二次函数(一般式)的图像和性质
二次函数的图像和性质(共82张PPT)

y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像
二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
二次函数(一般式)的图像和性质

解释二次函数图像的平移公式,如何改变图像的 位置。
介绍二次函数图像的垂直伸缩公式,如何改变图 像的高度。
详细说明二次函数图像的水平伸缩公式,如何改 变图像的宽度。
讨论二次函数图像的反比例伸缩公式,如何改变 图像的比例。
介绍二次函数图像的对称公式,如何实现图像的 对称变换。
二次函数的性质
1 单峰函数
3
二次函数的应用
展示二次函数在实际问题中的应用,如 物理、经济等领域。
二次函数的性质
例题解析
通过解析例题,进一步理解二次函数的性质和应用。
阐述二次函数的性质,它 是一个单峰函数。
2 奇偶性及对称轴
讲解二次函数的奇偶性质 以及对称轴的位置。
3 导数及斜率
介绍二次函数的导数和斜 率,深入理解函数的变化 速度。
二次函数的性质
1
凹凸性及拐点
探讨二次函
到曲线的变化点。
介绍最小二乘法在二次函数中的应用,
用于拟合数据和函数。
平移变换
详细说明二次函数图像的平移 变换,改变图像的位置。
二次函数的性质
垂直伸缩变换
使用垂直伸缩变换改变二次函数 图像的高度。
水平伸缩变换
介绍二次函数图像的水平伸缩变 换,改变图像的宽度。
反比例伸缩变换
讨论二次函数图像的反比例伸缩, 改变图像的比例。
二次函数的性质
平移公式 垂直伸缩公式 水平伸缩公式 反比例伸缩公式 对称公式
二次函数(一般式)的图像 和性质
二次函数是一般式的函数,定义了二次函数的特性和图像。我们将深入探讨 二次函数的各个方面,包括开口方向、对称轴、零点、顶点和最值等。
二次函数的一般式
定义和图像
通过一般式的定义,了解二次函数的图像特征和 形状。
2.4二次函数一般式的图像

二次函数c bx ax y ++=2的图像知识点一:k h x a y +-=2)(图像性质 1.二次函数k h x a y +-=2)(的图像平移2.二次函数k h x a y +-=2)(的图像性质(1)当0>a 时,抛物线k h x a y +-=2)(的开口方向向上,对称轴是直线h x =,顶点坐标是),(k h ;当h x >时,Y 随X 的增大而增大,当h x <时,Y 随X 的增大而减小,当h x =时,函数有最小值K(2)当0<a 时,抛物线k h x a y +-=2)(的开口方向向下,对称轴是直线h x =,顶点坐标是),(k h ;当h x >时,Y 随X 的增大而减小,当h x <时,Y 随X 的增大而增大,当h x =时,函数有最大值K【例1】将抛物线22x y =如何平移可得到抛物线1)4(22--=x y3.求二次函数k h x a y +-=2)(的函数解析式或解析式中的待定系数方法规律:(1)若点A ),(n m 在抛物线k h x a y +-=2)(上,则点A 坐标满足k h m a n +-=2)( (2) 求函数解析式中某个字母系数,常利用方程思想,注意解的验算。
练习:1.把抛物线23x y =先向上平移2个单位,再向左平移3个单位,所得抛物线的解析式为 2.抛物线2)1(2-=x y 的对称轴为 ,顶点坐标为 ,函数最值为 当X 图像从左到右上升。
3.抛物线2)21(+-=x y 可以看成是由抛物线 向 平移 个单位得到 4.2)(h x a y -=的图像如图所示,对h a ,的符号判断正确的是 ( A 0.0>>h a B 0.0<<h a C 0.0<>h a D .0><h a5.二次函数5)4(212+-=x y 的图像的开口方向是 对称轴是顶点坐标是6.二次函数b kx y kx y +=-=与一次函数2)(的图像在坐标系中的位置大概是( )7.若抛物线的顶点坐标为(2,3)且点(3,1)在图像上,则此抛物线的解析式为( )A 13)2(22-+=x yB 3)2(22+--=x y C 3)2(22--=x y D 3)2(22+-=x y8.K 为任意实数,则抛物线k k x y 21)(322+--=的顶点在( ) A 直线x y =上 B 直线x y -=上 C 直线x y 21=上 D 直线x y 21-=上9.如图所示,b kx y h x a y +=-=221)(与交于A,B , 其中A (0,-1),B (1,0)求(1)此 二次函数与直线的解析式 (2)当212121,,y y y y y y >=<时,分别确定自变量X 的取值范围DCBA知识点二:二次函数c bx ax y ++=2的图像性质【例1】已知抛物线10622++=x x y ,求(1)函数图像的开口方向,对称轴,顶点坐标 (2)作出草图 (3)根据函数图像指出X 为何值时,0,0,0<=>y y y (4)函数最大值或做小值是多少分析:把函数一般式配方化为顶点式ab ac a b x a y 44)2(22-++=,即可求解练习:1.142+-=x x y 通过配方可以写成 ,该抛物线的对称轴是 ,顶点坐标是 ,最值是2.把二次函数342+-=x x y 化成k h x a y +-=2)(的形式是( ) A 1)2(2--=x y B 1)2(2-+=x y C 7)2(2+-=x y D 7)2(2++=x y3.把642+-=x x y 化为k h x a y +-=2)(的形式是 4.抛物线3422+--=x x y 经过平移得到22x y -=,平移方法是( ) A 向左平移1个单位,再向下平移3个单位 B 向左平移1个单位,再向上平移3个单位 C 向右平移1个单位,再向上平移3个单位 D 向右平移1个单位,再向下平移3个单位5.抛物线3222--=x x y ,当X ,Y 随X 增大而增大;当X ,Y 随X 增大而减小6.抛物线1422-+-=x x y 的的对称轴是 ,顶点坐标是 ,最值是7.已知点),21(),,213(),,1(321y y y --在函数12632++=x x y 的图像上,则321,,y y y 的大小关系是( )A 321y y y >>B 231y y y <<C 312y y y >>D 312y y y <<8.配方法练习:(1)322--=x x y (2)522---=x x y(3)3222--=x x y (4) 3422---=x x y2.二次函数)0(2≠++=a c bx ax y 的图像特征与ac b c b a 4,,2-及的符号之间的关系【例2】二次函数)0(2≠++=a c bx ax y 2这四个代数式中,值为正数的是( )个A 4B 3C 2练习:1.已知二次函数)0(2≠++=a c bx ax y 图像如图所示,则a 0,b 0,c 0 2.函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( ) A .3<k B .03≠<k k 且 C .3≤k D .03≠≤k k 且3.二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( )A .4个B .3个C .2个D .1个4.已知反比例函数xky =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )5.已知二次函数)0(2≠++=a c bx ax y 与一次函数c ax y +=在同一坐标系中的图像大致是( )6.抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 0. 7.已知)0(2≠++=a c bxax y 的图像如图所示,请根据信息回答下列问题 (1)确定c b a ,,的符号(2)确定c b a c b a -+++和的符号DCBA。
22.1.4二次函数(一般形式)的图象及性质

C.b= - 8
D.b= - 8 ,
c= 18
8.若一次函数 y= ax + b 的图象经过第二、三、四象限,
则二次函数y = ax2 + bx - 3的大致图象是
y y y
(
C
y
)
o
-3
x
o -3
x
o -3
x
o -3
x
A
B
C
D
9.在同一直角坐标系中,二次函数y=ax2+bx+c 与一次函数y=ax+c的大致图象可能是 (C )
A. 4 B. -1 C. 3 D.4或-1 6.若二次函数 y=ax2 + b x + c 的图象如下,与x 轴的一个交点为(1,0),则下列 y 各式中不成立的是( B ) A.b2-4ac>0 B.abc>0 1 o x C.a+b+c=0 D.a-b+c<0 -1
( )
A
7.若把抛物线y=x2+bx+c向左平移2个单位,再向上平 移3个单位,得抛物线y = x2 - 2x+1,则 ( B ) A.b=2 B.b= - 6 , c= 6
y
o x o
y
x o
y
x o
y
x
A
B
C
D
能力提升
1.用6 m长的铝合金型材做一个形状如图所示的矩形窗 框.应做成长、宽各为多少时,才能使做成的窗框的 透光面积最大?最大透光面积是多少?
图 26.2.5
2.如图,某隧道口的横截面是抛物线形,已知路宽AB为6 米,最高点离地面的距离OC为5米.以最高点O为坐标原点, 抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面 直角坐标系, 求(1)以这一部分抛物线为图 y 象的函数解析式,并写出x的取 O 值范围; x (2) 有一辆宽2.8米,高1米的 农用货车(货物最高处与地面AB 的距离)能否通过此隧道?
二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
人教版九年级上册二次函数一般式的图像和性质精品系列PPT

新课
我们复习了将抛物线 y 3x2向左平移2个单位
再向下平移5个单位就得到y 3 x 22 5 的图 象,将 y 3 x 22 5 化为一般式为
y 3x2 12x 7 ,那么如何将抛物线 y 3x2的图 像移动,得到的 y 3x2 12x 7 图像呢?
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1 用配方法把 y 1 x2 3x 5 化为
2
2
2.用公式法把抛物线 y ax2 bx c 化为
y a x h2 k 的形式。
把 y ax2 bx c 变形为 y a x h2 k的方法
和我们前面学过的用配方法解二次方程 “ax2 bx c 0 ”类似.具体演算如下:
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
解:列表 y 2x2 8x 6 0 x …0 1 2 3 4 … y … -6 0 2 0 -6 …
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
练习1 用配方法把 y 2x2 4x 7 化为
y a x h2 k 的形式,求出顶点坐标
和对称轴。
答案:y 2 x 12 5 ,顶点坐标是(1,5),
对称轴是直线 x=1.
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
二次函数的图象与性质

(1)求抛物线的解析式;
解:(1)当 y=0 时, 1 x- 4 =0,解得 x=4,即 A(4,0), 33
抛物线过点
A,对称轴是
x=
3 2
,得
16a 12
3 2a
3 2
,
c
0,
解得
a c
1, 4,
8
16
64
所以二次函数 y=- 3 x2+bx+c 的图象与 x 轴有公共点. 16
∵- 3 x2+ 9 x+3=0 的解为 x1=-2,x2=8,∴公共点的坐标是(-2,0)或(8,0). 16 8
2.(2019云南)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且 与x轴有两个交点. (1)求k的值;
y 随 x 的增大而减小
二次函数的图象和性质
【例1】 (2018成都)关于二次函数y=2x2+4x-1,下列说法正确的是( D ) (A)图象与y轴的交点坐标为(0,1) (B)图象的对称轴在y轴的右侧 (C)当x<0时,y的值随x值的增大而减小 (D)y的最小值为-3
【例2】 已知二次函数y=2(x-1)(x-m-3)(m为常数). (1)求证:不论m为何值,该函数的图象与x轴总有公共点; (2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?
标可以看出对应 的函数值,4a+2b+c的值是x=2时对应的函数值,4a-2b+c的
的式子的值
值是x=-2时对应的函数值…
二次函数y=ax2+bx+c的图象与a,b,c的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:我们可以用顶点坐标公式求出图 象的顶点,过顶点作平行于y轴的直线就 是图象的对称轴.在对称轴的一侧再找 两个点,则根据对称性很容易找出另两 个点,这四个点连同顶点共五个点,过 这五个点画出图像.
(1)用顶点坐标公式,可求出顶点为(2,2), 对称轴是x=2. (2) 当x=1时,y=0,即图 象与x轴交于点(1,0),根据轴对称,很容 易知道(1 ,0)的轴对称点是点(3,0) .又当 x=0时,y=-6,即图象与y轴交于点(0, -6),根据轴对称,很容易知道(0,-6)的 轴对称点是点(4,-6).用光滑曲线把五个 点(2,2),(1,0),(3,0),(0,-6),(4, -6)连结起来,就是 y 2x2 8x 6 的0图象。
y<0;
x=2
(4)当x=2时,
· · (0,-6)
(4,-6)
y有最大值2。
练习3 画出 y x2 2x 2 的图像。 x … -1 0 1 2 3 … y … 5 2 1 2 5…
y=x2-2x+2 x=1
4.二次函数 y ax2 bx c 的性质:
(1)顶点坐标
x1,0, x2,0,其中 x1, x2为方程ax2 bx c 0
的两实数根
(7)抛物线 y ax2 bx c 与x轴的交点情况 可由对应的一元二次方程ax2 bx c 0 的根的判别式判定: ① △>0有两个交点抛物线与x轴相交; ② △=0有一个交点抛物线与x轴相切; ③ △<0没有交点抛物线与x轴相离。
2a
①若b=0对称轴为y轴,
②若a,b同号对称轴在y轴左侧,
③若a,b异号对称轴在y轴右侧。
5.抛物线y=ax2+bx+c中a,b,c的作用。 (3)c的大小决定抛物线y=ax2+bx+c与y轴 交点的位置。 当x=0时,y=c,∴抛物线y=ax2+bx+c 与y轴有且只有一个交点(0,c), ①c=0抛物线经过原点; ②c>0与y轴交于正半轴; ③c<0与y轴交于负半轴。
y 3x2 12x 7 ,那么如何将抛物线 y 3x2的图 像移动,得到的 y 3x2 12x 7 图像呢?
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
解: (1)因为抛物线开口向下,所以a<0;
判断b的符号
(2)因为对称轴在y轴右侧,所以 b 0 ,而a<0,故b>0;
2a
判断c的符号
(3)因为x=0时,y=c,即图象与y轴交点 的坐标是(0,c),而图中这一点在y轴正 半轴,即c>0;
判断b2-4ac的符号
(4)因为顶点在第一象限,其纵坐标
解:列表 y 2x2 8x 6 0 x …0 1 2 3 4 … y … -6 0 2 0 -6 …
y
·(2,2)y 2x2 8x 6
由图像知:
· · (1,0)
(3,0)
x
(1)当x=1或x=3时, y=0;
(2)当1<x<3时,
y>0;
(3)当x<1或x>3时,
2
2
2
2
Q b
1
1,
4ac b2
4
1 2
5 2
12
4
2
2a
y
21
1 2
x
1
2
4a
2
,
4
1 2
2
2
∴顶点为(1,-2),对称轴为直线 x=1。
练习2 用公式法把y 2x2 8x 6 化成
4ac 4a
b2
;
(5)增减性:
①若a>0,当
x
b 2a
时,y随x的增大而增大;
当
x
b 2a
时,y随x的增大而减小。
②若a<0,当
x
b 2a
时,y随x的增大而减小;
当
x
b 2a
时,y随x的增大而增大。
(6)抛物线 y ax2 bx c 与坐标轴的交点
①抛物线 y ax2 bx c 与y轴的交点坐标 为(0,c) ②抛物线y ax2 bx c与x轴的交点坐标为
2.确定抛物线的开口方向、对称轴 及顶点坐标。 3.在对称轴的两侧以顶点为中心左 右对称描点画图。
例3 画出 y 2x2 8x 6 的图像,利用函 数图像回答:
(1)x取什么值时,y=0? (2)x取什么值时,y>0? (3)x取什么值时,y<0? (4)x取什么值时,y有最大值或最小值?
解法一:Q a 1 0 ,∴抛物线开口向下,
2
又y 1 x2 3x 1 1 x2 6x 9 9 1
2
22
2
1 x 32 9 1
2
22
1 x 32
2
5
∴ 对称轴是直线x=-3,当 x>-3时,y
随x的增大而减小。
对称轴是直线 x=-2 . 4.在上述移动中图象的开口方向、形状、 顶点坐标、对称轴,哪些有变化?哪些没 有变化?
有变化的:抛物线的顶点坐标、对称轴, 没有变化的:抛物线的开口方向、形状
新课
我们复习了将抛物线 y 3x2向左平移2个单位
再向下平移5个单位就得到 y 3 x 22 5的图 象,将 y 3 x 22 5 化为一般式为
4ac b2 4a
0,且a<0,所以4ac b2
0,故
b2 4ac 0 。
判断2a+b的符号
(5)因为顶点横坐标小于1,即
b 2a
1
,
且a<0,所以-b>2a,故2a+b<0;
判断a+b+c的符号
b a
x
b 2a
2
b 2a
2
c
a
a
x
b 2a
2
4ac b2 4a2
a
x
b 2a
2
4ac b2 4a
所以抛物线 y ax2 bx c 的顶点坐标是
b 2a
顶点坐标为(-3,-2),对称轴为x=-3
练习1 用配方法把 y 2x2 4x 7 化为
y a x h2 k 的形式,求出顶点坐标
和对称轴。
答案:y 2 x 12 5 ,顶点坐标是(1,5),
对称轴是直线 x=1.
2.用公式法把抛物线 y ax2 bx c 化为
例1 用配方法把 y 1 x2 3x 5 化为
2
2
y a x h2 k 的形式,求出顶点坐标和对称轴。
解:y
1 2
x2
3x
5 2
1 2
x2
6x
5
1 x2
2
6x
9 9 5
1 2
x
32
4
1 x 32 2
2
解法二:
Q a 1 0 ,∴抛物线开口向下,
2
Q b 3 3
2a
2
1 2
∴ 对称轴是直线x=-3,当 x>-3时,y 随x的增大而减小。
例7 已知二次函数
y m 1 x2 2mx 3m 2m 1
的最大值是0,求此函数的解析式.
4a
4 1
k2 4k 12 0 ,解得:k1 2, k2 6 ,所 以当k=2或k=-6时,抛物线顶点在x轴 上。 ④由②、③知,当k=-4或k=2或k=-6 时,抛物线的顶点在坐标轴上。
例5 当x取何值时,二次函数 y 2x2 8x 1 有最大值 或最小值,最大值或最小值是多少?
-7,所以当k=-7时,抛物线经过原点;
②抛物线顶点在y轴上,则顶点横坐标为0,
即
b
k 4
0
,所以k=-4,所
2a
21
以当k=-4时,抛物线顶点在y轴上。
③抛物线顶点在x轴上,则顶点纵坐标为0,
即 4ac b2 4 1 k 7 k 42 0 ,整理得
例8 已知如图是二次函数y=ax2+bx+c的图 象,判断以下各式的值是正值还是负值. (1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b; (6)a+b+c;(7)a-b+c.
分析:已知的是几何关系(图形的位置、 形状),需要求出的是数量关系,所以应 发挥数形结合的作用.
判断a的符号
y a x h2 k 的形式。
把 y ax2 bx c 变形为 y a x h2 k的方法
和我们前面学过的用配方法解二次方程 “ax2 bx c 0 ”类似.具体演算如下:
y
ax2
bx
c
a
x2
b a
x
c a
a
x2
1 2
2
,
即y 1 x2 x 1
2
2
。