动量守恒定律模型分析
动量守恒定律在板块模型中的应用例析

动量守恒定律在板块模型中的应用例析动量守恒定律在板块模型中的应用例析作为一个地球科学爱好者,我对地球板块模型和其运动规律一直充满了兴趣。
在这篇文章中,我将详细探讨动量守恒定律在板块模型中的应用,并分享一些个人观点和理解。
一、什么是动量守恒定律?在讨论动量守恒定律在板块模型中的应用之前,我们需要先了解一下什么是动量守恒定律。
动量守恒定律是物理学中一个重要的基本定律,它描述了一个封闭系统中的物体动量的守恒。
动量是物体的质量乘以速度,可以简单理解为物体在运动中的惯性。
按照动量守恒定律,在封闭系统中,物体相互作用导致的动量变化之和为零,即动量守恒。
二、动量守恒定律在板块模型中的应用2.1 地球板块运动地球板块模型是地壳的一种表达方式,描述了地球表面的外壳以数个大块或小块来划分。
这些板块在地球内部的流动和碰撞是地质活动和地震的主要原因。
在板块运动中,动量守恒定律发挥着重要的作用。
当两个板块相互碰撞或滑动时,它们之间会存在动量的交换。
根据动量守恒定律,两个板块所受的动力的大小和方向必须相等且相反,以使总动量保持不变。
2.2 板块边界类型根据板块间相对运动的不同方式,我们可以将板块边界分为三种类型:边界滑移、边界聚合和边界分离。
在边界滑移型板块边界中,两个板块相互滑动,沿着边界线发生水平位移。
这种情况下,动量守恒定律保证了两个板块之间的动力平衡,并且没有产生垂直方向的位移。
在边界聚合型板块边界中,两个板块相互碰撞,在碰撞的过程中动量守恒定律确保了总动量守恒,并导致了新的地形的形成。
在边界分离型板块边界中,两个板块相互远离,动量守恒定律确保了两个板块之间的动力平衡,并且没有产生额外的动力。
三、个人观点和理解对于我来说,动量守恒定律在板块模型中的应用是非常有意思的。
它帮助我们理解了地球上发生的地质活动,包括地震、火山喷发和山脉的形成。
通过运用动量守恒定律,我们可以更好地解释和预测板块之间的相对运动,并理解地表形态的演化。
人船模型(学生版)-动量守恒的十种模型

动量守恒的十种模型解读人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:mv 人-Mv 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=m M +mL 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m 。
“人船模型”的拓展(某一方向动量守恒)【典例分析】1如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【针对性训练】1(2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为()A.M +m M hB.M +m m (h +2a )C.M +m M (h +2a )D.M +m Mh +2a 2(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船。
用卷尺测出船后退的距离d ,然后用卷尺测出船长L 。
微专题Ⅰ 动量守恒定律几种模型分析(学生版) 2024-2025学年高二物理同步(人教版选修第一册)

1、掌握动量守恒定律中的几种重要考试模型,清晰如何分析及进行运用。
[例题1](2024春•高新区期末)如图所示,一小车静止于光滑水平面,其上固定一光滑弯曲轨道,例题3]如甲图所示,水平光滑地面上用两颗钉子的小车,小车的四分之一圆弧轨道是光滑的,半径为切,视为质点的质量为m=1kg的物块从(1)两小球速度相同时,弹簧最短,弹性势能最大A.m B=4mB.第一次碰撞过程中,弹簧弹性势能的最大值为0.6m v20C.第一次碰撞过程中,弹簧压缩量的最大值为0.768v0t0D.第一次碰撞过程中,弹簧压缩量的最大值为1.128v0t0例题5](2024•黄陂区校级一模)质量为2kg的小球b静止在光滑的水平地面上,左端连接一水平A.π+2m,π―2mA.球A沿槽C下滑过程中,槽B.整个过程中球A、球B和槽C.球A第一次滑至槽C最低点过程中,球D.球A与弹簧作用后,能够追上槽[例题7](2024春•天河区校级期末)如图所示,水平桌面光滑,轻弹簧一端固定在墙上,另一端A.动量不守恒,机械能守恒[例题10](2022秋•历下区校级期中)向空中发射一枚炮弹,不计空气阻力,当此炮弹的速度恰好例题12]有人对鞭炮中炸药爆炸的威力产生了浓厚的兴趣,他设计如下实验,在一光滑水平面上放置两个大小相等(可视为质点)紧挨着的1.(多选)(2024•济南三模)质量为A.子弹击中物块后瞬间,物块水平方向的速度大小变为B.子弹击中物块后瞬间,物块竖直方向的速度大小变为C.物块下落的总时间为A.滑块从A到B时速度大小等于A.滑块C与弹簧脱离的瞬间获得的速度v c=1m/sB.轻弹簧长度最短时,所具有的弹性势能E p=12JC.滑块C在传送带上因摩擦产生的热量Q1=8J(2024春•温州期中)为了探究物体间碰撞特性,设计了如图所示的实验装置。
水平直轨道AB、CD和水平传送带平滑无缝连接,两半径均为管道DEF与轨道CD和足够长的水平直轨道2m的滑块c用劲度系数k=100N/m的轻质弹簧连接,静置于轨道的滑块a以初速度v0=17m/s从A处进入,经传送带和(1)物块a到达D点的速度;(2)物块a刚到达与O1等高的E点时对轨道的压力的大小;(3)若a、b两物块碰后粘在一起,则在接下来的运动中弹簧的最大压缩量。
动量守恒中几种常见的模型

1、动力学规律:子弹和木块构成旳系统受到大小相等方 向相反旳一对相互作用力,故加速度旳大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块旳过程能够看作是 两个做匀变速直线运动旳物体间旳追及问题,在一段时间 内子弹射入木块旳深度,就是两者相对位移旳大小。而整 个过程产生旳热量等于滑动摩擦力和相对位移旳乘积。即 Q=Ff*s
代 根而入据f=数能μm据量g得守代:恒入定V=数律2m据得/解s:得fL: 12Lm=1v002m .12 M mv2
模型四:
带弹簧旳木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1旳小物块 A从坡道顶端由静止滑下,进入水平面上旳滑道时无机械能 损失,为使A制动,将轻弹簧旳一端固定在水平滑道延长线 M处旳墙上,另一端与质量为m2旳档板B相连,弹簧处于原 长时,B恰位于滑道旳末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间旳 动摩擦因数均为μ,其他各处旳摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v旳大小; (2)弹簧最大压缩量为d时旳弹性势能Ep(设弹簧处于原长 时弹性势能为零).
μ
mgL
1 2
m0
m
v2 1
1 2
Mv 2
1 2
m0
m
M
v 2 2
③
由①②③解得v0=149.6m/s为最大值, 所以v0≤149.6m/s
解:(1)物块A从坡道顶端由静止滑至O点旳过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远不小于外力,系统动
量守恒,以向左为正方向,由动量守恒定律得:
高中物理第08章动量守恒 动量守恒定律应用(四种模型)

08、(2013·高考新课标全国卷Ⅱ,35 题)如图所示,光滑水平直轨道上有三个质量均为 m 的物 块 A、B、C.B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设 A 以速度 v0 朝 B 运动,压缩 弹簧;当 A、 B 速度相等时,B 与 C 恰好相碰并粘接在一起,然后继续运动.假设 B 和 C 碰撞过 程时间极短,求从 A 开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的1、如图所示,一排人站在沿 x 轴的水平轨道旁,原点 O 两侧的人的序号都记为 n(n=1,2, 3……) .每人只有一个沙袋,x>0 一侧的每个沙袋质量为 m=14 kg,x<0 一侧的每个沙袋质量为 m′=10 kg.一质量为 M=48 kg 的小车以某初速度从原点出发向正 x 方向滑行.不计轨道阻力, 当车每经过一人身旁时,此人就把沙袋以水平速度 v 朝与车速相反的方向沿车面扔到车上,v 的 大小等于扔此袋之前的瞬间车速大小的 2n 倍(n 是此人的序号数) . (1)空车出发后,车上堆积了几个沙袋时车就反向滑行? (2)车上最终有大小沙袋共多少个?
ECNU
LEX
高中物理第 08 章动量守恒 动量守恒定律应用(四种模型)
Lex Li
一、子弹木块模型 01、 如图所示, 一根质量不计、 长为 1 m, 能承受最大拉力为 14 N 的绳子, 一端固定在天花板上, 另一端系一质量为 1 kg 的小球,整个装置处于静止状态,一颗质量为 10 g、水平速度为 500 m/s 的子弹水平击穿小球后刚好将将绳子拉断, (g 取 10 m/s ) 。求: (1)小球此时的速度大小; (2)子弹此时的速度大小。
2
02、一颗质量为 m,速度为 v0 的子弹竖直向上射穿质量为 M 的木块后继续上升,子弹从射穿木块 到再回到原木块处所经过的时间为 T,那么当子弹射出木块后,求: (1)子弹身穿木块时的速度大小; (2)木块上升的最大高度为多少?
动量守恒定律的典型模型

M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2
②
2
解①、②两式得 x
Mv02
③
(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V
①
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?
动量守恒定律的经典模型总结

碰撞后: 两物体的总动能E后 ≤ E前
被追物体速度不小于追赶物体的速度
习题:质量相等的A、B两物块在光滑水平面上沿一直线 向同一方向运动,A物块的动量为PA=9kg· m/s,B物块的动 量为PB =3kg· m/s,当A物块追上B物块发生碰撞,则碰撞后A、 B两物块的动量可能为( )
A. p A ' 6kgm/s B. p A ' 3kgm/ s
p B ' 6kgm/s
pB ' 9kgm/ s
pB ' 14kgm/' 2kgm/ s
D. pA ' 4kgm/ s
子弹打木块模型
[题1]设质量为m的子弹以初速度v0射向静止在光滑水平面上 的质量为M的木块并留在其中,设木块对子弹的阻力恒为f。
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)子弹打木块类的问题:
(三)人船模型:平均动量守恒 (四)反冲运动、爆炸模型
碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则 二. 能量不增加的原则 三. 物理情景可行性原则 例如:追赶碰撞(弹性碰撞或非弹性碰撞): 碰撞前:
V追赶 V被追
m
M L
物理过程分析
S1
S2
条件: 系统动量守衡且系统初动量为零.
处理方法: 利用系统动量守衡的瞬时性和物体间作用的等时性,求解 每个物体的对地位移.
m v1 = M v2 m s 1 = M s2 m v1 t = M v2 t
---------------- ①
s1 + s2 = L
-----------②
0.4 ,取 g = 10 m/s2.
(1)物块抛到小车上经过多少时间两者相对静止? (2)在此过程中物块相对于小车滑动的距离是多少?
动量守恒定律10个模型

动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。
根据动量守恒定律,我们可以推导出许多有趣的模型和应用。
本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。
1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。
当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。
根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。
2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。
这样做的好处是简化计算,使得动量守恒定律更易于应用。
3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。
当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。
通过爆炸模型,我们可以计算出碎片的速度和动量。
4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。
当一个旋转物体发生转动时,它的动量也必须守恒。
转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。
5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。
在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。
在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。
它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。
8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。
通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。
9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲动量守恒定律及模型分析1一、知识要点:动量守恒定律的理解(1)、动量守恒定律的内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)、动量守恒定律的表达式a. p=p,意义:系统相互作用前的总动量p等于相互作用后的总动量p’(从守恒的角度列式).b. ∆p =p’-p=0.意义:系统总动量变化等于零(从变化角度列式).c. 对相互作用的两个物体组成的系统:①状态式:P1+P2=P’1 + P’2或者m1v1 +m2v2=m1v1,+m2v2'.②过程式:P1- P1,=一(P’2 - P2) 或者∆p1=一∆p2注意:①动量守恒定律的矢量性:动量守恒定律的数学表达式是个矢量关系式。
②瞬时性:动量守恒指系统在任一瞬间的动量恒定,等号左边是作用前系统内各动量在同一时刻的矢量和,等号右边是作用后系统内各动量在另一同时刻的矢量和。
③参考系的同一性:表达式中的各速度(动量)均是相对于同一惯性参考系而言的,一般均以地面为参考系。
④整体性:初、末两个状态研究对象必须一致。
(3)、系统动量守恒的条件a、充分且必要条件:系统不外力或所受外力之和为零b、近似守恒:虽然系统所受外力之和不为零,但系统的内力远远大于外力,此时外力可以忽略不计。
如:碰撞和爆炸。
c、某一方向上动量守恒:虽然系统所受外力之和不为零,但系统在某一方向上的外力之和为零,则该方向上的动量守恒。
二、【分类典型例题】(一)动量和冲量的理解1.如图1所示,一个物体在与水平方向成θ角的拉力F的作用下匀速前进了时间t,则()A.拉力对物体的冲量大小为FtB.拉力对物体的冲量大小为FtcosθC.摩擦力对物体的冲量大小为FtD.合外力对物体的冲量大小为Ft2.一物体沿光滑固定斜面下滑,在此过程中()A.斜面对物体的弹力做功为零B.斜面对物体的弹力冲量为零C.物体动能的增量等于重力所做的功D.物体动量的增量等于重力的冲量3.在某一高度处的同一点将三个质量相等的小球以相同的速率分别竖直上抛、竖直下抛、平抛。
若不计空气阻力,当它们到达地面时,它们的()A.动量相等B.动量的增量相等C.动能的增量相等D.重力的冲量相等4.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为( ). (A)向下,m(v1-v2) (B)向下,m(v1+v2)(C)向上,m(v1-v2) (D)向上,m(v1+v2)5.摆长为L的单摆在做小角度摆动。
摆球质量等于m,最大偏角等于θ。
在摆从最大偏角位置摆向平衡位置时,下列说法中正确的是()A.重力的冲量等于/2m gLπB.重力的冲量等于2(1cos)m gLθ-C.合力的冲量等于2(1cos)m gLθ-D.合力做的功等于(1cos)mgLθ-(二)动量定理的应用6.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于在玻璃杯与水泥地的撞击过程中()A.玻璃杯的动量较大B.玻璃杯受的冲量较大C.玻璃杯的动量变化较大D.玻璃杯的动量变化较快7.从地面上方高h处分别以相同的速率v竖直上抛A球,竖直下抛B球,A、B质量相等。
从抛出到落地两小球动量变化大小的关系是()A.△PA=△PB B.△PA>△PB C.△PA<△PB D.无法判断8.一颗子弹水平穿过两个质量相等并排放在光滑水平面上的静止的木块A和B,设子弹穿过两木块所用时间分别是t和1.5t。
木块对子弹的阻力恒为f,则子弹先后穿出A、B后,A、B的速度比为()A.2:3 B.1:3 C.1:4 D.1:29.(1)一位质量为m的运动员从下蹲状态向上起跳,经△t时间,身体伸直并刚好离开地面,速度为v.在此过程中地面对他的冲量为___________,. 地面对他做的功为___________(2)一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,如6—1—8图所示,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的43。
则在碰撞中斜面对小球的冲量的大小是___________10.杂技演员从5 m 高处落下,落到安全网上,经过1.2 s 速度为零。
已知演员的质量为60kg ,g =10m/s2 ,求演员从接触网开始到速度为零的过程中受到网的平均作用力为多少。
11.设水的密度为ρ,水枪口的截面积是S,水的射速为v,射到煤层速度变为零,求水对煤层的冲力(三)关于动量守恒定律的适用条件12、如右图所示,A、B两物体的质量mA>mB,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪断后,A、B从c 上未滑离之前,A、B在C上向相反方向滑动过程中( )A.若A、B与c之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量也守恒。
B.若A、B与c之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量也不守恒h C .若A 、B 与c 之间的摩擦力大小不相同,则A 、B 组成的系统动量不守恒,但A 、B 、C·组成的系统动量守恒。
D .以上说法均不对13、如右图所示的装置中,木块B 与水平桌面间的接触面是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( )A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒14.如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,若以两车及弹簧组成系统,则下列说法中正确的是( ) A .两手同时放开后,系统总量始终为零 B .先放开左手,后放开右手后动量不守恒 C .先放开左手,后放开右手,总动量向左D .无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零15.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑则( ) A .在以后的运动过程中,小球和槽的动量始终守恒 B .在下滑过程中小球和槽之间的相互作用力始终不做功 C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处 16. 如图17-B-6所示,质量为M 的平板车在光滑水平面上以速度v 匀速运动,车身足够长,其上表面粗糙,质量为m 的小球自高h 处由静止下落,与平板车碰撞后,每次上升高度仍为h ,每次碰撞过程中,由于摩擦力的冲量不能忽略,小球水平速度逐渐增大,撞击若干次后,小球水平速度不再增大,则平板车的最终速度V 是多大?17.如图3所示,弹簧上端悬挂于天花板,下端系一质量为M 的平板,处在平衡状态,一质量为m 的均匀环套在弹簧外,与平板的距离为h ,如图,让环自由下落,撞击平板,已知碰后环与板以相同的速度向下运动,使弹簧伸长,则( ) A .若碰撞时间极短,则碰撞过程中,环与板的总动量守恒 B .若碰撞时间极短,则碰撞过程中,环与板的总机械能守恒 C .环撞击板后的瞬间,二者的速度最大D .在碰后与环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功 (四)关于如何应用动量守恒定律列方程18、光滑水平面上质量m1=50kg 的木箱A 以速度v1=5.0m/s 的速度滑行,前面有另一木箱B ,m2=20kg ,以速度v2=4.0m/s 相向滑行,若两木箱相撞后,A 的速度减小为0.2m/s ,B 的速度多大?19.甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量共为M=30 kg ,乙和他的冰车总质量也是30 kg ,游戏时,甲推着一个质量m=15 kg 的箱子,和他一起以大小为V0=2m /s 的速度滑行,乙以同样大小的速度迎面滑来,(如图17-A-4)为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住,若不计冰面的摩擦,问甲至少要以多大的速度(相对地面)将箱子推出,才能避免与乙相撞.(注意两人避免相撞的条件) (五)动量守恒与图象结合问题 20.如下图所示,甲、乙两球质量分别为lkg ,3kg ,它们在光滑水平面上发生正碰,图甲表示甲球碰撞前后的s —t 图线,图乙表示乙球碰后的s —t 时间图线,不计碰撞时间,则下 列说法正确的是( )A .甲、乙两球在t=2s 时发生碰撞B .碰撞前后系统动量守恒C .碰撞后甲球的速度反向了D .碰撞前后甲球动量改变了2kg·m /sC 21.质量为m1=1kg 的物体,以某一初速度在水平面上滑行,与质量为m2的物体发生碰撞,)它们的位移随时间变化的情况如图6-2-7所示,则m2=_______kg. 三、和杜老师一起做高考题1.(2008全国2理综)(15分)如图, 一质量为M 的物块静止在桌面边缘, 桌面离水平面的高度为h. 一质量为m 的子弹以水平速度v0射入物块后, 以水平速度v0/2射出。
重力加速度为g 。
求 (1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.图6-2-7图17-A-4 图17-B-62、(09北京卷)24.(20分)如图1所示,ABC 为一固定在竖直平面内的光滑轨道,BC 段水平,AB 段与BC 段平滑连接。
质量为1m 的小球从高位h 处由静止开始沿轨道下滑,与静止在轨道BC 段上质量为2m 的小球发生碰撞,碰撞后两球两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。
(1)求碰撞后小球2m 的速度大小2v ;3、(07年宁夏卷)在光滑的水平面上,质量为m1的小球A 以速率v0向右运动。
在小球的前方O 点处有一质量为m2的小球B 处于静止状态,如图所示。
小球A 与小球B 发生正碰后小球A 、B 均向右运动。
小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5PO 。
假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性的,求两小球质量之比m1/m2。