格雷码

合集下载

格雷映射编码规则

格雷映射编码规则

格雷映射编码规则格雷映射编码规则一、概述格雷映射编码是一种常用的数字编码方式,其特点是相邻的两个数之间只有一位二进制数发生变化。

这种编码方式在数字电路设计、通信系统等领域中得到广泛应用。

本文将详细介绍格雷映射编码的规则和应用。

二、基本原理1. 二进制数转换为格雷码将一个二进制数转换为对应的格雷码,可以按照以下步骤进行:(1)将最高位保持不变,其余各位与前一位异或;(2)重复以上操作,直到所有位都转换为格雷码。

例如,将二进制数1010转换为对应的格雷码,步骤如下:10101110110001000110因此,1010的对应格雷码是0110。

2. 格雷码转换为二进制数将一个格雷码转换为对应的二进制数,可以按照以下步骤进行:(1)最高位保持不变,其余各位与前一位异或;(2)重复以上操作,直到所有位都转换为二进制数。

例如,将格雷码0110转换为对应的二进制数,步骤如下:01100010001110111001因此,0110的对应二进制数是1010。

三、编码规则格雷映射编码的规则如下:1. 对于n位二进制数,其对应的格雷码有2^n个;2. 第一个格雷码为0,最后一个格雷码为2^n-1(即n位二进制数全部为1);3. 相邻两个格雷码之间只有一位二进制数发生变化;4. 格雷映射编码可以用于数字电路设计、通信系统等领域中的数据传输和控制。

四、应用实例1. 数字电路设计在数字电路设计中,常需要将多位二进制数转换为对应的格雷码。

例如,在4位全加器电路中,需要将两个4位二进制数相加,并输出其对应的4位格雷码。

这种转换可以通过逐位异或实现。

2. 通信系统在通信系统中,常使用格雷映射编码来保证数据传输的可靠性。

例如,在调频(FM)广播系统中,使用差分相移键控(DPSK)调制方式时,需要将数字信号转换为对应的格雷码,并进行调制和解调。

3. 其他领域除了数字电路设计和通信系统外,格雷映射编码还广泛应用于计算机科学、自动控制、图像处理等领域。

格雷码

格雷码

利用卡诺图相邻两格只有一位变化以及卡诺图的变量取值以低阶格雷码的顺序排布的特征,可以递归得到高 阶格雷码。由于此方法相对繁琐,使用较少。生成格雷码的步骤如下:
三位格雷码(三位格雷码由建立在二位基础上) 格雷码次序:000起点→001→011→010→110→111→101→100终点 四位格雷码 格雷码次序:0000起点→0001→0011→0010→0110→0111→0101→0100→1100→1101→ 1111→1110→1010→1011→1001→1000终点
发展历史
法国工程师Jean-Maurice-Émlle Baudot在1880年曾用过的波特码是典型格雷码的一种变形。
Gray Code是由贝尔实验室的Frank Gray在1940年代提出的,用来在使用PCM(Pusle Code Modulation) 方法传送讯号时避免出错。
二进制码→格雷码(编码): 此方法从对应的n位二进制码字中直接得到n位格雷码码字,步骤如下: 公式表示: (G:格雷码,B:二进制码) 例如:二进制码0101,为4位数,所以其所转为之格雷码也必为4位数,因此可取转成之二进位码第五位为0, 即0 b3 b2 b1 b0。 0 xor 0=0,所以g3=0 0 xor 1=1,所以g2=1 1 xor 0=1,所以g1=1 0 xor 1=1,所以g0=1 因此所转换为之格雷码为0111 格雷码→二进制码(解码):
格雷码
弗兰克·格雷提出的术语
01 基本信息
03 发展历史 05 应用
目录
02 码表 04 转换方法 06 程序实现
典型的二进制格雷码(Binary Gray Code)简称格雷码,因1953年公开的弗兰克·格雷(Frank Gray,-) 专利“Pulse Code Communication”而得名,当初是为了通信,现在则常用于模拟-数字转换和位置-数字转 换中。法国电讯工程师波特(Jean-Maurice-Émile Baudot,-)在1880年曾用过的波特码相当于它的一种变形。 1941年George Stibitz设计的一种8元二进制机械计数器正好符合格雷码计数器的计数规律。

格雷码与二进制码的互转

格雷码与二进制码的互转

格雷码与二进制码的互转
格雷码(Gray Code)与二进制码(Binary Code)是一种二进制变换编码形式,被用于错误纠正、机器人控制以及防止计算机硬件而设计出来的。

1. 格雷码的定义:
格雷码的定义是每多加一位二进制,所生成的一串编码依次改变一组
比特后得到,而它只有两个状态:1和0。

也就是说,在每一位的变化
范围中,都只有一次变化,当变化完成后又重新回到原有状态,即前
一步的状态,这样就形成了一种叫做“码”的序列,也就是格雷码。

2. 格雷码与二进制码的区别:
a)二进制码是一种线性变换,格雷码是一种非线性变换,因此具有明显的非线性特性。

b)二进制码的前一位改变时会使所有位都发生改变,而格雷码的前一
位变化时只会造成下一位的改变,说明上一位的改变有限制体现。

c)由于格雷码包含非线性特性,所以它在采用某些特殊信号中会比二
进制码拥有更好的可靠性和抗干扰性,这也是它被用于错误纠正、机
器人控制以及防止计算机硬件而设计出来的原因之一。

3. 格雷码与二进制码的互转:
(1)格雷码转换成二进制码:在格雷码中,G3到G7是
011→001→101→100,那么转换成二进制码的就是
011→111→101→110,即G3到G7的二进制码就是0111101110。

(2)二进制码转换成格雷码:比如说01101000,第一位没有变化,从第二位开始,那么他就是0110→0100→1100→1000,因此,01101000就转换成了01100100。

格雷码的编码、解码

格雷码的编码、解码

格雷码的编码、解码摘要:1.格雷码的概述2.格雷码的编码方式3.格雷码的解码方式4.格雷码的应用领域正文:1.格雷码的概述格雷码,又称为Gray Code,是一种编码方式,用于二进制数据的转换。

格雷码最大的特点是任意两个相邻的码之间只有一个位不同,这种编码方式可以减少错误传输的概率,因此在实际应用中具有较高的可靠性。

2.格雷码的编码方式格雷码的编码方式分为两种:一种是自然格雷码,另一种是循环格雷码。

自然格雷码是一种最基本的格雷码,其编码方式为:从0 到255,总共256 个编码,其中0 和255 为特殊的起始和结束码。

其余的254 个编码中,任意两个相邻的编码只有一个位不同。

循环格雷码是自然格雷码的一种扩展,其编码方式为:从0 到63 共有64 个编码,其中0 和63 为特殊的起始和结束码。

其余的62 个编码中,任意两个相邻的编码只有一个位不同。

循环格雷码的主要应用是在具有多个位数的数据传输中,通过重复使用自然格雷码来表示更多的数据位。

3.格雷码的解码方式格雷码的解码方式与编码方式相对应,自然格雷码和循环格雷码也有各自的解码方式。

在解码过程中,需要根据起始和结束码来判断编码的范围,然后根据相邻编码的差异来还原原始的二进制数据。

4.格雷码的应用领域格雷码在实际应用中具有广泛的应用,主要体现在以下几个领域:(1)数据传输:由于格雷码具有较高的抗干扰性和错误传输的概率,因此在数据传输领域有着广泛的应用,特别是在需要高可靠性的数据传输场景中。

(2)存储技术:格雷码在存储技术中也有广泛的应用,例如在硬盘驱动器、光盘等存储设备中,采用格雷码来表示数据可以提高数据的可靠性和存储效率。

(3)加密技术:格雷码在加密技术中也有一定的应用,由于格雷码具有较高的编码效率和解码效率,因此在某些加密算法中采用格雷码来加密和解密数据。

(4)通信技术:在通信技术中,格雷码也有广泛的应用,例如在数字通信、光通信等领域,采用格雷码来表示数据可以提高通信的可靠性和效率。

格雷码转换为二进制码

格雷码转换为二进制码

格雷码转换为二进制码摘要:1.格雷码简介2.格雷码与二进制码的关系3.格雷码转换为二进制码的步骤4.总结正文:格雷码(Gray code)是一种在电子通信和计算机科学中常用的编码方式,它是一种无权码,仅用0和1两个数字表示,具有唯一可逆性。

在某些场景下,我们需要将格雷码转换为二进制码。

格雷码与二进制码之间存在一定的关系。

在二进制码中,每一位只有两种状态,即0和1;而在格雷码中,每一位有三种状态,分别是0、1和2。

通过特定的转换方法,我们可以将格雷码转换为二进制码,反之亦然。

现在,我们来详细介绍将格雷码转换为二进制码的步骤:1.确定格雷码的位数n:首先需要知道格雷码的位数,假设n位格雷码,那么可以用2^n-1个不同的格雷码表示0到2^n-1之间的整数。

2.初始化二进制码:我们用一个n位的二进制码来表示格雷码,初始时所有位都为0。

3.遍历格雷码:从最低位开始,依次将格雷码的每一位转换为二进制码。

若格雷码的值为0,则将相应的二进制码位设置为0;若格雷码的值为1,则将相应的二进制码位设置为1;若格雷码的值为2,则将相应的二进制码位设置为0,然后将高一位的二进制码加1。

4.转换完成:遍历完格雷码的所有位后,得到的二进制码即为所求。

举个例子,假设我们要将5位格雷码(10110)转换为二进制码:1.确定格雷码的位数n=5。

2.初始化二进制码:00000。

3.遍历格雷码:从最低位开始,依次转换为二进制码,得到00000、00001、00010、00100、01000。

4.转换完成:最终得到的二进制码为01000,即5位格雷码(10110)转换为二进制码为01000。

总之,将格雷码转换为二进制码的过程是通过遍历格雷码并设置相应的二进制码位来实现的。

什么是格雷码

什么是格雷码

什么是格雷码
格雷码(Gray code),又叫循环二进制码或反射二进制码在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一
种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。

格雷码属于可靠性编码,是一种错误最小化的编码方式
简介
因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某
些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。

而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。

它在任意两个相邻的数之间转换时,只有一个数位发生变化。

它大大地减少了由一个状态到下一个状态时逻辑的混淆。

另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。

格雷码的概念及特点

格雷码的概念及特点

格雷码的概念及特点格雷码是一种二进制编码系统,与普通二进制码相比,具有独特的特点。

它是由法国数学家Eugene Gray发明的,因此得名为格雷码。

首先,格雷码是一种自反码,即任意两个相邻的编码只有一个比特位不同。

这意味着从一个编码到相邻的下一个编码,只需要改变一个比特位的状态。

这样的编码方式大大减小了编码到下一个编码的转换所需的运算量,同样也减小了电路实现中可能出错的概率。

而普通的二进制码则没有这个特点,有些时候需要改变多个比特位的状态。

其次,格雷码是一种唯一解码码,即在给定的编码序列中只有一种方式可以正确地恢复出原始的数据。

这是因为格雷码的编码方式非常特殊,每一位的状态都与前一位的状态有关,因此在解码时只需逐位判断即可。

而如果使用普通的二进制码进行编码,容易在解码时出现歧义,需要额外的信息来判断正确的解码方式。

再次,格雷码的编码方式使得相邻的编码只有一个比特位不同,因此适用于需要对数据进行连续变换的场景。

例如在机器人控制领域中,控制机器人的运动需要对位置进行连续调整,而用普通的二进制码表示位置时,可能需要多次调整比特位的状态。

而使用格雷码表示位置时,只需一次调整比特位的状态即可。

此外,格雷码还有一些其他的特点。

例如,它可以用来检测错误。

由于只有一个比特位的状态发生改变,因此如果接收到的码字与发送的码字中只有一个比特位不同,可以推测这个区域出现了错误。

另外,格雷码的应用非常广泛。

在数字通信中,为了提高传输的可靠性和效率,常常用格雷码来编码数据。

在某些数字设计中,也常常使用格雷码代替普通的二进制码,以减少电路的复杂性和错误的概率。

此外,格雷码还用于AD转换器、LCD显示屏和光学编码器等领域。

总结起来,格雷码是一种独特的编码系统,具有自反码和唯一解码码的特点。

它的特殊编码方式使得相邻的编码只有一个比特位不同,适用于需要对数据进行连续变换的场景。

格雷码的应用广泛,可以提高数据传输的可靠性和效率。

格雷二进制码

格雷二进制码

格雷二进制码一、引言格雷码,又称反射码,是一种二进制编码方式。

它在数字电路设计中有广泛的应用,特别是在数字信号处理领域。

本文将介绍格雷码的定义、特点、转换方法以及应用。

二、格雷码的定义1. 二进制码二进制码是由0和1组成的数字编码方式。

例如,十进制数9的二进制表示为1001。

2. 格雷码格雷码是一种二进制编码方式,它与普通的二进制编码不同之处在于相邻两个数仅有一个位数不同。

例如,四位格雷码序列为0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1110、1010和1011。

三、格雷码的特点1. 无反跳现象当普通二进制数从最高位向低位变化时,如果有多个位同时变化,则可能会出现反跳现象。

而在格雷码中,相邻两个数仅有一个位不同,因此不存在反跳现象。

2. 应用广泛由于其无反跳现象和其他优点,在数字电路设计中广泛应用。

例如,在AD转换器中使用格雷编码可以减少转换误差;在旋转编码器中使用格雷编码可以减少机械磨损。

四、格雷码的转换方法1. 二进制转格雷码从最高位开始,将当前位的二进制数值与上一位的二进制数值异或,得到当前位的格雷码数值。

例如,将二进制数1010转换为格雷码,则有:1) 第一位:1 xor 0 = 12) 第二位:0 xor 1 = 13) 第三位:1 xor 0 = 14) 第四位:0 xor 1 = 1因此,1010的格雷码为1111。

2. 格雷码转二进制从最高位开始,将当前位的格雷码数值与上一位的二进制数值异或,得到当前位的二进制数值。

例如,将格雷码1111转换为二进制,则有:1) 第一位:1 xor 0 = 12) 第二位:1 xor 1 = 03) 第三位:1 xor 0 = 14) 第四位:1 xor 1 = 0因此,1111的二进制为1010。

五、格雷码在数字电路中的应用举例以下是两个常见应用场景:1. AD转换器中使用格雷编码可以减少转换误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样在STEP 7 Micro/WIN 中相互转换二进制码和格雷码?
说明:
STEP 7 - Micro/WIN 的标准库中不包含格雷码转换。

使用下载的附件可以转换成8位、16位和32位二进制数。

格雷码指令库的描述
"graycode.mwl" 指令库包括用于字节、字和双字格式的编码和解码的功能块。

图 1
从二进制码转换到格雷码(BIN_GRAY):
功能块BIN_GRAY_B、BIN_GRAY_W 和BIN_GRAY_DW 把输入的字节、字和双字类型的二进制码编码成格雷码。

率大于187.5 K bit/s 并且需要两对电缆( 用于时钟和数据)因此不能连接到S7-200 CPU 的通信接口。

∙关于更多格雷码(变量表、译码规则)信息可查看
进入ID:25629271
∙添加库到STEP 7 Micro/WIN 中的信息可查看
进入ID:16689345
∙SETP 7 Micro/WIN V3.2 的SP4 补丁免费下载可查看
进入ID:16520047 .。

相关文档
最新文档