动量守恒定律典型模型

合集下载

动量守恒定律的典型模型及其应用教学课件

动量守恒定律的典型模型及其应用教学课件

动量的单位
国际单位
在国际单位制中,动量的单位是千克 ·米/秒(kg·m/s)。
其他单位
常用的单位还有磅·英尺/秒(lb·ft/s) 等。
02
动量守恒定律的典型 模型
完全弹性碰撞
完全弹性碰撞是指两个物体碰撞后,动能没有损失,完全恢 复的碰撞。
在完全弹性碰撞中,两个物体的总动量和在碰撞前的总动量 相等,即动量守恒。同时,两个物体的总动能也在碰撞前后 保持不变,即能量守恒。这种碰撞常见于没有摩擦和阻力的 理想情况。
详细描述
当子弹射击目标时,子弹和目标之间的相互作用力非常短暂且相对较小,因此可 以忽略不计。此时,子弹的动量守恒,即子弹的质量和速度的乘积保持不变。
火箭发射中的动量守恒
总结词
火箭发射过程中,燃料燃烧产生的气体对火箭的反作用力是火箭升空的主要动力,这个过程中动量守 恒。
详细描述
火箭发射时,燃料燃烧产生大量的气体,这些气体对火箭产生一个反作用力,使火箭得以升空。根据 动量守恒定律,火箭的质量和速度的乘积保持不变,即火箭的动量守恒。
VS
弹性碰撞和非弹性碰撞的主要区别在 于动能和动量的变化情况。在弹性碰 撞中,动能和动量均守恒;而在非弹 性碰撞中,动能不守恒,但动量守恒 。在实际生活中,由于摩擦、阻力和 其他因素的影响,碰撞多为非完全弹 性碰撞,即动量和动能均有一定的损 失。
03
动量守恒定律的应用 实例
天体运动中的动量守恒
总结词
天体运动中,物体之间的相互作用力常常可以忽略不计,因此动量守恒定律得 以广泛应用。
详细描述
在太阳系中,行星绕太阳旋转,卫星绕行星旋转,这些运动都遵循动量守恒定 律。行星和卫星之间的引力相互作用力相对较小,因此可以忽略不计,从而使 得行星和卫星的运动满足动量守恒。

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

动量守恒中几种常见的模型

动量守恒中几种常见的模型
模型一: 子弹击打木块模型
1、动力学规律:子弹和木块构成旳系统受到大小相等方 向相反旳一对相互作用力,故加速度旳大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块旳过程能够看作是 两个做匀变速直线运动旳物体间旳追及问题,在一段时间 内子弹射入木块旳深度,就是两者相对位移旳大小。而整 个过程产生旳热量等于滑动摩擦力和相对位移旳乘积。即 Q=Ff*s
代 根而入据f=数能μm据量g得守代:恒入定V=数律2m据得/解s:得fL: 12Lm=1v002m .12 M mv2
模型四:
带弹簧旳木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1旳小物块 A从坡道顶端由静止滑下,进入水平面上旳滑道时无机械能 损失,为使A制动,将轻弹簧旳一端固定在水平滑道延长线 M处旳墙上,另一端与质量为m2旳档板B相连,弹簧处于原 长时,B恰位于滑道旳末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间旳 动摩擦因数均为μ,其他各处旳摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v旳大小; (2)弹簧最大压缩量为d时旳弹性势能Ep(设弹簧处于原长 时弹性势能为零).
μ
mgL
1 2
m0
m
v2 1
1 2
Mv 2
1 2
m0
m
M
v 2 2

由①②③解得v0=149.6m/s为最大值, 所以v0≤149.6m/s
解:(1)物块A从坡道顶端由静止滑至O点旳过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远不小于外力,系统动
量守恒,以向左为正方向,由动量守恒定律得:

高中物理第08章动量守恒 动量守恒定律应用(四种模型)

高中物理第08章动量守恒 动量守恒定律应用(四种模型)

08、(2013·高考新课标全国卷Ⅱ,35 题)如图所示,光滑水平直轨道上有三个质量均为 m 的物 块 A、B、C.B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设 A 以速度 v0 朝 B 运动,压缩 弹簧;当 A、 B 速度相等时,B 与 C 恰好相碰并粘接在一起,然后继续运动.假设 B 和 C 碰撞过 程时间极短,求从 A 开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的1、如图所示,一排人站在沿 x 轴的水平轨道旁,原点 O 两侧的人的序号都记为 n(n=1,2, 3……) .每人只有一个沙袋,x>0 一侧的每个沙袋质量为 m=14 kg,x<0 一侧的每个沙袋质量为 m′=10 kg.一质量为 M=48 kg 的小车以某初速度从原点出发向正 x 方向滑行.不计轨道阻力, 当车每经过一人身旁时,此人就把沙袋以水平速度 v 朝与车速相反的方向沿车面扔到车上,v 的 大小等于扔此袋之前的瞬间车速大小的 2n 倍(n 是此人的序号数) . (1)空车出发后,车上堆积了几个沙袋时车就反向滑行? (2)车上最终有大小沙袋共多少个?
ECNU
LEX
高中物理第 08 章动量守恒 动量守恒定律应用(四种模型)
Lex Li
一、子弹木块模型 01、 如图所示, 一根质量不计、 长为 1 m, 能承受最大拉力为 14 N 的绳子, 一端固定在天花板上, 另一端系一质量为 1 kg 的小球,整个装置处于静止状态,一颗质量为 10 g、水平速度为 500 m/s 的子弹水平击穿小球后刚好将将绳子拉断, (g 取 10 m/s ) 。求: (1)小球此时的速度大小; (2)子弹此时的速度大小。
2
02、一颗质量为 m,速度为 v0 的子弹竖直向上射穿质量为 M 的木块后继续上升,子弹从射穿木块 到再回到原木块处所经过的时间为 T,那么当子弹射出木块后,求: (1)子弹身穿木块时的速度大小; (2)木块上升的最大高度为多少?

动量守恒定律的典型模型

动量守恒定律的典型模型
v0
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2

2
解①、②两式得 x
Mv02

(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?

动量守恒定律的经典模型总结

动量守恒定律的经典模型总结

碰撞后: 两物体的总动能E后 ≤ E前
被追物体速度不小于追赶物体的速度
习题:质量相等的A、B两物块在光滑水平面上沿一直线 向同一方向运动,A物块的动量为PA=9kg· m/s,B物块的动 量为PB =3kg· m/s,当A物块追上B物块发生碰撞,则碰撞后A、 B两物块的动量可能为( )
A. p A ' 6kgm/s B. p A ' 3kgm/ s
p B ' 6kgm/s
pB ' 9kgm/ s
pB ' 14kgm/' 2kgm/ s
D. pA ' 4kgm/ s
子弹打木块模型
[题1]设质量为m的子弹以初速度v0射向静止在光滑水平面上 的质量为M的木块并留在其中,设木块对子弹的阻力恒为f。
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)子弹打木块类的问题:
(三)人船模型:平均动量守恒 (四)反冲运动、爆炸模型
碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则 二. 能量不增加的原则 三. 物理情景可行性原则 例如:追赶碰撞(弹性碰撞或非弹性碰撞): 碰撞前:
V追赶 V被追
m
M L
物理过程分析
S1
S2
条件: 系统动量守衡且系统初动量为零.
处理方法: 利用系统动量守衡的瞬时性和物体间作用的等时性,求解 每个物体的对地位移.
m v1 = M v2 m s 1 = M s2 m v1 t = M v2 t
---------------- ①
s1 + s2 = L
-----------②
0.4 ,取 g = 10 m/s2.
(1)物块抛到小车上经过多少时间两者相对静止? (2)在此过程中物块相对于小车滑动的距离是多少?

动量守恒定律10个模型

动量守恒定律10个模型

动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。

根据动量守恒定律,我们可以推导出许多有趣的模型和应用。

本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。

1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。

当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。

根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。

2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。

这样做的好处是简化计算,使得动量守恒定律更易于应用。

3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。

当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。

通过爆炸模型,我们可以计算出碎片的速度和动量。

4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。

当一个旋转物体发生转动时,它的动量也必须守恒。

转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。

5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。

在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。

6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。

在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。

7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。

它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。

8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。

通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。

9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。

高中物理第08章动量守恒 动量守恒定律应用 四种常见模型

高中物理第08章动量守恒 动量守恒定律应用 四种常见模型

高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。

④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。

不同时刻的动量不能相加。

(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。

02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人船模型
适用条件:初状态时人和船都处于静止状态 解题方法:画出运动过程示意图,找出速度、位移 关系。
如图所示,质量为M的小船长L,静止于水面,质量 为m的人从船左端走到船右端,不计水对船的运动阻 力,则这过程中船将移动多远?
m L
M
物理过程分析
S1
S2
条件: 系统动量守衡且系统初动量为零. 处理方法: 利用系统动量守衡的瞬时性和物体间 作用的
pA ' 6kgm/s
pB ' 6kgm/s
B.p A ' 3kgm/ s C. p A ' 2kgm/ s
pB ' 9kgm/ s
pB ' 14kgm/ s
pB ' 17kgm/ s
D.p A ' 4kgm/ s
子弹打木块模型
[题1]设质量为m的子弹以初速度v0射向静止在光滑水平面上 的质量为M的木块并留在其中,设木块对子弹的阻力恒为f。
( ACD)
A、子弹克服阻力做的功等于木块动能的增加与摩
擦生的热的总和
B、木块对子弹做功的绝对值等于子弹对木块做的功
C、木块对子弹的冲量大小等于子弹对木块的冲量
D、系统损失的机械能等于子弹损失的动能和子弹
对木块所做的功的差
如图示,在光滑水平桌面上静置一质量为M=980克的 长方形匀质木块,现有一颗质量为 m=20克的子弹以 v0 = 300m/s 的水平速度沿其轴线射向木块,结果子弹 留在木块中没有射出,和木块一起以共同的速度运动。 已知木块的长度为L=10cm,子弹打进木块的深度为 d=6cm,设木块对子弹的阻力保持不变。 (1)求子弹和木块的共同的速度以及它们在此过程中 所增加的内能。
将质量为 m = 2 kg 的物块 , 以水平速度
5m/s 射到静止在光滑水平面上的平板车上 , = 0.4 ,取 g = 10 m/s2.
v0 =

车的质量为M = 8 kg ,物块与小车间的摩擦因数μ
(1)物块抛到小车上经过多少时间两者相对静止?
(2)在此过程中小车滑动的距离是多少?
(3)整个过程中有多少机械能转化为内能?
m
V0
M距最近时,两 物体速度必相等(此时弹簧最短,其压缩量最 大 )。
课堂练习
2、质量均为2kg的物体A、B,在B物 体上固定一轻弹簧,则A以速度6m/s碰上弹 簧并和速度为3m/s的B相碰,则碰撞中AB相 距最近时AB的速度为多少?弹簧获得的最 大弹性势能为多少?
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
例1、质量相等的A、B两球在光滑水平 面上沿一直线向同一方向运动, A 球的动 量 为 PA = 7kg· m / s , B 球 的 动 量 为 PB =5kg· m/s,当A球追上B球发生碰撞,则碰 撞后A、B两球的动量可能为( ) A.
m M
L
习题2:如图所示,总质量为M的气球下端悬 着质量为m的人而静止于高度为h的空中,欲使人 能沿着绳安全着地,人下方的绳至少应为多长?
M m h
劈和物块模型:
一个质量为M,底面 边长为 b 的劈静止 在光滑的水平面上, 见左图,有一质量 为m 的物块由斜面 顶部无初速滑到底 部时,劈移动的距 离是多少?
作业
1. 将质量为 m = 2 kg 的木块 , 以水平速度 v0 = 5m/s 射到静止在光滑水平面上的平板车上 , 小车的质量为 M = 8 kg , 物块与小车间的摩擦因数 μ = 0.4 , 取 g = 10 m/s2.假设平板车足够长,求: (1)木块和小车最后的共同速度
(2)这过程因摩擦产生的热量是多少
知识回顾
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)子弹打木块类的问题: (三)人船模型:平均动量守恒 (四)反冲运动、爆炸模型
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则 例如:追赶碰撞: 碰撞前: 碰撞后:
V追赶 V被追
问题1 子弹、木块相对静止时的速度v 问题2 子弹在木块内运动的时间 问题3 子弹、木块发生的位移以及子弹打进木块的深度 问题4 系统损失的机械能、系统增加的内能 问题5 要使子弹不穿出木块,木块至少多长? (v0、m、M、f一定)
问题1 子弹、木块相对静止时的速度v
解:从动量的角度看,以m和M组成的系统为研究对象,根 据动量守恒
(3)要使木块刚好不掉下小车,平板车应该有多长
v0
2.如图所示,质量为100kg的小船长 10m,静止于水面,质量为50kg的人从 船左端走到船右端,不计水对船的运 动阻力,则这过程中船将移动多远?
m
M
L
等时性,求解每个物体的对地位移.
m v1 = M v2 m v1 t = M v2 t
m s 1 = M s2
s1 + s2 = L
---------------- ①
-----------②
结论: 人船对地位移为将二者相对位移按质量反比分配关系
M s人 L mM
m s船 L mM
习题1:如图所示,质量为M,长为L的 平板小车静止于光滑水平面上,质量为m的 人从车左端走到车右端的过程中,车将后退 多远?
(2)若要使子弹刚好能够穿出木块,其初速度v0应有 多大?
v0
变形
物体A以速度V0滑到静止在光滑水平面 上的小车B上,当A在B上滑行的距离最 远时,A、B相对静止, A、B两物体的 速度必相等。
A
V0 B
课堂练习
3、质量为M的木板静止在光滑的水平面 上,一质量为m的木块(可视为质点)以初 速度V0向右滑上木板,木板与木块间的动 摩擦因数为μ ,求:木板的最大速度?
系统增加的内能 因此:
Q E
Q E fL
问题5 要使子弹不穿出木块,木块至少多长? (v0、m、M、f一定)
子弹不穿出木块的长度:
Mm 2 d S相 S1 S 2 v0 2 f M m
例1、 子弹以一定的初速度射入放在光滑水平面 上的木块中,并共同运动下列说法中正确的是:
mv0 M m v
mv0 v Mm
问题2 子弹在木块内运动的时间
以子弹为研究对象,由牛顿运动定律和运动学公式可得:
v v0 Mm v0 t a f M m
问题3 子弹、木块发生的位移以及子弹打进木块的深度
v0 s2 L
s1
1 2 1 2 对子弹用动能定理: f s1 mv 0 mv ……① 2 2 1 ……② 对木块用动能定理: f s2 Mv 2 2
①、②相减得: f L 故子弹打进 木块的深度:
1 1 Mm 2 2 m v0 M mv 2 v0 ……③ 2 2 2M m
L S1 S 2
Mm 2 v0 2 f M m
问题4 系统损失的机械能、系统增加的内能
1 2 1 2 系统损失的机械能 E mv 0 (m M )v 2 2
v0
总结: 子弹打木块的模型具有下列力学规律: 1、动力学的规律:构成系统的两物体在相 互作用时,收到大小相等,方向相反的一 对恒力的作用,他们的加速度大小与质量 成反比,方向相反。 2、运动学的规律:在子弹进入木块的过程中, 可以看成是匀减速运动追击匀加速运动,子弹的 进入深度就是他们的相对位移。 3、动量和能量规律:系统的动量守恒,系统和物 体的动能发生变化,力对子弹做的功等于子弹动 能的变化,力对木块做的功等于木块动能的变化, 一对恒力做的功等于系统动能的改变,其大小等 于该恒力的大小与相对位移的乘积。
第四节 动量守恒定律的应用
——动量守恒的条件 1、系统不受外力(理想化)或系统所受合 外力为零。 2、系统受外力的合力虽不为零,但系统 外力比内力小得多,如碰撞问题中的摩擦 力,爆炸过程中的重力等外力比起相互作 用的内力来要小得多,且作用时间极短,可 以忽略不计。 3、系统所受外力的合力虽不为零,但在 某个方向上所受合外力为零,则系统在这 个方向上动量守恒。
相关文档
最新文档