微积分试卷内含答案
微积分试题及答案【精选】

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。
微积分试卷(含答案)

微积分试题一、 填空题(每题2分⨯10=20分)1、函数()f x =的定义域是2、 设()2f x x =- ,则[(2)]f f =3、 22929lim 1n n n n →∞--=- . 4、 0sin 5limsin x x x→= 5、 1lim(1)x x x →∞+= 6、 '(arcsin )x =7、 函数2y x =,则=dy 8、 函数3x y e =的导数为 . 9、 02sin lim x x x→= . 10、数学思维从思维活动的总体规律的角度来考察,可分为形象思维、 、和直觉思维。
二 选择题(每题2分⨯5=10分)1、 若),1()(+=x x x f 则=-)(x f ( ).A x(x-1)B (x-1)(x-2)C x(x+1)D (x+1)(x+2)2、1sin(1)lim 1x x x →-=-( ). A 1 B 0 C 2 D 21 3、 函数)(x f 在0x x =处有定义是)(x f 在0x x =处连续的( ).A 必要条件B 充分条件C 充要条件D 无关条件4、设)(x f y -=,则='y ( ).A )('x fB )('x f -C '()f x --D )('x f -5、 设函数(),()u x v x 在x 可导,则( )A []uv u v '''=B []uv u v '''=-C []u v u v '''⨯=+D []uv u v uv '''=+三、计算题(每小题6分,共24分)1、已知2(tan )6sec f x x =-,求)(x f 2、求极限333lim 22x x x x→∞- 3、求极限0tan sin lim x x x x→- 4、求极限10lim(14)xx x →+四、计算题(每小题8分,共24分)1、求4x y x e =的导数2、设)(x y y =由隐函数5y e xy =+确定,求y '。
微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。
A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。
A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。
答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。
答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。
答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。
答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。
导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。
2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。
通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。
微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。
四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。
答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。
答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。
微积分基础考试题及答案

微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。
答案:02. 函数f(x)=ln(x)的反函数为_________。
答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。
答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。
答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。
答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。
微积分考试题目及答案

微积分考试题目及答案一、单项选择题(每题4分,共20分)1. 函数f(x) = x^2在x=0处的导数为()。
A. 0B. 1C. 2D. 3答案:B2. 曲线y = e^x在点(0,1)处的切线斜率为()。
A. 0B. 1C. eD. e^0答案:C3. 函数f(x) = sin(x)的不定积分为()。
A. cos(x) + CB. sin(x) + CC. -cos(x) + CD. -sin(x) + C答案:A4. 极限lim(x→0) (sin(x)/x)的值为()。
A. 0B. 1C. π/2D. ∞答案:B5. 已知函数f(x) = x^3 - 3x^2 + 2x,其在x=1处的极小值是()。
A. 0B. 1C. -1D. 2答案:C二、填空题(每题4分,共20分)6. 函数f(x) = 2x^3 - 6x^2 + 3x的二阶导数为 ________。
答案:12x - 127. 曲线y = ln(x)绕x轴旋转一周形成的立体体积为 ________。
答案:π8. 定积分∫(0,1) x^2 dx的值为 ________。
答案:1/39. 函数f(x) = x^2 + 2x + 1的极值点为 ________。
答案:-110. 微分方程dy/dx = 2x的通解为 ________。
答案:y = x^2 + C三、计算题(每题10分,共30分)11. 计算定积分∫(0,2) (x^2 - 2x + 1) dx。
解:∫(0,2) (x^2 - 2x + 1) dx = [1/3x^3 - x^2 + x](0,2) = (8/3 - 4 + 2) - (0) = 2/3。
12. 求函数f(x) = x^3 - 3x^2 + 2x的极值点。
解:f'(x) = 3x^2 - 6x + 2,令f'(x) = 0,解得x = 1, 2/3。
经检验,x = 1为极小值点,x = 2/3为极大值点。
微积分试卷及答案

微积分试卷及答案【篇一:微积分试题和答案】s=txt>数学教研是:一、选择题(每题2分)1、设??x?定义域为(1,2),则??lgx?的定义域为() a、(0,lg2)b、(0,lg2?c、(10,100)d、(1,2)x2?x2、x=-1是函数??x?=的() 2xx?1a、跳跃间断点 b、可去间断点 c、无穷间断点 d、不是间断点 3、试求a、?4、若x?01b、0c、1d、? 4yx??1,求y?等于() xya、x?2y2x?yy?2x2y?xb、c、d、2x?y2y?x2y?x2x?y2x的渐近线条数为() 1?x2a、0b、1 c、2 6、下列函数中,那个不是映射()5、曲线y?d、3a、y2?x (x?r?,y?r?)b、y2??x2?1c、y?x2d、y?lnx (x?0) 二、填空题(每题2分) 1、__________(n?)1x,则() fx的间断点为__________x??nx2?1fx)m?il2、、设(x2?bx?a?5,则此函数的最大值为__________ 3、已知常数 a、b,limx?11?x4、已知直线 y?6x?k是 y?3x2的切线,则 k?__________5、求曲线 xlny?y?2x?1,在点(,11)的法线方程是__________ 三、判断题(每题2分)x2是有界函数( ) 1、函数y?21?x2、有界函数是收敛数列的充分不必要条件( )3、若lim???,就说?是比?低阶的无穷小 ( ) ?4、可导函数的极值点未必是它的驻点 ( )5、曲线上凹弧与凸弧的分界点称为拐点( ) 四、计算题(每题6分) 1、求函数 y?xsin1x的导数12、已知f(x)?xarctanx?ln(1?x2),求dy23、已知x2?2xy?y3?6,确定y是x的函数,求y?4、求limtanx?sinx2x?0xsinx5、计算 1(cosx)x 6、计算lim?x?0五、应用题1、设某企业在生产一种商品x件时的总收益为r(x)?100x?x2,总成本函数为c(x)?200?50x?x2,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)12、描绘函数y?x2?的图形(12分)x六、证明题(每题6分)1f()?a 1、用极限的定义证明:设limf(x)?a,则limx???x?0?x2、证明方程xex?1在区间(0,1)内有且仅有一个实数一、选择题1、c2、c3、a4、b5、d6、b 二、填空题1、x?02、a?6,b??73、184、35、x?y?2?0 三、判断题 y??(x?(esin1x)?)?1sinlnxx1111???ecos(?2)lnx?sin??xxxx??1sin1111x?x(?2coslnx?sin)xxxx1sinlnxx2、dy?f?(x)dx112x?(arctanx?x?)dx221?x21?x?arctanxdx3、解:2x?2y?2xy??3y2y??02x?3y?y??22x?3y?y???4、解:2)2(2?3y?)(2x?3y2)?(2x?2y)(2?6yy?)(2x?3yx2?当x?0时,x?tanx?sinx,1?cosx?212xxtanx(1?cosx)1?原式=lim?lim3?2x?0x?0xsinxx25、解:令x?t6dx?6t5原式??(1?t2)t3t2?6?1?t2t2?1?1?6?1?t21?6?(1?)21?t?6t?6arctant?c??6arctan6、解:1?c原式?lime?x?0xlncosx?ex?0?lim1xlncosx其中:1lncosxx?0x2lncosx?lim x?0?x21(?sinx)?lim?x?02x?tanx1?lim??x?0?2x2lim??原式?e?12五、应用题1、解:设每件商品征收的货物税为a,利润为l(x) l(x)?r(x)?c(x)?ax?100x?x2?(200?50x?x2)?ax??2x2?(50?a)x?200l?(x)??4x?50?a50?a令l?(x)?0,得x?,此时l(x)取得最大值4a(50?a)税收t=ax?41t??(50?2a)41令t??0得a?25t?????02?当a?25时,t取得最大值2、解:d????,0???0,???间断点为x?0y??2x?1x2令y??0则x?y???2?2x3令y???0则x??1渐进线:【篇二:微积分试卷及答案6套】>一. 填空题 (每空2分,共20分)x?1?an2?bn?5?2,则a =,b =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分试卷内含答案11-12微积分A 卷湖北汽车工业学院微积分(一)(下)考试卷( 2011-2012-2)一、(本题满分21分,每小题3分)填空题: 1.='⎰]sin [2x tdt 2sin 2x x .2.过点)3,2,1(-且与平面0144=-++z y x 平行的平面方程为 044=+++z y x . 3.设yx z =,则=dz xdyx dx yx y y ln 1+- .4.⎰⎰+-=Ddxdy y x I )432(,其中D }4),{(22≤+=y x y x ,则=I π16 .5.微分方程)1)(1(22y x y --='的通解为Cx y +-=2)1(arcsin .6.平面曲线2x y =与x y =所围成的平面图形绕x 轴旋转一周所得旋转体体积为15/2π .7.设数项级数∑∞=1n n u 收敛且和为s ,则级数∑∞=++11)(n n n u u 的和为12u s - .二、(本题满分21分,每小题3分)选择填空题(请将所选答案填入题号前的方括号内): 【B 】1. 设)(x f 在),(+∞-∞内连续,)(x F 是)(x f 在),(+∞-∞内的一个原函数,0≠c ,则dx c x f b a⎰+)(等于)(A )()(c a F c b F ---. )(B )()(c a F c b F +-+. )(C )()(c b F c a F ---. )(D )()(c b F c a F +-+.【C 】2.设)2,1,3(--=a ,)1,2,1(-=b ,则b a ⨯ 等于)(A 3. )(B 7. )(C )7,1,5(.)(D )7,1,5(-.【A 】3.下列级数中条件收敛的是)(A ∑∞=+-111)1(n nn . )(B ∑∞=+-1211)1(n nn .)(C ∑∞=--11)107()1(n n n . )(D∑∞=-151)1(n nn .【A 】4. 下列微分方程中是齐次方程的是)(A dx y x ydx xdy 22-+=. )(B x y y x y sin 2=+'.)(C y y x y ln sin ='. )(D x x y y sec tan =-'.【D 】5. 设)(x f 在]1,0[上连续且满足1)()(1-=⎰dt t f x x f ,则⎰1)(dxx f 等于)(A 1 . )(B 2. )(C 1-. )(D 2-. 【C 】6. 设xy y xD ≤≤≤+≤0,41:22,则二重积分=⎰⎰σd xyDarctan)(A 2163π . )(B 2323π. )(C 2643π. )(D 21283π.【C 】7. 函数x x f /1)(=的在1=x 点处的幂级数展开式为 )(A ∑∞=--0)1()1()(n nnx x f =, 11<<-x . )(B ∑∞=-0)1()(n nx x f =, 20<<x .)(C ∑∞=--0)1()1()(n nnx x f =,20<<x . )(D ∑∞=--1)1()1()(n nnx x f =,20<<x .三、计算下列各题(共3284=⨯分) 1. 设函数),(y x z z =由方程zy x z y x++=++222确定,证明:y x yzx z x z z y -=∂∂-+∂∂-)()(.[证] 方程zy x z y x++=++222两边对x 求导得 xz x z zx ∂∂+=∂∂+122,解得z x x z 2112--=∂∂,由字符轮换性知z y y z 2112--=∂∂,于是 y x zy x z z x z y y z x z x z z y -=---+---=∂∂-+∂∂-2112)(2112)()()(.2 .计算 dx xx ⎰--11241.[解] 原式dxxx ⎰-=102412.dtttt t x ⎰⋅=204cos cos sin 2sin πdt t ⎰=24sin 2π83221432ππ=⋅⋅⋅=3.判别正项级数nxnn n21sin 2∑∞=的敛散性 .[解] nn n n nx n u 2sin 22≤=,设nn nv 2=,121221lim lim 11<=⋅+=+∞→+∞→n n v v n n n nn n ,于是级数∑∞=12n n n 收敛.从而原级数∑∞=12sin2n nnxn 收敛.4.某工厂生产甲种产品x 件乙种产品y 件的总利润函数为22222040),(y xy x y x y x L ---+=设备的最大产出力为15=+y x ,求x 与y 为何值时利润最大?解:作 )15(222040),(22-++---+=y x y xy x y x y x F λ …令⎪⎩⎪⎨⎧=-+==+--==+--=015),,(02220),,(02440),,(y x y x F y x y x F y x y x F x x λλλλλλ得10=x ,5=y .于是当这两种产品分别生产10件与5件的时候利润最大 .四.(8分)交换二次积分⎰⎰=101yxydxe dy I 的次序并计算.【解】dxe dx I x xy ⎰⎰=2010dxxex y y xy ⎰===1002| ⎰=-=10.21)(dx x xex五、(8分)求微分方程2212)1(xxxy y x -=+'+的通解.解:方程变形为:2221)1(12x x xx xy y -+=++'通解为:])([)()(C dx e x Q e y dxx p dx x p +⎰⎰=⎰-]1)1([12221222C dx e xx x edxx xdxx x+⎰⋅-+⎰=++-⎰]1)1([1)1(221)1(2222C dx e xx xex x d x x d +⎰⋅-+⎰=++++-⎰]1[11]1)1([22)1ln(22)1ln(22C dx x xx C dx exx x ex x +-+=+⋅-+=⎰⎰++-11]12)1([1122222+--=+---+=⎰x x C C xx d x法二:221])1[(xx y x-='+ 通解为Cx y x +--=+221)1(六、(10分)求幂级数nn x n)11(1-∑∞=的收敛域与和函数,并求级数nn n n 211⋅-∑∞=的和.解:收敛域为)1,1(-)(1)1-(1)(1111x S x x n x x x n x S n n nn n n --=-==∑∑∑∞=∞=∞=nx x S n n ∑∞==11)(, x x n x x S n n n n -=='='-∞=∞=∑∑11)()(1111)1ln()(1x x S --=,于是)1ln(1)(x xxx S -+-=.2ln 1)21(-=S ,2ln 1)21(211-==⋅-∑∞=S n n nn .2013-2014-2 A 卷湖北汽车工业学院 微积分A2考试试卷(2013~2014~2 A 卷)一、(本题满分21分,每小题3分)单项选择题(请将所选答案填入答题卡的指定位置):【 B 】1. 设)4,1,1(-=,),0,2(λ=,且b a ⊥,则=λ)(A 2-.)(B 21. )(C 2.)(D 21-. 【 B 】2.极限=+-→→2211lim yx xy y x )(A 0. )(B 1. )(C 1-.)(D 21. 【 C 】3.设⎰⎰+=xy x dxe dt tf y x F 112)(),(,则xF∂∂为)(A )(xy f . )(B 22)(x xe xy yf +. )(C )(xy yf . )(D22)(xxe xy f +.【 D 】4.二次积分dy y x f dx x x ⎰⎰-21),(=)(A ρρθρθρθπd f d ⎰⎰120)sin ,cos (.)(B ρρθρθρθθπd f d ⎰⎰cos 020)sin ,cos (.)(C ρρθρθρθπd f d ⎰⎰120)sin ,cos (.)(Dρρθρθρθθπd f d ⎰⎰cos 020)sin ,cos (.【 B 】5.已知2)(,3)2(20==⎰dx x f f ,则⎰'20)(dxx f x =)(A10.)(B 4.)(C6. )(D 1.【 C 】6.若级数)0(1≠∑∞=n n nu u收敛,则级数∑∞=11n nu)(A 绝对收敛. )(B 条件收敛. )(C 发散. )(D无法确定.【 D 】7.函数xx f -=31)(,则)(x f 的麦克劳林展开式为: )(A∑∞==03)(n nnx x f ,(1<x ).)(B∑∞==13)(n nnx x f ,(3<x ).)(C∑∞=+=013)(n n nx x f ,(1<x ). )(D∑∞=+=013)(n n nx x f ,(3<x ).二、(本题满分21分,每小题3分)填空题: 1.过点)3,2,1(M 且与平面05532=++-z y x 平行的平面方程为11532=+-z y x .)3(5)2(3)1(2=-+---z y x2.设}42),{(22≤+≤=y xy x D ,则⎰⎰Ddxdy =π2.3.交换二重积分⎰⎰=201),(x dyy x f dx I 的次序,则I=⎰⎰110),(ydxy x f dy . 4.⎰∞+141dx x =3/1.5.已知yx e z +=2,则dz =)2(2dy dx e y x ++.6.=+⎰-223)sin 1(dx x 4. 7.微分方程yx dx dy 232=的通解是Cx y +=32.三、(本题满分8分)设函数),(y x z z =由方程0e=-xyz z所确定,求xz ∂∂与y z ∂∂. [解] 令xyzz y x F z-=e),,(,则yz F x-=', xz F y-=', xyF zz-='e.从而有xyyzF F x z z z x -=''-=∂∂e ,xyxzF F y z z z y -=''-=∂∂e .四、(本题满分8分)曲线2x y =与直线0,3==y x 围成一个平面图形,①求此平面图形的面积;②求图形绕x 轴旋转一周所生成的旋转体的体积. [解]90331)1(332===⎰x dx x A)(2dxx dV 22)(π=,于是πππ524351035304===⎰x dx x V .五、(本题满分8分) 判定级数∑∞=-13)1(n nnn是否收敛,若收敛,指出是绝对收敛还是条件收敛. [解] 令nn nnn n u 33)1(=-=,由于131331lim lim11<=+=+∞→+∞→n n n n n n n n u u ,所以正项级数∑∞=13n n n 收敛,从而∑∞=-13)1(n nnn 绝对收敛.六、(本题满分8分)求微分方程xxx y y sin =+'满足初始条件0==πx y 的特解.[解] 此方程为一阶线性微分方程,其中 xx P 1)(=,xxx Q sin )(= 其通解为])([)()(C dx e x Q e x dxx P dx x P +⎰⎰=⎰-]sin [11C dx e xx edxx dxx +⎰⎰=⎰-)sin (1C xdx x x x +⋅=⎰)sin (1⎰+=C xdx x)cos (1C x x +-=由初值条件==πx y 可得1-=C ,故特解为)1(cos 1)1cos (1+-=--=x xx x y .七、(本题满分8分)计算二重积分⎰⎰-Dydxdye,其中D 为直线xy y x =1=0=,,所围的区域.[解](X 型) ⎰⎰⎰⎰--=1102xy Dy dye dx dxdy e⎰⎰----=-=1111)()(dxe e dy e x xy110121----=--=e e ex.(Y 型) ⎰⎰⎰⎰--=yyDy dx dy e dxdy e12)(111⎰⎰-----==dy e yedy ye y yy111)(--=+-=ee y.八、(本题满分8分)求函数324),(223+-+-=y xy x x y x f 的极值.[解] 令⎩⎨⎧=-='=+-=',022,02832y x f y x x f yx 得唯一)2,2(,)0,0(,又86-=''x f xx,2=''xyf ,2-=''yyf ,于是 在点)0,0(处,2,2,8-==-=C B A ,则122)2)(8(22>=---=-B AC 且08<-=A ,所以函数),(y x f 在)0,0(处有极大值3)0,0(=f . 在点)2,2(处,2,2,4-===C B A ,则122)2(422<-=--⋅=-B AC ,所以)2,2(不是函数),(y x f 的极值点.九、(本题满分10分)求级数∑∞=--11)1(n nn nx 的收敛域与和函数.[解] 易求得1=R ,且当1=x 时级数∑∞=--111)1(n n n收敛,当1-=x 时级数∑∞=-11n n 发散.因此∑∞=--11)1(n nn nx 的收敛域是]1,1(-.在区间)1,1(-内,设=)(x S ∑∞=--11)1(n n n nx ,则x x x n x n x x S n n n n n n n n n n n +=-=-='-='⎥⎦⎤⎢⎣⎡-='∑∑∑∑∞=-∞=--∞=-∞=-11)()1()()1()1()(111111111所以)1ln(11)(0x dx xx S x+=+=⎰,11≤<-x .2014-2015-2 A 卷湖北汽车工业学院 微积分考试试卷( 2014—2015—2)一、(本题满分21分,每小题3分)单项选择题(请将所选答案填入题号前的方括号内):[ A ] 1.⎰=xdt t x f 0cos )(,则=')0(f(A )1. (B )0. (C )1-.(D )2π.[ D ] 2.设y x z 2=,则=∂∂22xz(A )xy 2. (B )x . (C )x 2.(D )y2.[ B ] 3.已知平面区域D 为222≤+y x,则=+⎰⎰Dd y x σ)2(2(A )π. (B )π4. (C )π3.(D )0.[ C ] 4.由曲线xe y =与直线1=x 及直线2=x 所围图形的面积为(A )e . (B )1-e .(C )e e -2. (D )2e .[ D ] 5.下列级数中收敛的是 (A )∑∞=+1131n n . (B )∑∞=+121n nn . (C )∑∞=11cos n n n . (D )∑∞=+12n nn n.[ A ] 6.设),(y x z z =由方程022=--+z z xy y所确定,则=∂∂yz(A )122++z x y . (B )12+z y. (C )122++-z x y . (D )12+-z y. [ C ] 7.微分方程0=-'y y 的通解为(A )c x y +=. (B ).xce y 2=(C )xce y =. (D )xe y =.二、(本题满分21分,每小题3分)填空题(请将正确答案填入题后相应横线上)1.=-+→→12lim1xy xy y x 0 .2.设向量}1,3,2{-=→a 与向量},1,0{k a -=→垂直,则=m-3 .3.设xy y z sin =,则=dzdyxy xy xy dx xy y )cos (sin cos 2++.4.设220(,)x I dx f x y dy=⎰⎰,则交换积分次序后=I 422(,)y I dy f x y dx=⎰⎰ .5.=+⎰-dx xx 1121 0 .6.过点)2,1,3(-且与平面052=+-+z y x 平行的平面方程为012=+-+z y x .7.幂级数∑∞=⋅-12)1(n nn n n x 的收敛域为(2,2]-.【温馨提示】请将下面解题过程直接写在各题相应空白处三、(本题满分8分)设)ln 1ln(y x z ++=,求),1(e xz ∂∂,),1(e yz∂∂.解 由y x x z ln 11++=∂∂,yy x y z 1ln 11⋅++=∂∂所以31ln 111),1(=++=∂∂e xze故(1,)11111ln 3e z ye e e∂=⋅=∂++四、(本题满分8分)计算定积分dxx x ⎰+4012解 令12+=x t ,则212-=t x ,tdt dx =原式=tdt t t ⋅⋅-⎰312121dt t )1(21312⎰-==103五、(本题满分8分)计算二重积分⎰⎰+=Ddxdy y x I )(,其中积分区域D 是由直线x y =及 曲线2x y =所围成的区域.解 积分区域D 为:10≤≤x ,x y x ≤≤2 画图 故⎰⎰+=x x dy y x dx I 2)(10⎰+=1022]21[(dxy xy xx ⎰--=10432)2123(dx x x x10543]1014121[x x x --==203六、(本题满分8分)求函数364),(22+-++=y x y x y x f 的极值.解 由⎩⎨⎧=-==+=062042y f x f yx 得点)3,2(-, 又2==xx f A ,0==xy f B ,2==yy f C ,故在点)3,2(-处,2=A ,0=B ,2=C42<-=-AC B ,且0>A所以)3,2(-为极小值点,极小值为10)3,2(-=-f七、(本题满分8分)求幂级数∑∞=++01)2(n n x n 的收敛域及和函数.解 由ρ123lim ||lim 1==++=∞→+∞→n n a a n nn n ,故1ρ1==r , 且幂级数在1±=x 处均发散,故收敛域为)1,1(-设=)(x s ∑∞=++01)2(n n x n =∑∞=+'02)(n n x)(02'=∑∞=+n n x)1(2'-=x x =22)1(2x x x --,1||<x八、(本题满分8分)判断级数∑∞=-1241n nn 的敛散性.解 由=+∞→nn n u u1lim1441)1(lim 212-⋅-++∞→n n n n n 141<=故由正项级数的达朗贝尔判别法知级数收敛-九、(本题满分10分)求微分方程xxx y y cos =+'的通解. 解 次微分方程为一阶线性微分方程且x x p 1)(=,xxx Q cos )(=则])([)()(C dx e x Q e y dx x p dx x p +=⎰⎰⎰- ]cos [11C dx ex x e dxxdx x +=⎰⎰⎰-]cos [ln ln C dx e xx e xx +=⎰-]cos [1C xdx x x x +⋅=⎰)(sin 1C x x += -2014-2015-2 B 卷湖北汽车工业学院微 积 分 (一)(下) 考 试 卷( 2014-2015-2 )一、(本题满分21分,每小题3分)选择填空题(请将所选答案填入题号前的方括号内): 【B 】1. 平面曲线2x y =与2y x =所围成的平面图形的面积为)(A 21. )(B 31. )(C 32. )(D 43. 【C 】2.设)1,2,4(=a ,),2,2(k b -=,若a 与b 相互垂直,则k 等于 )(A 0. )(B 2-. )(C 3. )(D4.【A 】3.设0≠a 为常数,则级数∑∞=-02)1(n nn)(A 绝对收敛. )(B 条件收敛.)(C 发散. )(D 敛散性无法判断. 【A 】4. 积分⎰-=222sin ππxdx I 等于)(A 2π. )(B 4π. )(C 8π. )(D 16π.【B 】5. 设函数)1(),(-+=y x xy y x f 在点)31,31(处)(A 取极大值 . )(B 取极小值. )(C 不取极值. )(D 在该点不可微. 【D 】6. 设yx z =,则dz 等于)(A dy x xdx x dz yy+=ln . )(B ydy x xdx x dz yyln ln +=.)(C dy x dx yx dz yy +=-1. )(D xdy x dx yx dz yy ln 1+=-.【B 】7. 函数xx f -=21)(的马克劳林展开式的第三项为 )(A222x .)(B322x .)(C222x -. )(D322x -.二、(本题满分21分,每小题3分)填空题: 1.=+⎰-112)sin (dx x e x x32 . 2.过点)1,2,3(且与平面0132=++-z y x 平行的平面方程为0232=-+-z y x .3.设),(y x z z =是由方程ze z y x+=+22所确定的隐函数,则=dz )(12ydy xdx ez++ . 4.设⎰⎰+=Ddxdyy x f I )(22,其中D 是由曲线122=+y x,直线x y =及y轴所围成的第一象限的平面图形,则I 的极坐标系下的二次积分为:=I rdr r f d ⎰⎰124)(ππθ.5.微分方程dxy dy x 221)1(-=+的满足条件1)0(=y 的特解为2arctan arcsin π+=x y .6.设数项级数∑∞=1n n u 的前n 项的和为1+=n n sn,则级数的通项=n u )1(1+n n .7. 计算=⎰→2arctan lim xtdt x x 21 .三、 (8分)计算 dxxx ⎰---11221.解: 22arcsin22212110112112112π==---=--⎰⎰⎰---x dx xx dx xdx xx . 四、(8分) 设函数)ln 1ln(y x z ++=,求),1(e xz∂∂,),1(e yz ∂∂.解:y x x z ln 11++=∂∂,)ln 1(1y x y x z ++=∂∂, 31),1(=∂∂e xz ,eyz e 31),1(=∂∂.五、(8分)求微分方程xe x x y y )1(1+=+-'的通解. 解:方程变形为:xe x y x y =+-+'2)1(1即xe x y='+)1(,Ce x y x+=+1,通解为:))(1(C ex y x++=..六、(8分)判别级数∑∞=-+++-131322)1()1(n n n n n 的敛散性,并指出是绝对收敛还是条件收敛.解:332)1()1(31+++-=-n n n u n n ,取21n v n =,∑∞=121n n 收敛,.+∞<=+++=∞→∞→21332)1(lim lim 32n n n n v u n nn n ,.于是原级数收敛,且为绝对收敛。