二次函数一轮复习课件

合集下载

二次函数一轮复习课件

二次函数一轮复习课件
2
已知任意三点坐标
2、顶点式:y a( x h) k
2
已知顶点坐标、对称轴或最值
3、交点式:y a( x x1 )( x x2 )
已知抛物线与x轴的交点坐标(x1,0).(x2,0)
12.已知抛物线
y=x² -mx+m-1.
>1
=1 (1)若抛物线经过坐标系原点,则m______;
(2)若抛物线与y轴交于正半轴,则m______;
=0 (3)若抛物线的对称轴为y轴,则m______。 =2 (4)若抛物线与x轴只有一个交点,则m_______.
13、不论x为何值时,函数y=ax2+bx+c(a≠0
a>0, -4ac<0 _ )的值永远为正的条件是____ b²
14、求抛物线
注意:顶点式中,上+下-,左+右-
例题
1 2 x 如何平移, 将抛物线 y 3
可使平移后的抛物线经过点(3,-12)?(说 出一种平移方案)
2+bx+c(a≠0)与一 8、二次函数y=ax
次函数y=ax+c在同一坐标系内的大 致图象是( C )
y y y y
o
x
o
x
o
x
o
x
(A)
(B)
(C)
是二次函数,
2 则k _______ .
点评:定义要点 (1)a≠0. (2)最高次数为2. (3)代数式一定是整式.
-
3、抛物线 y 4 x 3 的对称轴及顶点坐标分 别是( D ) A、y轴,(0,-4) B、x=3,(0,4) C、x轴,(0,0) D、y轴, (0,3)
2
4、二次函数 图象的顶点坐 标和对称轴方程为( A ) A、(1,-2), x=1 B、(1,2),x=1 C、(-1,-2),x=-1 D、(-1,2),x=-1

二次函数与幂函数一轮复习课件(共21张PPT)

二次函数与幂函数一轮复习课件(共21张PPT)
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,

二次函数-2023年中考数学第一轮总复习课件(全国通用)

二次函数-2023年中考数学第一轮总复习课件(全国通用)

A.x1=1,x2=-1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
(2)如图,二次函数y=ax2+bx+c的图象则不等式的ax2+bx+c<0解集是( C )
A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 y
-1 O 3 x
课堂小结
二次函数
知识梳理
强化 训练
二次函数图象与性质
查漏补缺
5.抛物线y=(x+3)(x-1)的对称轴是直线_x_=_-_1___. 6.若抛物线y=x2-8x+c的顶点在x轴上,则c=_-_1____.
7.若抛物线y=x2-4x+k的顶点在x轴下方,则k的取值范围是_k_<__4__.
8.若抛物线yy==xk2x-22-x6+xm+-34与x轴有交点,则m的取值范围是_k_m≤_≤_3_5且__k_≠__0__. 9.若抛物线y=x2+2x+c与坐标轴只有两个交点,则c的值为__0_或__1_.
1.下列关于抛物线的y=ax2-2ax-3a(a≠0)性质中不一定成立的是( C )
A.该图象的顶点为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0);
C.当x>1时,y随x的增大而增大;D.若该图象经过(-2,5),一定经过(4,5).
2.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),
当堂训练
二次函数的基本性质
查漏补缺
1.抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( B )
A.m>1
B.m>0

2024年中考第一轮复习 二次函数的图象与性质 课件

2024年中考第一轮复习 二次函数的图象与性质 课件
∵顶点坐标为(m,-m+1),且顶点与 x 轴的两个交点构成等腰直角三角形,
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2

>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴

-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与

x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代

高考一轮复习理科数学课件二次函数

高考一轮复习理科数学课件二次函数
例题1
分析题目中给出的二次函数不等式,通过适当的变形和转化,求解 不等式的解集或参数的取值范围。
例题2
针对含有绝对值符号的二次函数不等式,采用上述提到的处理方法 进行求解,并给出详细的解题步骤和答案解析。
例题3
选取一道综合性较强的二次函数不等式题目,展示完整的解题思路和 答案解析过程,帮助学生理解和掌握相关知识点。
通过观察二次函数的图像,可以直接 判断函数的单调性。
对于一般形式的二次函数,可以通过 判别式的正负来判断函数的单调性。
极值存在条件及求解方法
极值存在条件
二次函数在其定义域内存在极值的条件是其一阶导数等于0,且二阶导数不等 于0。
求解方法
对于一般形式的二次函数,可以通过完成平方或配方的方法将其转化为顶点式 ,从而直接求出函数的极值。另外,也可以利用导数法求解函数的极值。
判别式Δ在方程中的应用
判别方程根的情况
当$Delta>0$时,方程有两个不相等 的实根;当$Delta=0$时,方程有两 个相等的实根;当$Delta<0$时,方 程无实根。
在实际问题中应用
判别式Δ在解决实际问题,如抛物线与 x轴交点、最值问题等中,具有广泛的 应用。
韦达定理及其推广形式
韦达定理
应用题中的最值问题
利润最大化
在生产、销售等实际问题中,经 常需要求解使得利润最大化的产 量或售价,这类问题可以通过建 立二次函数模型并求解最值来解
决。
成本最小化
在成本控制等问题中,需要求解 使得成本最小化的生产方案,同 样可以通过建立二次函数模型并
求解最值来解决。
面积、体积最优化
在几何问题中,经常需要求解使 得面积或体积最大化的设计方案 ,这类问题也可以转化为二次函

二次函数复习课件PPT

二次函数复习课件PPT

个单位,再向 平移
个单位可
得到抛物线 y=3(x+2)2 -3.
16、将函数y=-3(x-1)2-1的图象 (1) 沿y轴翻折后得到的函数解析式_____. (2) 沿X轴翻折后得到的函数解析式_____. (3) 沿原点旋转180°后得到的函数解析式
_____. (4) 沿顶点旋转180°后得到的函数解析式
解: y ax2 bx c
a x2 b x c 提取二次项系数
a x2
a a
b x b 2 b 2 a 2a 2a
c a
配方:加上再减去一 次项系数绝对值一 半的平方
a
x
b 2a
2
4ac b2 4a2
整理:前三项化为平方形 式,后两项合并同类项
a x
y的 最值
增减性
在对称 在对称 轴左侧 轴右侧
y=ax2
a>0 向上 y轴
(0,0)
最小值 是0
y随x的增 y随x的增 大而减小 大而增大
a<0 向下
y轴
(0,0)
最大值 y随x的增 是0 大而增大
y随x的增 大而减小
y=ax2+c
a>0 向上 a<0 向下
y轴 y轴
(0,c)
最小值 是C
y随x的增 y随x的增 大而减小 大而增大
4a
➢当a>0时,抛物线的开口向上,顶点 是抛物线上的最低点;
➢当a<0时,抛物线的开口向下,顶点 是抛物线上的最高点.
二次函数关系式的常见形式:
一般式:y=ax2+bx+c 顶点式:y=a(x+m)2+k
交点式:y=a(x-x1)(x-x2)
确定二次函数的解析式时,应该根据 条件的特点,恰当地选用一种函数表达式.

高三年级第一轮复习二次函数与幂函数课件 PPT

高三年级第一轮复习二次函数与幂函数课件 PPT

4x5的单调区间, 4x4
并比较 f (π)与f ( 2)的大小.
2


x24x5
1
f(x)x24x41(x2)2
=1+(x+2)-2,
其图象可由幂函数y=x-2的图象向左平移2个单位,再 向上平移1个单位得到,
该函数在(-2,+∞)上是减函数,在(-∞,-2)上是 增函数,且其图象关于直线x=-2对称(如图所示).
2 ∵f(2)=-1,a(21)281,
2 解之,得a=-4. f(x) 4 (x 1 )2 8 4 x2 4 x 7 .
2
探究提高
二次函数的解析式有三种形式: (1)一般式:f(x)=ax2+bx+c (a≠0) (2)顶点式:f(x)=a(x-h)2+k (a≠0) (3)两点式:f(x)=a(x-x1)(x-x2)(a≠0) 具体用哪种形式,可根据具体情况而定.
则实数m的取值范围是_______.
解析
•1m ,,m1.
又(1,2)且m1在(1,2)上是增函 , 数
11m21,即m(2,5).
2
2
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
题型分类 深度剖析
题型一 二次函数的解析式的求法 【例1】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且
思维启迪 由 f(x)xm22m3(m∈N*)的图象关于y
轴对称知m2-2m-3为偶数,又在(0,+∞)上是减函
数,∴m2-2m-3<0,从而确定m值,再由函数f(x)=
x
m 3
的单调性求a的值.
解 ∵函数在(0,+∞)上递减,

二次函数复习课课件

二次函数复习课课件

提升习题
提升习题1
已知二次函数$f(x) = ax^2 + bx + c$在区间$(m,n)$上 单调递增,求$a, b, c$的取值范围。
提升习题2
已知二次函数$f(x) = ax^2 + bx + c$在区间$(m,n)$上 有两个不同的零点,求$a, b, c$的取值范围。
综合习题
综合习题1
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面内沿x 轴或y轴方向进行缩放。
详细描述
伸缩变换包括横向和纵向的缩放。横向缩放 是指图像在x轴方向上缩小或放大,纵向缩 放是指图像在y轴方向上缩小或放大。在伸 缩变换过程中,二次函数的解析式会相应地 乘以或除以一个大于0的常数。例如,将二 次函数y=ax^2+bx+c的图像沿x轴方向缩 小k倍,解析式变为y=a(x/k)^2+b(x/k)+c;
二次函数的性 质
总结词
二次函数具有开口方向、对称轴、顶点 和与坐标轴交点等性质。
VS
详细描述
二次函数的性质包括开口方向、对称轴、 顶点、与坐标轴交点等。根据系数$a$的 正负,抛物线有不同的开口方向:当$a > 0$时,抛物线开口向上;当$a < 0$时, 抛物线开口向下。对称轴为直线$x = frac{b}{2a}$,顶点坐标为$left(frac{b}{2a}, fleft(frac{b}{2a}right)right)$。与y轴的交点 为$(0, c)$,与x轴的交点可以通过求解方 程$ax^2 + bx + c = 0$得到。
沿y轴方向缩小k倍,解析式变为 y=ax^2+bx/k+c/k。
对称变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)a20≠210/2/.4
(2)最高次数为2.
(3)代数式一定是整式11 .
3、抛物线 y4x2 3 的对称轴及顶点坐标分
别是( D ) A、y轴,(0,-4) B、x=3,(0,4) C、x轴,(0,0) D、y轴, (0,3)
4、二次函数 y(x1)22 图象的顶点坐
标和对称轴方程为( A ) A、(1,-2), x=1 B、(1,2),x=1 C、(-1,-2),x=-1 D、(-1,2),x=-1
二次函数一轮复习课件
1.通过对实际问题情境的分析确定二次函数的表达式,并 体会二次函数的意义.
2.会用描点法画出二次函数的图象,能从图象上认识二次 函数的性质.
3.会根据公式确定图象的顶点、开口方向和对称轴(公式不 要求记忆和推导),并能解决简单的实际问题.
4.会利用二次函数的图象求一元二次方程的近似解.
16
8、二次函数y=ax2+bx+c(a≠0)与 一次函数y=ax+c在同一坐标系内 的大致图象是C ( )
y
y
y
y
x
o
x
o
x
o
o
x
(A)
(B)
(C)
2021/2/4
(D)
17
9、二次函数y=ax2+bx+c(a≠0)的几个特例:
1)、当x=1 时,y= a+b+c >0
y
2)、当x=-1时,y= a-b+c <0
x
2021/2/4
20
选择合适的方法求二次函数解析式:
10、抛物线经过(2,0)(0,-2)(-1,0)三点。
yx2 x2
11、抛物线的顶点坐标是(6,-2),且与 X轴的一个交点的横坐标是8。
y1(x6)221x26x16
2
2
2021/2/4
21
三种思路:
1 、 一 般 式 : ya x2 b x c
(2)若抛物线与y轴交于正半轴,则m__>__1__;
(3)若抛物线的对称轴为y轴,则m__=__0__。
(4)若抛物线与x轴只有一个交点,则m__=__2___.
2021/2/4
23
13、不论x为何值时,函数y=ax2+bx+c(a≠0
)的值永远为正的条件是_a_>__0, b²-4ac<0 _
上下平移 y = ax2 左右平移
(0,0)
2021/2/4
7
性质
2021/2/4
向上
向下

8
例4: 抛物线 y1(x3)2 2 关于x轴对称的抛物线
解析式是 2 y1(x3)22
2
解题思路: 关于x轴对称: x x ,y y
①将原抛物线写成顶点式y=a(x-h)2+k ②写出顶点(h,k) ③写出顶点(h,k)关于x轴的点的坐标(h,-k) 则关于x轴对称的抛物线解析式是y=-a(x-h)2-k
2021/2/4
28
某宾馆有50个房间供游客居住,当每个房 间的定价为每天180元时,房间会全部住满。 当每个房间每天的定价每增加10元时,就会
有一个房间空闲。如果游客居住房间,宾馆 需对每个房间每天支出20元的各种费用.房价
定为多少时,宾馆利润最大?
解:设每个房间每天增加x元,宾馆的利润为y元
Y=(50-x/10)(180+x)-20(50-x/10)
2021/2/4
32
解:(1)根据题意,得 y=(60-50+x)(200-10x),整理,得 y=-10x2+100x+2 000(0<x≤12); (2)由(1),得 y=-10x2+100x+2 000=-10(x-5)2+2 250. 故当 x=5 时,最大月利润 y 为 2 250 元.
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四 象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
-1
x
-2
o1 2
3)、当x=2时,y= 4a+2b+c >0
4)、当x=-2时,y= 4a-2b+c <0
5)、b²-4ac > 0.
6)、2a+b> 0.
2021/2/4
b1 b2a 2ab0 2a
18
练习:
1、二次函数y=ax2+bx+c(a≠0)的图象如图 y
B 所示,则a、b、c的符号为( )
2021/2/4
12
5、函数
向 向上
y1x2 x2 的开口方 ,顶2点坐标是数(3形 结1 , 合16 ) ,对
称轴是 直线x1.
当x <-1 时.y随x的增大而减小。
1 当x =-1 时.y有最 小 为 6 .
y1(x1)2 1
2 2021/2/4
6
顶点坐标公式 13
点评:二次函数的几种表现形式及图像
对称轴是___x_=_—12____。
y x=—12 (-2,0) 0
增减性:
当x 1
2
时,y随x的增大而减小
当 x 1 时,y随x的增大而增大
2
(3,0)x 最值:
当x
1 2
时,y有最 小值,是
25 4
(1,-6) 函数值y的正负性:
(0,-6)(—12 ,- 2—45 )
当 x<-2或x>3
例3: 将 y 1 x 2 向左平移3个单位,再向下平移2个单位
后,所得2的抛物线的关系式是 y1(x3)2 2
2
各种顶点式的二次函数的关系
左加右减 上加下减
左 右
y = a( x – h )



y = ax2 + k (0,k)
y = a(x – h )2 (h,0)
2021/2/4
31
(2012 年四川巴中)某商品的进价为每件 50 元,售价为 每件 60 元,每个月可卖出 200 件;如果每件商品的售价上涨 1 元,则每个月少卖 10 件(每件售价不能高于 72 元),设每件商品 的售价上涨 x 元(x 为正整数),每个月的销售利润为 y 元.
(1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围; (2)每件商品的售价定为多少时,每个月可获得最大利润? 最大利润是多少?
7.若把抛物线y=x2+bx+c向左平移3个单位,
再向上平移2个单位,得抛物线y=x2-2x+2,
则b= -8 ,c= 15 ,
注意:顶点式中,上+下-,左+右-
2021/2/4
15
例题
将抛物线 y 1 x 2 如何平移, 3
可使平移后的抛物线经过点(3,-12)?(说 出一种平移方案)
2021/2/4
14、求抛物线 y2x128
①与y轴的交点坐标;
(-1,8) 6
②与x轴的两个交点间的距离.
③x取何值时,y>0?
2021/2/4
-3 -1 1
24
实际问题与二次函数
2021/2/4
25
例:
如图的抛物线形拱桥,当水面在 l 时,拱桥顶离水面
2 m,水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
• (2)8000元是否为每月销售这种篮球的最大利 润?如果是,请说明理由;如果不是,
• 请你求出最大利润,此时篮球的售价应定为多少
元? y10(x20)29000
2021/2/4
30
解:(1)10+x 500-10x (2)设月销售利润为 y 元. 根据题意,得 y=(10+x)(500-10x). 整理,得 y=-10(x-20)2+9 000. 当 x=20 时,y 有最大值为 9 000,20+50=70(元). 答:8 000 元不是最大利润,最大利润是 9 000 元,此时篮 球售价应定为 70 元.
已知任意三点坐标
2 、 顶 点 式 : y a (x h )2 k
已知顶点坐标、对称轴或最值
3 、 交 点 式 : y a ( x x 1 ) ( x x 2 )
已知抛物线与x轴的交点坐标(x1,0).(x2,0)
2021/2/4
22
12.已知抛物线 y=x²-mx+m-1.
(1)若抛物线经过坐标系原点,则m__=__1__;
C 所示,则a、b、c 、 △的符号为( )
A、a>0,b=0,c>0,△>0 B、a<0,b>0,c<0,△=0 C、a>0,b=0,c<0,△>0 D、a<0,b=0,c<0,△<0
熟练掌握a,b, c,△与抛物线图象的关系 (2上021/正2/4 、下负) (左同、右异)
y
ox
y
o
x
19
4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和 二、三、四象限,判断a、b、c的符号情况:
2021/2/4
2
例1: 二次函数y=x2-x-6的图象顶点坐标是___(_—_12_,__- _2—45_)
对称轴是___x_=_—12____。 二次函数的解析式: (a≠0)
顶点式 y=a(x-h)²+k 对称轴:直线x=h 顶点:(h,k)
相关文档
最新文档