1.二次函数与线段最值

合集下载

二次函数知识点总结和题型总结(1)

二次函数知识点总结和题型总结(1)

二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。

这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 . 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小.2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4。

()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限 D 。

第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。

第二十二章 第12课 二次函数的应用(1)——最值问题

第二十二章 第12课 二次函数的应用(1)——最值问题

解:∵四边形 ABCD 为矩形,∴BC=AD=4,CD=AB=3, 当运动 x 秒时,则 AQ=x,BP=x, ∴BQ=AB-AQ=3-x,CP=BC-BP=4-x, ∴S△ADQ=21AD·AQ=12×4x=2x, S△BPQ=12BQ·BP=12(3-x)x=23x-12x2,S△PCD=12PC·CD=12·(4- x)·3=6-32x,
又 S 矩形 ABCD=AB·BC=3×4=12,∴S=S 矩形 ABCD-S△ADQ- S△BPQ-S△PCD =12-2x-32x-12x2-6-32x=12x2-2x+6=12(x-2)2+4, 即 S=12(x-2)2+4,∴S 为开口向上的二次函数,且对称轴为 x =2,
2.如图,小明用铁栅栏及一面墙(墙足够长)围成一个矩形自行车 场地 ABCD,在 AB 和 BC 边各有一个 2 米宽的小门(不用铁栅 栏),小明共用铁栅栏 40 米,设矩形 ABCD 的边 AD 长为 x 米, 矩形的面积为 S 平方米.
(1)写出 S 与 x 的函数关系式; (2)如果要围成 192 平方米的场地,AD 的长是___6____. (3)当 x 取何值时,S 有最大值? 并求出最大值.
1.某商场经营某种品牌的童装,购进时的单价是 40 元.根据市场 调查,在一段时间内,销售单价是 60 元时,销售量是 100 件, 而销售单价每降低 1 元,就会多售出 10 件. (1)写出销售量 y(件)与销售单价 x(元)之间的函数解析式. (2)写出销售该品牌童装获得的利润 w(元)与销售单价 x(元)之 间的函数解析式.
则当 AC=__5____时,ABCD 的最大面积为__2_______.
4.在矩形 ABCD 中,AB=3,AD=4,动点 Q 从点 A 出发,以每 秒 1 个单位的速度,沿 AB 向点 B 移动;同时点 P 从点 B 出发, 仍以每秒 1 个单位的速度,沿 BC 向点 C 移动,连接 QP,QD, PD.若两个点同时运动的时间为 x 秒(0<x≤3),设△QPD 的面 积为 S,用含 x 的函数关系式表示 S;当 x 为何值时,S 有最小 值? 并求出最小值.

二次函数与线段定值

二次函数与线段定值
探索抛物线上的点在性之距离
一、二次函数与线段定值
【探索一】已知抛物线-x²-2x+3与x轴交于点A,B(点A在点B右侧),与y轴交于点c,设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点p,使三角形CMP为等腰三角形,若存在,请求出P点的坐标。
【探索二】抛物线y= -x²-2x+3与x轴交于点A,B(点A在点B右侧),与Y轴相交于点C,点P为抛物线上一动点,若点P到直线Y=X的距离为 ,求P点的坐标。
【探索三】抛物线y= -x²-2x+3与x轴交于点A,B(点A在点B右侧),与Y轴相交于点C,点P为抛物线上一动点,若点P到对称轴和Y的距离相等,求P点的坐标。
【探索四】抛物线y= -x²-2x+3与x轴交于点A,B(点A在点B右侧),与Y轴相交于点C,点P为抛物线上一动点,若点P到对称轴和X轴的距离相等,求P点的坐标。
【探索五】抛物线y= -x²-2x+3与x轴交于点A,B(点A在点B右侧),与Y轴相交于点C,点P为三角形BOC点,且点P到三角形BOC三边所在直线的距离相等,求P点的坐标。

求二次函数在某一区间上的最值

求二次函数在某一区间上的最值

求二次函数在某一区间上的最值求二次函数在某一区间上的最值问题,是函数中的一个重要问题。

下面我就分别按以下的三种类型来详细讨论这类问题。

类型一:定轴定区间问题例1、已知函数()22[1,)x x a f x x x++=∈+∞,若对于任意的[1,)x ∈+∞,()0f x >恒成立, 求实数a 的取值范围。

略解:因为1x ≥时,()0f x >恒成立,所以220x x a ++>恒成立,即函数22y x x a =++ 在1x ≥时恒成立,又min 3y a =+,所以30a +>,即3a >-例2、若函数221(0,1)x x y a a a a =+->≠在区间[]1,1-的最大值为14,求a 的值 解一:设x t a =,即0t > ,那么()()222112f t t t t =+-=+- 当1a >时,1a t a -≤≤,此时,()2max 1214y a =+-= 3a ∴=当01a <<时,1a t a -≤≤,此时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= ∴3a =或13a = 解二:函数()212x y a =+- (0,1)a a >≠在区间[]1,1-上y 随x a 的增大而增大,当1a >时,()max xa a =,故()2max 1214y a =+-= 3a ∴= 当01a <<时,()max 1xa a = ,故 2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= 综上3a =或13a = 类型二:动轴定区间问题例3、若函数23y x ax =++在区间[]1,1-的最小值为-3,求a 的值略解:原函数即为:22324a a y x ⎛⎫=++- ⎪⎝⎭ ① 若轴2a x =-在区间内,则11232a a f ⎧-≤-≤⎪⎪⎨⎛⎫⎪-=- ⎪⎪⎝⎭⎩,即 222334a a -≤≤⎧⎪⎨-=-⎪⎩ ∴a ∈∅ ② 若轴2a x =-在区间右侧,则()1213a f ⎧->⎪⎨⎪=-⎩,即243a a <-⎧⎨+=-⎩ ∴7a =- ③ 若轴2a x =-在区间左侧,则()1213a f ⎧-<-⎪⎨⎪-=-⎩ ,即233a a >⎧⎨-=-⎩ ∴7a = 所以a 7=±类型三: 定轴动区间问题例4、若函数222y x x =-+在区间[],1m m +的最大值为5,求m 的值略解:原函数即为:()2()11f x x =-+① 若轴1x =在区间内左侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≤+-≥ ⎪⎪⎝⎭⎩或,这时()15f m += 由上可解得:1122m m ⎧≤≤⎪⎨⎪=±⎩,∴m ∈∅② 若轴1x =在区间内右侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≥+-≤ ⎪⎪⎝⎭⎩或,这时()5f m = 由上可解得:10213m m m ⎧≤≤⎪⎨⎪=-=⎩或,∴m ∈∅ ③ 若轴1x =在区间左侧,即1m >,这时()15f m +=,由上可解得2m = ④ 若轴1x =在区间右侧,即11m +<,这时()5f m =,由上可解得1m =- 综上可知:12m m =-=或练习:是否存在实数a ,使函数()22f x x ax a =-+的定义域为[]11,-,值域为[]22,-;若存在,求出实数a的值,若不存在,说明理由. 答案:1a。

考点11 二次函数的图象性质及相关考点-备战2023届中考数学一轮复习考点梳理(原卷版)

考点11 二次函数的图象性质及相关考点-备战2023届中考数学一轮复习考点梳理(原卷版)

考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。

而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式1.二次函数的3种表达式及其性质作用2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项 ,一次项系数为 ,常数项为 .2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣5D.y=(x﹣2)2﹣63.在平面直角坐标系中,若将抛物线y=2x2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( )A.y=2(x﹣3)2+3B.y=2(x+3)2+3C.y=2(x﹣3)2+1D.y=2(x+3)2+24.抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( )A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)5.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(6,3).若抛物线y=mx2+2mx+m+3(m为常数,m≠0)向右平移a(a>0)个单位长度,平移后的抛物线的顶点在线段AB上,则a的取值范围为 .考向二、二次函数的图象特征与最值1.对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线;顶点坐标:;a>二次函数有最小值;a <二次函数有最大值;2.图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .函数有最小值1,有最大值3B .函数有最小值﹣1,有最大值3C .函数有最小值﹣1,有最大值0D .函数有最小值﹣1,无最大值2.如图是四个二次函数的图象,则a 、b 、c 、d 的大小关系为( )A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a3.如图是二次函数y=ax2+bx的大致图象,则一次函数y=(a+b)x﹣b的图象大致是( )A.B.C.D.4.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.5.已知二次函数y=x2﹣2x+2在m≤x≤m+1时有最小值m,则整数m的值是( )A.1B.2C.1或2D.±1或26.如图,点P是抛物线y=﹣x2+2x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .考向三、二次函数图象与系数的关系二次函数图象题符号判断类问题大致分为以下几种基本情形∶1.抛物线y =ax 2+bx +c 的对称轴为直线x =−1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b +c =0;④6a ﹣2b +c <0;⑤若点(0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2,其中正确的判断是( )A .②③④⑤B .②③④C .②③⑤D .②④⑤2.已知二次函数y =ax 2+bx +c 的y 与x的部分对应值如表:x￿﹣1013￿y￿0﹣1.5﹣20￿根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x﹣1)2﹣2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c=﹣1.5的两个根为0或2;④若y>0,则x>3;⑤a(am+b)≥a﹣b(m为任意实数).其中所有正确的结论为( )A.①②④B.②③⑤C.②③④D.①③⑤3.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是( )A.a>0B.C.或a>0D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是( )A.①③④B.①②③⑤C.①②③④D.①②③④⑤5.已知二次函数y=x2﹣2mx+m2+2m(1)①函数的顶点坐标为 (用含m的代数式表示);②该顶点所在直线的解析式为 ;在平面直角坐标系中画出该直线的图象;(2)当m=1时,二次函数关系式为 ,在平面直角坐标系中画出此函数的图象;(3)已知点A(﹣3,1)、B(1,1)连结AB.若抛物线y=x2﹣2mx+m2+2m与线段AB有且只有一个交点,求m的取值范围;(4)把二次函数y=x2﹣2mx+m2+2m(x≤2m)的图象记为G,当G的最低点到x轴的距离为1时,直接写出m的值.考向四、二次函数与方程、不等式(组)1.二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系:1)求交点:①求抛物线与x轴交点坐标→直接让y=0,即:ax2+bx+c=0②求抛物线与某直线l的交点坐标→联立抛物线与直线解析式,得新组成的一元二次方程,解新方程即的两图象交点横坐标,再代入直线或抛物线解析式即可得交点坐标。

中考数学频考点突破--二次函数的最值 (1)

中考数学频考点突破--二次函数的最值 (1)

中考数学频考点突破--二次函数的最值1.如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A(−1,0),B(52,0),直线y =x +12与抛物线交于C 、D 两点,与坐标轴交于E 、F 两点. 点P 是抛物线在第四象限内图象上的一个动点.过点P 作PG⊥CD ,垂足为G ,PQ⊥y 轴,交x 轴于点Q.(1)求抛物线的解析式;(2)当√2PG +PQ 取得最大值时,求点P 的坐标和√2PG +PQ 的最大值;(3)将抛物线向右平移134个单位得到新抛物线,M 为新抛物线对称轴上的一点,点N 是平面内一点.当(2)中√2PG +PQ 最大时,直接写出所有使得以点A ,P ,M ,N 为顶点的四边形是菱形的点N 的坐标.2.已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接PA 、PB 、PC 、PD .(1)如图①,当PA 的长度等于 时,⊥PAD=60°;当PA 的长度等于 时,⊥PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A即为原点O),把⊥PAD、⊥PAB、⊥PBC的面积分别记为S1、S2、S3.设P点坐标为(a,b),试求2S1S3﹣S22的最大值,并求出此时a、b的值.3.在Rt⊥ABC中,⊥C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有⊥PBQ与⊥ABC相似;(2)若Rt⊥AQP⊥Rt⊥ACP⊥Rt⊥BQP,求tanB的值;(3)已知AC=3,BC=4,当BP为何值时,⊥AQP面积最大,并求出最大值. 4.如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣4,0),B(6,0)两点,与y轴交于点C.若G是该抛物线上A,C之间的一个动点,过点G作直线GD⊥x轴,交抛物线于点D,过点D,G分别作x轴的垂线,垂足分别为E,F,得到矩形DEFG.(1)求该抛物线的表达式;(2)当点G与点C重合时,求矩形DEFG的面积;(3)若直线BC分别交DG,DE于点M,N,求⊥DMN面积的最大值.5.如图,在Rt⊥ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 √2cm(2)当t为何值时,⊥PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?6.已知二次函数的图象y=ax2−(2a+3)x−(3a2−9)与x轴交于点A(3,0),B.(1)求二次函数的表达式;(2)当x=x1,x2(x1,x2是实数,x1≠x2)时,该函数对应的函数值分别为y 1,y2.若x1+x2=5,试说明y1+y2+12>0.7.如图,矩形ABCD中,AB=5,BC=6,△BCG为等边三角形.点E,F分别为AD,BC边上的动点,且EF∥AB,P为EF上一动点,连接BP,将线段BP 绕点B顺时针旋转60°至BM,连接PA,PC,PM,GM.(1)求证:GM=PC;(2)当PB,PC,PE三条线段的和最小时,求PF的长;(3)若点E以每秒2个单位的速度由A点向D点运动,点P以每秒1个单位的速度由E点向F点运动.E,P两点同时出发,点E到达点D时停止,点P到达点F时停止,设点P的运动时间为t秒.①求t为何值时,△AEP与△CFP相似;②求△BMP的面积S的最小值.8.A、B两地果园分别有某种水果12吨和8吨,C、D两地分别需要这种水果5吨和15吨;已知从A、B到C、D的运价如表:到C地到D地A果园每吨150元每吨120元B果园每吨100元每吨90元(1)填空:①从B果园运到C地的水果为吨,②从A果园将水果运往D地的运输费用为元.(2)用含x的式子表示出总运输费(要求:列式、化简).(3)直接写出总运输费用的最小值.(4)若这批水果在C地和D地进行再加工,经测算,全部加工完毕后总成本为w 元,且w=﹣(x﹣3)2+185000,则当x=时,w有最值(填“大”或“小”).这个值是.9.某商店销售一种销售成本为40元/千克的水产品,若50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)写出月销售利润y(单位:元)与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3)商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元销售单价应定为多少?10.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.11.如图,已知反比例函数y= mx(x>0)的图象与一次函数y=﹣x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2﹣S1,求S的最大值.12.某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件。

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。

专题06 二次函数最小值问题(解析版)

专题06 二次函数最小值问题(解析版)
此时EN'= ,Q( , )
∴△QEF周长的最小值为 ,此时Q( , ).
4.如图1,二次函数y= x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且AO:BN=1:7.
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上的任意一点,过点P作直线l的垂线,垂足为M.求证:点P在线段FM的垂直平分线上;
(3)点E为线段OA的中点,在抛物线上是否存在点Q,使△QEF周长最小?若存在,求点Q的坐标和△QEF周长的最小值;若不存在,请说明理由.
【解答】解:(1)∵y=ax2+bx+c(a≠0)过原点O和点A(3,﹣3),
=(m﹣1)4+ (m﹣1)2+ ,
∴PM2=PF2,
∴PM=PF,
∴点P在MF的垂直平分线上,
(3)如图,E( ),EF= ,
作QN⊥l于N,由(2)知:QN=QF,
∴要想△QEF的周长最小,只要使EQ+QN最小,
作EN'⊥l于N',交抛物线于Q',
∵EQ+QN≥EN',
∴E、Q、N三点共线时,EQ+QN最小,
∴PE×PF最大时,PE×PD也最大,
∴PE×PD=(k+1)(3﹣ k)=﹣ k2+ k+3,
∴当k= 时,PE×PD最大,即:PE×PF最大,
此时G(5, ),
∵△MNB是等腰直角三角形,过B作x轴的平行线,
∴ BH=B1H,GH+ BH的最小值转化为求GH+HB1的最小值,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 二次函数与线段最值
1.如图,已知二次函数223y x x -=-+的图象交x 轴于A 、B 两点(A 在B 左边),交y 轴于C 点.
(1)求A 、B 、C 三点的坐标和直线AC 的解析式;
(2)点P 是直线AC 上方抛物线上一动点(不与A ,C 重合),过点P 作y 轴平行线交直线AC 于Q 点,求线段PQ 的最大值;
(3)点P 是直线AC 上方抛物线上一动点(不与A ,C 重合),过点P 作x 轴平行线交直线AC 于M 点,求线段P M 的最大值;
(4)点P 是直线AC 上方抛物线上一动点(不与A ,C 重合),求P 点到直线AC 距离的最大值;
(5)点P 是直线AC 上方抛物线上一动点(不与A ,C 重合),连接P A ,PC ,求△P AC 面积的最大值.
y x
A C
O
B
竖直线
y
x
B (x ,y 2)
A (x ,y 1)
O
y
x
A (x 1,y )
B (x 2,y )O
AB =|y 1-y 2|=y 1-y 2 (纵坐标相减)上减下
水平线
AB =|x 1-x 2|=x 2-x 1 (横坐标相减)右减左
2.如图,抛物线223y x x -=-+的图象与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求点A 、B 、C 的坐标;
(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求△AEM 的面积.
将军饮马模型
l A
l 1
B
A
l
2
M
B N
B 1
A
m
n
2
A 1
A
m n B 1
A 1
A
B
3.(2016浙江宁波第22题)(本题10分)如图,已知抛物线23y x mx =-++与x 轴交于A ,
B 两点,与y 轴交于点
C ,点B 的坐标为()3,0.
(1)求m 的值及抛物线的顶点坐标;
(2)点P 是抛物线对称轴l 上的一个动点,当PA PC +的值最小时,求点P 的坐标.
4.如图,已知点()4,8A -和点()2,B n 在抛物线2y ax =上.
(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ QB +最短,求出点Q 的坐标;
(2)平移抛物线2y ax =,记平移后点A 的对应点为A ',点B 的对应点为B ',点()2,0C -和点()4,0D -是x 轴上的两个定点.
①当抛物线向左平移到某个位置时,A C CB ''+最短,求此时抛物线的函数解析式; ②当抛物线向左或向右平移时,是否存在某个位置,使四边形A B CD ''的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.
备选题
5.已知抛物线2y ax bx c +=+与y 轴交于点A (0,3),与x 轴分别交于B (1,0),C (5,0)两点.
(1)求此抛物线的解析式;
(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;
(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A .求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.
练习1.如图,已知抛物线23y ax bx +=+与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3). (1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;并求出周长的最小值;
(3)若点E 是(1)中抛物线上的一个动点,且位于直线AC 的下方,试求△ACE 的最大面积及E 点的坐标.
作业1.如图,△ABC 的三个顶点坐标分别为A (-2,0)、B (6,0)、C (0,23-),抛
物线2y ax bx c +=+(0a ≠)经过A 、B 、C 三点. (1)求直线AC 的解析式; (2)求抛物线的解析式;
(3)若抛物线的顶点为D ,在直线AC 上是否存一点P ,使得△BDP 的周长最小,若存在,求出P 点的坐标;若不存在,请说明理由.
7.(2016广东省梅州市第24题)如图,在平面直角坐标系中,已知抛物线2y x bx c =++过
A ,
B ,
C 三点,点A 的坐标是(3,0),点C 的坐标是(0,3)-,动点P 在抛物线上.
(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果) (2)是否存在点P ,使得ACP △是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;
(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为
F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.。

相关文档
最新文档