,0=+21CD,QH21CD,∴.21,21CD QH CD GP ==∴=CD CD HQ GP OH OG OQ OP 21210-+=+++=+=0. ∴OQ OP -==,∴PQ 经过O 点,且O 为PQ 的中点.【解后归纳】本例要证明三条直线相交于一点O ,我们采用的方法是先证明两条直线相交于一点,然后证明OQ OP ,两向量共线,从而说明P 、O 、Q 三点共线进而说明PQ 直线过O 点.●对应训练 分阶提升 一、基础夯实1.在下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OC OB OA OM --=2 B.OC OB OA OM 213151++=C.0=++MC MB MAD.0=+++OC OB OA OM 2.与向量a =(12,5)平行的单位向量是( )A.⎪⎭⎫⎝⎛135,1312B.⎪⎭⎫⎝⎛--135,1312C.⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛135,1312135,1312或 D.⎪⎭⎫⎝⎛±±135,13123.若向量{a , b ,c }是空间的一个基底,向量m =a +b ,n =a -b ,那么可以与m 、n 构成空间另一个基底的向量是( )A.aB.bC. cD.2a4. a 、b 是非零向量,则〈a ,b 〉的范围是 ( )A.(0,2π)B.[0,2π] C.(0,π) D.[0,π]5.若a 与b 是垂直的,则a ·b 的值是( )A.大于0B.等于零C.小于0D.不能确定6.向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( ) A.相交 B.垂直C.平行D.以上都不对7. A (1,1,-2)、B (1,1,1),则线段AB 的长度是( )A.1B.2C.3D.48. m ={8,3,a },n ={2b ,6,5},若m ∥n ,则a +b 的值为( ) A.0B.25C.221D.8 9. a ={1,5,-2},b ={m ,2,m +2},若a ⊥b ,则m 的值为( )A.0B.6C.-6D.±610. A (2,-4,-1),B (-1,5,1),C (3,-4,1),令a =CA ,b =CB ,则a +b 对应的点为( )A.(5,-9,2)B.(-5,9,-2)C.(5,9,-2)D.(5,-9,2)11. a =(2,-2,-3),b =(2,0,4),则a 与b 的夹角为( )A.arc cos 85854 B.8569arcsinC.85854arccos-πD.90°12.若非零向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},则212121z z y y x x ==是a与b 同向或反向的( )A.充分不必要条件B.必要非充分条件C.充要条件D.不充分不必要条件二、思维激活13.已知向量a , b , c 满足a +b +c =0,|a |=3,| b |=1,| c |=4.则ab +bc +ca = . 14.已知|a |=22,|b |=22,ab =-2,则a 、b 所夹的角为 .15.已知空间三点A、B、C坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P在xOy平面上且P A⊥AB,P A⊥AC,则P点坐标为.16.已知a={8,-1,4},b={2,2,1},则以a、b为邻边的平行四边形的面积为.三、能力提高17.已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且与α所成的角是30°,如果AB=a,AC=BD=b,求C、D之间的距离.18.长方体ABCD—A1B1C1D1中,E、F分别为AB、B1C1中点,若AB =BC=2,AA1=4,试用向量法求:的夹角的大小.(1)CFEA与1(2)直线A1E与FC所夹角的大小.19.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为BB 1、DC 的中点,求证:D 1F ⊥平面ADE .20.如图所示,已知ABCD ,O是平面AC外的一点,OD OD OC OC OB OB OA OA 2,2,2,21111====,求证:A 1,B 1,C 1,D 1四点共面.第20空间向量及其运算习题解答1.C 由向量共线定义知.2.C 设此向量为(x ,y ),∴⎪⎩⎪⎨⎧==+x y y x 512122,∴⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==13513121351312y x y x 或3.C4.D 根据两向量所成的角的定义知选 D.5. B 当a ⊥b 时,a ·b =0(cos 〈a , b 〉=0)6.C a =(1,2,-2)=-21·b ∴a ∥b .7.C |AB |=222)21()11()11(++-+-=3.8.C ∵m ∥n ,故(8,3,a )=k (2b ,6,5),∴8=2bk ,3=6k ,a =5k ,∴k =21 故a =25,b =8,∴a +b =25+8=2219.B ∵a ⊥b ∴1·m +5·2-2(m +2)=0. ∴m =6. 10.BCA =(-1,0,-2),CB=(-4,9,0),∴a +b =(-5,9,-2).11.C cos(a ·b )=2222242)3()2(24322+•-+-+⨯-⨯=-85854854-=.12.A 若212121z z y y x x ==,则a 与b 同向或反向,反之不成立.13.-13 ∵a +b +c =0,∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )=0,∴ab +bc +ca =-21(a 2+b 2+c 2)=-21(9+1+16)=-13. 14.π43cos 〈a , b 〉=22222222-=•-=•-ba .∴a ,b 所夹的角为43π.15.(-8,6,0) 由向量的数量的积求得. 16.95S=|a ||b |sin 〈a , b 〉求得.17.如图,由AC ⊥α,知AC ⊥AB .过D 作DD ′⊥α,D ′为垂足,则∠DBD ′=30°, 〈BD CA ,〉=120°, ∴|CD |2= 2)(CD AB CA CD CD ++=•=BD AB BD CA AB CA BD AB CA•+•+•+++222222=b 2+a 2+b 2+2b 2cos120°=a 2+b 2. ∴CD =22b a +点评:本题把线段转化成向量表示,然后利用向量进行运算. 18.如图,建立空间坐标系,则D (0,0,0)、A (2,0,0),B (2,2,0) 、C (0,2,0)、A 1(2,0,4)、B 1(2,2,4)、C 1(0,2,4). 由题设可知E (2,1,0),F (1,2,4). (1)令CF E A 与1的夹角为θ, 则cos θ=171611-=••CFE A CF E A .∴CF E A 与1的夹角为π-arccos 1716. (2)∴直线A 1E 与FC 的夹角为arccos 1716第17第1819.如图所示,不妨设正方体的棱长为1,且设DA =i ,DC =j ,1DD =k , 以i 、j 、k 的坐标向量建立空间直角坐标系D —xy z , 则AD =(-1,0,0),F D 1=(0,21,-1), AD ·F D 1=(-1,0,0)·(0,21,-1)=0,∴AD ⊥D 1F. 又AE =(0,1,21),F D 1=(0,21,-1), ∴AE ·F D 1=(0,1,21)·(0,21,-1)=21-21=0. ∴A E ⊥D 1F ,又AE ∩AD =A , ∴D 1F ⊥平面AD E.点评:利用向量法解决立体几何问题,首先必须建立适当的坐标系.20.证明:∵)(22)(2221111AD AB AC OA OC OA OC OA OC C A +==-=-=-==2[])22()22(()(OA OD OA OB OA OD OA OB -+-=-+-=11111111)()(D A B A OA OD OA OB +=-+-∴A 1,B 1,C 1,D 1四点共面. 第19。