专题复习-实数和二次根式

合集下载

实数与二次根式及其运算中考复习

实数与二次根式及其运算中考复习

命题点1 实数的相关概念1. (2015烟台)-23的相反数是( )A. -23B. 23C. -32D. 322. (2015广安)15的倒数是( )A. 5B. -5C. 15D. -153. (2015重庆B 卷)-3的绝对值是( ) A. 3 B. -3 C. 13 D. -134. (2015毕节)-12的倒数的相反数等于( )A. -2B. 12C. -12D. 25. (2015广州)四个数-3.14,0,1,2中为负数的是( )A. -3.14B. 0C. 1D. 26. (2015宜昌)陆地上最高处是珠穆朗玛峰顶,高出海平面8848 m ,记为+8848 m ;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m ,记为( )A. +415 mB. -415 mC. ±415 mD. -8848 m 7. (2015上海)下列实数中,是有理数的为( )A. 2B. 34 C. π D. 08. (2015长沙)下列实数中,为无理数的是( ) A. 0.2 B. 12 C. 2 D. -59. (2015黄冈)9的平方根是( ) A. ±3 B. ±13C. 3D. -310. (2015徐州)4的算术平方根是________. 11. (2015安徽)-64的立方根是________.命题点2 科学记数法12. (2015北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米.将140000用科学记数法表示应为( )A. 14×104B. 1.4×105C. 1.4×106D. 0.14×10613. (2015成都)今年5月,在成都举行的世界机场城市大会上,成都新机场的规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市.按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )A. 126×104B. 1.26×105C. 1.26×106D. 1.26×10714. (2015河南)据统计,2014年我国高新技术产品出口总额达40570亿元.将数据40570亿用科学记数法表示为( )A. 4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×101215. (2015贵港)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为________.16. (2015常德)埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的.1埃等于一亿分之一厘米,请用科学记数法表示1埃等于________厘米.命题点3 实数的大小比较17. (2015重庆A 卷)在-4,0,-1,3这四个数中,最大的数是( ) A. -4 B. 0 C. -1 D. 318. (2015孝感)下列各数中,最小的数是( )A. -3B. |-2|C. (-3)2D. 2×10319. (2015安徽)在-4,2,-1,3这四个数中,比-2小的数是( ) A. -4 B. 2 C. -1 D. 320. (2015丽水)在数-3,-2,0,3中,大小在-1和2之间的数是( ) A. -3 B. -2 C. 0 D. 3第21题图21. (2015菏泽)如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A. 点MB. 点NC. 点PD. 点Q命题点4 二次根式及其运算22. (2015徐州)使x -1有意义的x 的取值范围是( ) A. x ≠1 B. x ≥1 C. x >1 D. x ≥023. (2015贵港)计算3×5的结果是( ) A. 8 B. 15 C. 3 5 D. 5 324. (2015嘉兴)与无理数31最接近的整数是( ) A .4 B .5 C .6 D .725. (2015天津)估计11的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间 26. (2015泰州)计算:18-212等于________. 命题点5 实数的运算27. (2015陕西)计算:(-23)0=( )A. 1B. -32C. 0D. 2328. (2015邵阳)计算(-3)+(-9)的结果是( )A. -12B. -6C. +6D. 1229. (2015天津)计算(-18)÷6的结果等于( ) A. -3 B. 3 C. -13 D. 1330. (2015绍兴)计算(-1)×3的结果是( )A. -3B. -2C. 2D. 331. (2015南充)计算8-2sin45°的结果是________.32. (2015十堰)计算:3-1+(π-3)0-|-13|=________.33. (2015扬州4分)计算:(14)-1+|1-3|-27tan30°.34. (2015陕西5分)计算:3×(-6)+|-22|+(12)-3.35. (2015珠海6分)计算:-12-29+50+|-3|.36. (2015兰州5分)计算:2-1-3tan60°+(π-2015)0+|-12|.37. (2015北京5分)计算:(12)-2-(π-7)0+|3-2|+4sin60°.38. (2015常德5分)计算:(-5sin20°)0-(13)-2+|-24|+3-27 .39. (2015毕节改编8分)计算:(-2015)0+|1-2|-2cos45°+8+(-3)-2.中考冲刺集训一、选择题(共19题,每题3分,共57分) 1. (2015青岛)2的相反数是( ) A. - 2 B. 2 C. 12D. 22. (2015 德州)|-12|的结果是( )A. -12B. 12C. -2D. 23. (2015绵阳)±2是4的( ) A. 平方根 B. 相反数 C. 绝对值 D. 算术平方根4. (2014重庆A 卷)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A. 北京B. 上海C. 重庆D. 宁夏5. (2015遵义)在0,-2,5,14,-0.3中,负数的个数是( )A. 1B. 2C. 3D. 46. (2015威海)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( )A. -2B. -3C. 3D. 57. (2015河南)下列各数中最大的数是( ) A. 5 B. 3 C. π D. -88. (2015怀化)某地一天的最高气温是12 ℃,最低气温是2 ℃,则该地这天的温差是( )A. -10 ℃B. 10 ℃C. 14 ℃D. -14 ℃9. (2015南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆10. (2015自贡)将2.05×10-3用小数表示为( )A. 0.000205B. 0.0205C. 0.00205D. -0.00205 11. (2015河北)计算:3-2×(-1)=( ) A. 5 B. 1 C. -1 D. 612. (2015南京)估计5-12介于( ) A. 0.4与0.5之间 B. 0.5与0.6之间 C. 0.6与0.7之间 D. 0.7与0.8之间 13. (2015泰州)下列4个数:9,227,π,(3)0,其中无理数是( )A. 9B. 227C. πD. (3)014. (2014凉山州)在实数5,227,0,π2,36,-1.414中,有理数有( )A. 1个B. 2个C. 3个D. 4个15. (2015绵阳)要使代数式2-3x 有意义,则x 的( )A. 最大值是23B. 最小值是23C. 最大值是32D. 最小值是32第16题图16. (2015河北)在数轴上标注了四段范围,如图,则表示8的点落在( )A. 段①B. 段②C. 段③D. 段④17. (2015威海)已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( ) A. |a |<1<|b |第17题图B. 1<-a <bC. 1<|a |<bD. -b <a <-118. (2015杭州)下列计算正确的是( )A. 23+25=28B. 22-24=2-2C. 25×20=25D. 25÷23=2819. (2015常州)已知a =22,b =33,c =55,则下列大小关系正确的是( ) A. a >b >c B. c >b >a C. b >a >c D. a >c >b二、填空题(共10题,每题3分,共30分)20. (2015凉山州)81的平方根是________.21. (2015连云港)数轴上表示-2的点与原点的距离是________. 22. (2015湖州)计算:23×(12)2=________.23. (2015陕西)将实数5,π,0,-6由小到大用“<”号连起来,可表示为______________.24. (2015泉州)比较大小:4________15(用“>”或“<”号填空).25. (2015烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是______.第25题图26. (2015安顺)计算:(-3)2013·(-13)2011=________.27. (2015自贡)若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________.28. (2014河北)若实数m ,n 满足|m -2|+(n -2014)2=0,则m -1+n 0=______.29. (2014娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为________.第29题图三、解答题(共5题,第30~31题每题4分,第32~34题每题5分,共23分) 30. (2015长沙)计算:(12)-1+4cos60°-|-3|+9.31. (2015济宁)计算:π0+2-1-14-|-13|.32. (2015绵阳)计算:|1-2|+(-12)-2-1cos45°+3-8.33. (2015梅州)计算:8+|22-3|-(13)-1-(2015+2)0.34. (2015遂宁)计算:-13-27+6sin60°+(π-3.14)0+|-5|.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

中考数学总复习之实数及其运算、二次根式

中考数学总复习之实数及其运算、二次根式

中考数学总复习之实数及其运算、二次根式一、选择题(共27小题)1.(2022•丛台区校级三模)与﹣|﹣5|的结果相等的是()A.5的倒数B.﹣5的相反数C.5的相反数D.52.(2022•新华区校级四模)嘉琪同学在计算423−212+12+313时,运算过程正确且比较简便的是()A.(423+313)﹣(212+12)B.(423−212)+(12+313)C.(423+313)﹣(212−12)D.(423−313)﹣(12−212)3.(2022•丰南区一模)据报道,2021年河北省普通高考报考人数约为63.4万人,用科学记数法表示为a×10n人,则n=()A.4B.5C.6D.7 4.(2022•清苑区二模)神舟十三号飞船于2021年10月16日圆满发射成功,飞船搭载的一种高控制芯片探针面积为0.0000162cm2,0.0000162用科学记数法表示为()A.1.62×10﹣6B.1.62×10﹣5C.1.62×10﹣4D.0.162×10﹣6 5.(2022•路南区二模)用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.(2021•河北模拟)近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位7.(2022•青县一模)下列各数中绝对值最大的是()A.﹣5B.0C.﹣(﹣2)D.14 8.(2022•丛台区校级三模)如图,若点A在数轴上表示的数为x﹣2,则x的值可能是()A.1−√5B.1−√2C.√3−1D.√3 9.(2022•路南区三模)运算后结果正确的是()A.2√3÷12=√3B.√43=2C.√8−2√2=0D.√2×√6=3√210.(2022•保定一模)定义:形如a+bi的数称为复数(其中a和b为实数,i为应数单位.规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6B.6C.5D.﹣5 11.(2022•丰南区二模)对于数字﹣2+√5,下列说法中正确的是()A.它不能用数轴上的点表示出来B.它比0小C.它是一个无理数D.它的相反数为2+√512.(2022•大名县三模)已知a,b是两个实数,满足a+b=0,下列是关于a,b 的五个结论:①a2+b2=0;②a2﹣b2=0;③a3+b3=0;④a3﹣b3=0;⑤|a|=|b|五个结论中,所有正确结论的序号是()A.②④⑤B.①④⑤C.②③⑤D.①③⑤13.(2022•石家庄三模)下面四个数中最小的数是()A.﹣2B.√2C.0×2022D.1÷2 14.(2022•馆陶县一模)已知a、b都是正整数,若√18=a√2,√8=2√b,则()A.a=b B.a<b C.a+b=4D.a﹣b=1 15.(2022•桥西区校级模拟)实数b>a>1.则下列各式中比ab的值大的是()A.2a2b B.a2b2C.a−1b−1D.a+1b+116.(2022•桥西区校级模拟)如图,数轴上的点B表示实数b,若实数a满足不等式b <a <﹣b ,则a 可能为( )A .﹣1B .﹣2C .2D .317.(2022•安次区一模)a 、b 为两个连续整数,若a <√10<b ,则√ab 的值为( )A .2√3B .±2√3C .√72D .±6√218.(2022•石家庄模拟)已知√7−1的整数部分是m ,小数部分是n ,则√7m ﹣n 的值是( )A .﹣2B .﹣1C .2D .119.(2022•丛台区校级模拟)如图,数轴上表示√20−5的点应在( )A .线段AB 上 B .线段BC 上 C .线段CD 上 D .线段DE 上20.(2022•广阳区一模)若a =√10,则实数a 在数轴上对应的点的大致位置是( )A .B .C .D .21.(2022•青县一模)已知√x −5√x +14√x =58.35,则x 的平方根为( )A .5.835B .0.5835C .±5.835D .±0.5835 22.(2022•桥西区校级模拟)数轴上表示√83+√−83的点一定在( )A .第①段B .第②段C .第③段D .第④段23.(2020•定州市二模)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为()A.1B.3C.5D.7 24.(2022•路南区二模)若2×2×2×⋯×2︸m个2=43,则m=()A.3B.4C.6D.8 25.(2022•桥西区校级模拟)√75−√12=a√b,那么a b的值是()A.6B.9C.12D.27 26.(2022•河北二模)关于√3×√12的变形,不正确的是()A.√3×√12=√3×12B.√3×√12=√3×√2×√6C.√3×√12=√3+12D.√3×√12=√3×2√327.(2022•桥西区校级模拟)若式子√x2−4x+m不论x取任何数总有意义,则m的取值范围是()A.m>2B.m≥2C.m≤4且m≠0D.m>4二、填空题(共17小题)28.(2022•宽城县一模)若a、b互为相反数,则a+(b﹣2)的值为;若a、b互为倒数,则﹣2022ab=.29.(2022•馆陶县一模)算式:﹣8☐2中,“☐”表示“+、﹣、×、÷”中的一个.(1)若“□”表示“﹣”,其结果为;(2)若结果为﹣4,则“☐”表示.30.(2022•石家庄模拟)若23+23+23+23=2n,则n=.31.(2022•景县校级模拟)定义新运算:f(a,b)={a2−b2(a>b)(a−b)2(a≤b),如f(3,5)=(3﹣5)2=4,f(5,3)=52﹣32=16.(1)f(﹣2,﹣4)=;(2)若f(2x,x﹣1)=x2+2x+1,则x的取值范围是.32.(2022•迁安市一模)记者从科技局获悉,某市今年将继续加大科技投入力度,科研经费投入总量达到1.3950亿元,比去年增加20%,则去年某市的科技经费投入总量为亿元,今年科研经费投入总量达到1.395亿元,用科学记数法表示为元(结果保留二位小数).33.(2022•石家庄二模)如图,在数轴原点O的右侧,一质点P从距原点10个单位的点A处向原点方向跳动,第一次跳动到OA的中点A1处,则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此跳动下去,则第四次跳动后,该质点到原点O的距离为.34.(2022•石家庄二模)若a、b互为相反数,则a+(b﹣2)的值为;若a、b互为倒数,则|﹣2022ab|=.35.(2021•滦州市一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.则前4个台阶上数的和是;第5个台阶上的数x=;从下到上前35个台阶上数的和=.36.(2021•河北模拟)发现:任意正整数的平方均可以写成若干个从1开始的连续正奇数的和.验证:42=1+3+5+;应用:若把20212写成若干个从1开始的连续正奇数的和,则处于最中间的奇数是.37.(2022•广阳区一模)一个数值转换器,如图所示:(1)当输入的x为16时,输出的y值是;(2)若输出的y是√3,请写出两个满足要求的x值:.38.(2022•新华区模拟)若|12m ﹣3|+√m +n −5=0,则m = ,n = .39.(2022•石家庄模拟)比较大小:12√2 sin45°(选填“>”、“=”或“<”). 40.(2022•易县二模)一个数的平方根是a +4和2a +5,则a = ,这个正数是 .41.(2021•衡水模拟)如果√a +2+|b −3|=0,那么a b = .42.(2022•雄县一模)已知x =2+√3,y =2+√3.则 (1)x 2+y 2= .(2)(x ﹣y )2﹣xy = .43.(2022•滦州市一模)式子√x−4在实数范围内有意义,则实数x 的取值范围是 .44.(2021•开平区一模)已知x =√8,y =√12,则y x = .三、解答题(共15小题)45.(2022•滦州市一模)计算:|−2|+(π+3)0+2cos30°−(13)−1+√12.46.(2012•唐山二模)计算:(13)﹣2﹣2sin45°+(π﹣3.14)0+12√8.47.(2012•裕华区一模)计算:√(−1)2+(π﹣3)0﹣(sin60°﹣1)•(√3−2)﹣1.48.(2022•桥西区校级模拟)已知*表示+,﹣,x ,÷四种运算符号中的一种,且对于任意两个不相等的实数a ,b 满足以下关系式:a *b =b *a ,(﹣a )*b ≠﹣(a *b ).(1)﹣5*3= .(2)a 的倒数和绝对值都是a 本身,求[a *(﹣6)]*(﹣1)的值.49.(2021•石家庄一模)如图,已知在一张纸条上画有一条数轴.(1)沿过原点O 且垂直于数轴的直线折叠纸条,则表示﹣3的点与表示 的点重合;(2)M为数轴上一点,沿过点M且垂直于数轴的直线折叠纸条,当表示﹣3的点与表示1的点重合时,①点M所表示的数为;②若数轴上的A,B两点也同时重合,且AB=9,求点A所表示的数.50.(2020•广阳区模拟)已知:4是x﹣4的平方根,x+y的立方根是2.(1)求x,y的值;(2)求出2x+y的平方根.51.(2020•河北一模)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n 的值是多少?52.(2020•石家庄模拟)在学习了实数的混合运算后,老师在黑板上出了如下两道题目:①3□14=3×14△2;②7□58=7×58△2.在上述两个等式中,“□”和“△”分别是“+﹣×÷”中的某一个运算符号.(1)判断“□”和“△”分别是什么运算符号?(2)若a□7>a×7△2,求a的取值范围.53.(2022•景县校级模拟)如图,在一条不完整的数轴上,点A,B,C对应的数分别为a,b,c,其中点A在点B的左侧,且a+b=0.(1)若AB=4,c=5,求a+c的值;(2)若点C在点A的左侧,化简|a﹣c|+|a﹣b|;(3)若b=6,AB=3BC,求c的值.54.(2022•唐山一模)淇淇同学在电脑中设置了一个有理数的运算程序:输入数“a”加“★”键再输入“b”,就可以得到运算a★b=|2﹣a2|−1b+1.(1)按此程序(﹣3)★2=;(2)若淇淇输入数“﹣1”加“★”键再输入“x”后,电脑输出的数为1,求x的值;(3)嘉嘉同学运用淇淇设置的在这个程序时,屏幕显示:“该操作无法进行,”你能说出嘉嘉在什么地方出错了吗?55.(2022•丰南区二模)阅读下面材料:点A、B在数轴上分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示x和﹣2的两点之间的距离是;(2)数轴上表示a和1的两点之间的距离为6,则a表示的数为;(3)若x表示一个有理数,则|x+2|+|x﹣4|有最小值吗?若有,请求出最小值;若没有,请说明理由.56.(2022•威县校级模拟)在一条不完整的数轴上从左到右有点A,B,C,D,其中AD=6,B,C是AD的三等分点,如图所示.(1)BC=;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为﹣10,求出点A,B,D所对应数的和.57.(2022•莲池区校级一模)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为﹣3,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a,●表示的数为b,当计算结果为0时,请求出a与b之间的数量关系.58.(2022•承德二模)对于任意四个实数a,b,c,d,都可以组成两个实数对(a,b)与(c,d).我们规定:(a,b)⋆(c,d)=bc﹣ad.例如:(1,2)⋆(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)(2,−3)⋆(3,−12)=;(2)计算(2,−2)⋆(√5,3−√5);(3)当x+y=2,xy=﹣3时,求(x+y,2x+y)⋆(2x﹣y,4x﹣y+5)的值.59.(2021•安次区一模)利用平方差公式可以进行简便计算:例1:99×101=(100﹣1)(100+1)=1002﹣12=10000﹣1=9999;例2:39×410=39×41×10=(40﹣1)(40+1)×10=(402﹣12)×10=(1600﹣1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)192×212;(2)(2021√3+2021√2)(√3−√2).。

2022-2023年数学中考第一轮复习-专题二二次根式

2022-2023年数学中考第一轮复习-专题二二次根式

专题二:二次根式1:考向解读1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.2.了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、的化简与运算(分母有理化).2:导图导学3:考点数的乘方负数的奇次幕是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.这样的二次根式叫做最简二次根式.(3)同类二次根式:当二次根式化为最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.二次根式的运算二次根式的性质:0(0)a a≥≥,2()(0)a a a=≥.2(0),||(0)a aa aa a≥⎧==⎨-<⎩.(0,0)ab a b a b=⋅≥≥.(0,0)a aa bb b=≥>.4:解题技巧化简二次根式的步骤(易错点)(1)把被开方数分解因式(或因数) ;(2)把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;(3)如果因式中有平方式(或平方数),应用关系式(a)2=a(a≥0)把这个因式(或因数)开出来,将二次根式化简。

二次根式运算中的注意事项(1)一般将最后结果化为最简二次根式,并且分母中不含二次根式。

(2)二次根式的加减:先将二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。

(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。

常见二次根式化简求值的九种技巧一、估算法二、公式法三、拆项法四、换元法 五、整体代入法 六、因式分解法 七、配方法 八、辅元法 九、先判后算法 考点1:二次根式有意义的条件 1.(2022•衡阳)如果二次根式1a -有意义,那么实数a 的取值范围是( ) A .1a > B .1a C .1a < D .1a 【分析】根据二次根式有意义的条件:被开方数为非负数,即可得出a 的取值范围. 【解答】解:由题意得:10a -, 1a ∴, 故选:B . 2.(2022•日照)若二次根式32x -在实数范围内有意义,则x 的取值范围为 32x . 【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:320x -,解得:32x , 故答案为:32x.举一反三1.(202236x -x 的取值范围是( )A .2x >B .2x <C .2xD .2x【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:360x -,2x ∴,故选:D .2.(2022•广州)代数式11x +有意义时,x 应满足的条件为( ) A .1x ≠- B .1x >- C .1x <- D .1x - 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【解答】解:代数式11x +有意义时,10x +>, 解得:1x >-. 故选:B . 3.(2022•常州)若二次根式1x -有意义,则实数x 的取值范围是( ) A .1x B .1x > C .0x D .0x > 【分析】根据二次根式有意义的条件,可得:10x -,据此求出实数x 的取值范围即可. 【解答】解:二次根式1x -有意义, 10x ∴-,解得:1x .故选:A .考点二:二次根式的定义1.(2022秋•二道区校级期中)下列式子中,不是二次根式的是( )A .3B .0.6C .12D .3π-【分析】根据二次根式的定义进行判断.【解答】解:3,0.6,1为二次根式,2而30π-<,所以3π-不是二次根式.故选:D.2.(2022春•泸县校级期中)下列式子中是二次根式的是()A.x B.3-C.2-D.38【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式判断即可.【解答】解:A选项,x缺少条件0x,当0x<时,x不是二次根式,故该选项不符合题意;B选项,30-<,故该选项不符合题意;>,故该选项符合题意;C选项,20D选项,38是三次根式,故该选项不符合题意;故选:C.举一反三1.(2022秋•新蔡县校级月考)下列各式中,一定是二次根式的是()A a B21a+C32D2-【分析】(0)a a的式子叫做二次根式.【解答】解:A.当0a<aa+B21C32是三次根式,故此选项不合题意;D2-故选:B.2.(2022秋•宛城区校级月考)下列各式中,一定是二次根式的是() A.4-B.21x+x-C.32a D.21【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.x的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;C.根指数是3,不是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.故选:D.3.(2022秋•榆树市月考)下列各式中,一定是二次根式的是() A.3-B.32a C.22a+D.29a-【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式.【解答】解:A.3-,被开方数是负数,二次根式无意义,故此选项不合题意;B.32a,三次根式,故此选项不合题意;a+,是二次根式,故此选项符合题意;C.22a-,被开方数有可能是负数,二次根式无意义,故此选项不合题意;D.29故选:C.考点三:考向3 二次根式的性质与化简1.(2021•娄底)2、5、m是某三角形三边的长,则22-+-等于((3)(7)m m)A.210-C.10D.4m-B.102m【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:2、5、m是某三角形三边的长,5252m ∴-<<+, 故37m <<, ∴22(3)(7)m m -+- 37m m =-+- 4=. 故选:D . 2.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简22|1|(1)()a b a b +--+-= 2 . 【分析】根据数轴可得:10a -<<,12b <<,然后即可得到10a +>,10b ->,0a b -<,从而可以将所求式子化简. 【解答】解:由数轴可得,10a -<<,12b <<,10a ∴+>,10b ->,0a b -<,22|1|(1)()a b a b ∴+--+-1(1)()a b b a =+--+-11a b b a =+-++-2=,故答案为:2.举一反三1.(2022•内蒙古)实数a 21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -【分析】根据数轴得:01a <<,得到0a >,10a -<||a =和绝对值的性质化简即可.【解答】解:根据数轴得:01a <<,0a ∴>,10a -<,∴原式||11a a =++-11a a =++-2=.故选:B .2.(2022( )A .B .3C .D .2【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为.【解答】===故选:A .3.(2022•河北)下列正确的是( )A23=+ B 23⨯ C 23= D 0.7【分析】A 0,0)a b 判断B 选项;根据||a 判断C 选项;根据算术平方根的定义判断D 选项.【解答】解:A 、原式=B 、原式23=⨯,故该选项符合题意;C 、原式29,故该选项不符合题意;D 、20.70.49=,故该选项不符合题意;故选:B .考点4:最简二次根式1.(2021•桂林)下列根式中,是最简二次根式的是( ) A .19 B .4 C .2a D .a b + 【分析】直接根据最简二次根式的概念:(1)被开方数不含分母,分母中不含根号;(2)被开方数中不含能开得尽方的因数或因式判断即可. 【解答】解:11.93A =,不是最简二次根式; .42B =,不是最简二次根式; 2.||C a a =,不是最简二次根式; .D a b +,是最简二次根式. 故选:D . 2.(2022•杭州)计算:4= ;2(2)-= .【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:42=,2(2)4-=,故答案为:2,4.举一反三1.(2022秋•忻州月考)下列二次根式是最简二次根式的是( )A 12B 3C 12D 2a 【分析】根据最简二次根式的概念判断即可.【解答】解:A 124323⨯=,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;B 3是最简二次根式,本选项符合题意;C 122=D 2||a a =,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;故选:B .2.(2021•益阳)将452化为最简二次根式,其结果是( ) A .452 B .902 C .9102 D .3102 【分析】根据二次根式的性质进行化简即可. 【解答】解:459523102222⨯⨯==⨯, 故选:D . 3.(2022秋•永春县期中)下列二次根式是最简二次根式的是( ) A .13 B .18 C .7 D .12 【分析】根据最简二次根式的定义进行判断即可. 【解答】解:13.33A =,因此13不是最简二次根式,所以选项A 不符合题意; .1832B =,因此18不是最简二次根式,所以选项B 不符合题意;.7C 是最简二次根式,因此选项C 符合题意;.1223D =,因此12不是最简二次根式,所以选项D 不符合题意; 故选:C .考点5:二次根式的乘除法1.(2022•山西)计算:1182⨯的结果为 . 【分析】按照二次根式的乘法法则计算即可.【解答】解:原式93==.故答案为:3.2.(2022•衡阳)计算:28⨯= .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解答】解:原式28164=⨯==.故答案为:4举一反三1.(2022•呼和浩特)下列运算正确的是( ) A 1822=± B .222()m n m n +=+C .1211x x x-=--D .2229332y x xy x y-÷=-【分析】利用二次根式的乘法的法则,完全平方公式,分式的减法的法则,分式的除法的法则对各项进行运算即可. 【解答】解:A 1822,故A 不符合题意; B 、222()2m n m mn n +=++,故B 不符合题意;C 、21221xx x x x--=--,故C 不符合题意; D 、2229332y x xy x y-÷=-,故D 符合题意; 故选:D .2.(202211622正确的是( ) A .4B .2C 7D .2±【分析】直接利用二次根式的乘除运算法则化简,进而得出答案. 【解答】解:原式11622=÷⨯4=2=.故选:B .3.(202223= .【分析】根据二次根式的乘法法则进行计算即可. 【解答】236= 6.考点61.(2021•潍坊)下列运算正确的是( ) A .2211()24a a a -=-+ B .1221()a a --=C .33a ab b-=- D .623=【分析】根据完全平方公式判断A ,根据负整数指数幂判断B ,根据分式的基本性质判断C ,根据二次根式的除法判断D .【解答】解:A 选项,原式214a a =-+,故该选项正确;B 选项,原式122211()()a a a-===,故该选项正确;C 选项,根据分式的基本性质,分子,分母都乘或除以一个不为0的数,分式的值不变,不能分子,分母都加3,故该选项错误;D 选项,原式2=,故该选项错误;故选:AB .2.(2021•娄底)计算:0111(2021)()2cos45221π--++-︒+. 【分析】根据零指数幂,分母有理化,负整数指数幂,特殊角的三角函数值计算即可.【解答】解:原式222121222(2)1-=++-⨯- 12122=+-+-2=.举一反三1.(2022秋•嘉定区月考)下列结论正确的是( ) A 22a b +是最简二次根式 B x y -x y + C 2(12)12-D a ba b-=+【分析】根据最简二次根式的定义,有理化因式的定义,不等式的解法即可得到结论.【解答】解:A 是最简二次根式,故本选项正确,符合题意;BC 1,故本选项错误,不符合题意;D=故选:A .2.(2022•信阳二模)下列式子运算正确的是( ) A .632a a a ÷= B .22(2)4a a =C 1=D .22()(2)2x y x y x y -+=+【分析】根据整式运算相关的法则和分母有理化逐项判断. 【解答】解:632a a ÷=,故A 错误,不符合题意;22(2)4a a =,故B 正确,符合题意;1,故C 错误,不符合题意;22()(2)2x y x y x xy y -+=+-,故D 错误,不符合题意;故选:B .3.(2022春•孝义市期末)下列是最简二次根式的是( )AB C D 【分析】根据最简二次根式的定义解决此题.【解答】解:A 不是最简二次根式,那么A 不符合题意.B 不是最简二次根式,那么B 不符合题意.C .根据最简二次根式的定义,C 不符合题意.D.根据最简二次根式的定义,15是最简二次根式,那么D符合题意.故选:D.考点7:同类二次根式1.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是() A.8与3B.2与12C.5与15D.75与27【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、822=和3不是同类二次根式,本选项不合题意;B、1223=与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、7553=是同类二次根式,本选项符合题意.=,2733故选:D.2.(2020•上海)下列二次根式中,与3是同类二次根式的是() A.6B.9C.12D.18【分析】根据同类二次根式的定义解决此题.【解答】解:A.根据同类二次根式的定义,6与3不是同类二次根式,那么A 不符合题意.B.根据算术平方根以及同类二次根式,93=与3不是同类二次根式,那么B 不符合题意.=与3是同类二次C.根据二次根式的性质以及同类二次根式的定义,1223根式,那么C符合题意.D.根据二次根式的性质以及同类二次根式的定义,1832=与3不是同类二次根式,那么D 不符合题意. 故选:C .举一反三1.(2022秋•浦东新区校级月考)下列四组二次根式,不是同类二次根式的是( ) A 313B 850C 34x 38xD 3x 233a x 【分析】根据同类二次根式的定义:化成最简二次根式后,被开方数相同的叫做同类二次根式,即可解答. 【解答】解:A 、133=∴313故A 不符合题意;B 、822=5052=∴850故B 不符合题意;C 、342x x x 3822x x ,∴34x 38x故C 符合题意;D 、2333a x ax x =∴3x 233a x故D 不符合题意; 故选:C .2.(20222022m +2可以合并,则m 的值为( ) A .2020B .2020-C .2024D .2024-【分析】2022m +22022m +2的被开方数相同,即20222m +=.【解答】解:最简二次根式2022m +与2可以合并,则2022m +与2是同类二次根式,20222m ∴+=.解得2020m =-. 故选:B .3.(2022春•綦江区校级月考)若8和最简二次根式37m -是同类二次根式,则m 的值为( ) A .5m =B .2m =C .3m =D .6m =【分析】先把8化为最简二次根式22,再根据同类二次根式得到372m -=,然后解方程即可. 【解答】解:822=,372m ∴-=, 3m ∴=.故选:C .考点8:二次根式的加减法1.(2022•鞍山)下列运算正确的是( ) A .2810+= B .3412a a a ⋅= C .222()a b a b -=-D .2336(2)8ab a b -=-【分析】利用二次根式的加法的法则,完全平方公式,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A 、2832+=,故A 不符合题意;B 、347a a a ⋅=,故B 不符合题意;C 、222()2a b a ab b -=-+,故C 不符合题意;D 、2336(2)8ab a b -=-,故D 符合题意;故选:D .2.(2022•宁夏)下列运算正确的是( ) A .220--=B .826-=C .3362x x x +=D .326()x x -=【分析】直接利用二次根式的加减、合并同类项、幂的乘方与积的乘方法则分别化简,进而判断得出答案.【解答】解:A .224--=-,故此选项不合题意;B .822-=,故此选项不合题意;C .3332x x x +=,故此选项不合题意;D .326()x x -=,故此选项符合题意;故选:D .举一反三1.(2022•鄂尔多斯)下列运算正确的是( ) A .32235523a b a b a b += B .2363(2)6a b a b -=-C .2124-=-D 2832=【分析】把每一选项按照运算法则计算后判断结果即可.【解答】解:32232a b a b +不能合并,因为不是同类项,A 选项错误;2363(2)8a b a b -=-,B 选项也错误;2124-=,C 选项也错误; 2832=D 选项正确.故选:D .2.(2022123( ) A 15B .32C .33D .53【分析】根据二次根式的加法法则,先化简,再合并同类二次根式.【解答】解:12323333+=+=. 故选:C .3.(2022秋•沈河区校级月考)下列计算正确的是( ) A .2(2)2-=-B .43331-=C .235+=D .1222= 【分析】直接利用二次根式的性质以及二次根式的加减运算法则分别计算,进而得出答案.【解答】解:2.(2)2A -=,故此选项不合题意;.43333B -=,故此选项不合题意; .23C +无法合并,故此选项不合题意;12.22222D =⨯=,故此选项符合题意; 故选:D .考点9:二次根式混合运算1.(2022•朝阳)计算:637|4|÷--= . 【分析】先算除法,去绝对值,再合并即可. 【解答】解:原式6374=÷-34=-1=-.故答案为:1-.2.(2022•泰安)计算:48633⋅-= . 【分析】化简二次根式,然后先算乘法,再算减法. 【解答】解:原式238633=⨯-⨯4323=- 23=,故答案为:23.举一反三1.(2022•安顺)估计1()(2552)5A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式210=<<,310452106∴<<,故选:B.2.(2022•湖北)下列各式计算正确的是()A235÷D236=B.43331C1226【分析】利用二次根式的加减法的法则,二次根式的乘除法的法则对各项进行运算即可.【解答】解:A23A不符合题意;B、43333,故B不符合题意;=C不符合题意;C1223D236,故D符合题意;故选:D.3.(2022•青岛)计算1的结果是()(2712)3A3B.1C5D.3【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:1(2712)3112712=⨯⨯3394=-32=-1=,故选:B .考点10:二次根式的化简求值1.(2022•内蒙古)已知x ,y 是实数,且满足1228y x x =-+-+,则xy 的值是 .【分析】根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.【解答】解:1228y x x =-+-+,20x ∴-,20x -,2x ∴=,18y =, 则原式1112842=⨯==, 故答案为:122.(2022秋•浦东新区校级月考)已知15x x-=,那么1x x+的值为 .【分析】把所求的式子转为条件的形式,再进行求解即可. 【解答】解:15x x-=,∴1x x+21()x x =+21()4x x =-+2(5)4=+54=+3=.故答案为:3.举一反三1.(2021•包头)若21x =,则代数式222x x -+的值为( ) A .7B .4C .3D .322-【分析】利用条件得到12x -两边平方得221x x -=,然后利用整体代入的方法计算.【解答】解:21x =+,12x ∴-2(1)2x ∴-=,即2212x x -+=,221x x ∴-=, 222123x x ∴-+=+=.故选:C .2.(2022秋•琼山区校级月考)已知51x =时,则代数式223x x ++的值( ) A .1B .4C .7D .3【分析】根据完全平方公式以及二次根式的性质即可求出答案. 【解答】解:51x =-时,15x ∴+=2(1)5x ∴+=,2215x x ∴++=,2237x x ∴++=,故选:C .3.(2022春•东莞市月考)若1220223x =1220223y ,则222x xy y ++的值( )A .12B .4C .2022D .8【分析】先利用x 、y 的值计算出22x y +=,再利用完全平方公式得到2222()x xy y x y ++=+,然后利用整体代入的方法计算.【解答】解:1220223x =+,1220223y =-, 22x y ∴+=,22222()(22)8x xy y x y ∴++=+==.故选:D .考点11:二次根式的应用1.(2022秋•新蔡县校级月考)如图,在长方形中放入面积分别为32和18的正方形m 和正方形n ,则图中阴影部分的周长为 .【分析】先根据正方形的面积公式求得两个正方形的边长,再根据图形求得阴影部分的长与宽,最后根据矩形的周长公式求得结果. 【解答】解:根据题意得,2(321818)⨯-+242=⨯ 82=,故答案为:82.2.(2022秋•仁寿县校级月考)若直角三角形斜边长为4,周长为432+,则三角形面积等于 .【分析】由周长可得出两直角边的关系,再利用勾股定理列出另一方程求出两直角边之积进而求得三角形的面积. 【解答】解:设两直角边长分别为x ,y ;则22443216x y x y ⎧++=+⎪⎨+=⎪⎩, 解得1xy =.故这个三角形的面积为1122xy =, 故答案为:12.举一反三1.(20221250的周长为( ) A .23102B .4352C .43102D .4352或23102【分析】分腰长为1250关系进行验证,可求得其周长.【解答】12121250,不满足三角形的三边关系;50125050系,此时周长为23102综上可知,三角形的周长为23102 故选:A .2.(2022•雄县校级开学)如图,在一个长方形中无重叠的放入面积分别为29cm 和28cm 的两张正方形纸片,则图中空白部分的面积为( )A .21)cmB .21cmC .26)cmD .28)cm【分析】根据HLFG MCEF S S S =+矩形矩形空白部分,需求HC 以及LM .由题意得()229ABCH S HC cm ==正方形,()22228LMEF S LM LF MF cm ====正方形,故3HC cm =,)LM LF MF cm ===,进而解决此题.【解答】解:如图所示:由题意知:()229ABCH S HC cm ==正方形,()22228HCDG S LM LF ME cm ====正方形.3()HC cm ∴=,)LM LF MF cm ===.HLFG MCDE S S S ∴=+矩形矩形空白部分HL LF MC ME =⋅+⋅ HL LF MC LF =⋅+⋅()HL MC LF =+⋅ ()HC LM LF =-⋅(3=-⨯2)cm =.故选:D .3.(2022春•孝义市期末)如图,从一个大正方形中裁去面积为26cm 和215cm 的两个小正方形,则留下阴影部分的面积为( )A.2B.221cm C.2D.2【分析】根据小正方形的面积得到边长即可得到大正方形的边长,根据阴影部分的面积=大正方形的面积-两个小正方形的面积即可得出答案.【解答】解:两个小正方形的面积为15和6,∴,+=--∴阴影部分的面积26151526615=+--2)cm=,故选:A.专题二:练习一.选择题1.(2022秋•榆树市期中)下列计算正确的是( ) ABCD 3-2.(2022秋•恩阳区 月考)x ( ) A .1.5B .1-C .3-D .9-3.(2022秋•新蔡县校级月考)已知x 、y 为实数,且1y =,则x y +的值是( ) A .2022B .2023C .2024D .20254.(2022秋•文山市校级月考)下列二次根式中,是最简二次根式的是( )AB C D 5.(2022秋•新蔡县校级月考)下列各式计算正确的是( ) A=B = C=D 6.(2022秋•汝州市校级月考)下列二次根式中,最简二次根式是( )A .B C .D 7.(2022秋•泌阳县校级月考)若代数式有意义,则实数x 的取值范围是()A .1x ≠B .0xC .1x -D .0x 且1x ≠-8.(2022秋•泌阳县校级月考)下列二次根式中,是最简二次根式的是( ) ABC D9.(2022秋•宛城区校级月考)下列根式中为最简二次根式的是( )AB C D 10.(2022秋•泌阳县校级月考)下列运算正确的是( ) AB .2C D 11.(2022秋•渝中区校级月考)下列计算正确的是( )A3-B 2=C 123D .2(10-=12.(2022秋•邓州市校级月考)已知ABC ∆的面积为212cm ,底边为,则底边上的高为( )A .B .C D .13.(2022秋•邓州市校级月考)下列二次根式中属于最简二次根式的是( )ABC D14.(2022秋•商水县月考)如图,数轴上表示1和的对应点分别为A 、B ,点B 关于点A 的对称点是C ,设C 点 表示的数为x ,则x +( )A .1B .1C 1D .215.(2022秋•安溪县校级月考)已知y =,则20202021()()x y x y +-的值为( ) A .2B .2C .1-D .116.(2022秋•安溪县校级月考)下列计算正确的是( )A2=-B .26=C D .=17.(2022秋•西安月考)下列计算中正确的是( ) A=B .1C 8D18.(2022( ) A .2BC D 19.(2022春•重庆月考)下列二次根式是最简二次根式的是( )AB C D 0)a >20.(2022秋•禅城区校级月考)实数a 、b 在轴上的位置如图所示,且||||a b >,则化||a b -的结果为( )A .2a b +B .2a b -+C .bD .2a b -21.(202230b -=,则b 的取值范围是( ) A .3b >B .3b <C .3bD .3b22.(2022春•鲤城区校级期中)下列计算错误的是( ) A=B .3=C =D 23.(2022( ) A .1x >B .1xC .1x ≠D .1x24.(2022有意义的实数x 的取值范围是( ) A .2xB .3x 且2x ≠C .2x >且3x ≠D .2x 且3x ≠25.(2022春•福山区期中)下列计算中,正确的是( ) A .21 B .3=C 3D =26.(2022春•鼓楼区校级期中)下列运算正确的是( )A .3=B =C 3=-D .215=27.(2022( ) A .0B .3C .D .28.(2022春•东莞市月考)下列各组二次根式中,能进行合并的是( ) ABC D29.(2022春•东莞市月考)下列二次根式中,最简二次根式是( )AB C D 30.(2022春•东莞市校级期中)当a 满足( ) A .3aB .3a >C .3a -D .3a >-31.(2022春•仓山区校级期中)下列计算正确的是( )A4B 32=C 5=±D 1=-32.(2022春•东莞市校级期中)下列计算正确的是( ) A=B =C5-D 1=33.(2022春•杭州期中)下列运算正确的是( )A=B .26=C D 2=-34.(2022秋•高新区校级月考)若实数a ,b ,c 在数轴上的对应点的位置如图所示,则化简||b c +( )A .b c a +-B .b c a ++C .b c a ---D .b c a --+35.(2022春•北京期中)下列二次根式计算正确的是( ) A=BC D36.(2022春•武隆区校级期中)把二次根式化简为( ) A .B C .D 二.填空题37.(2022秋•忻州月考)若最简二次根式则x=.38.(2022=的值为.39.(20222)<<=.x40.(2022秋•仁寿县校级月考)计算:20212022⋅=.41.(2022.42.(2022在实数范围内有意义,则x的取值范围是.43.(2022秋•高新区校级月考)若3y=,则xy的值为.44.(2022秋•虹口区校级月考)设x=y=t为时,代数式22++=.2062202022x xy y45.(2022秋•虹口区校级月考)若x,y满足6y=,则x y⋅的平方根为.46.(2022秋•虹口区校级月考)在二次根式;.(填写编号)47.(2022秋•仁寿县校级月考)若直角三角形的两边长为a、b,且满足b-==.|4|048.(2022秋•虹口区校级月考)已知x=,则654322--+-+.x x x x49.(2022秋•二道区校级期中)当1x=.50.(2022秋•渝中区校级月考)若两不等实数a,b满足8b+,则a+=,8.三.解答题51.(2022秋•禅城区校级月考)计算.(1)01)|-(252.(2022秋•浦东新区校级月考)先化简,+,其中5x =,15y =.53.(2022. 54.(2022秋•薛城区校级月考)计算:(1)+(2)2011)()|1(2)3π---+--55.(202256.(202257.(2022春•江汉区校级月考)计算:(1(2)747a .一.选择题1.【解答】解:AA选项不符合题意;B==B选项不符合题意;C==C选项符合题意;D.原式6318=⨯=,所以D选项不符合题意;故选:C.2.【解答】解:由题意得,210x +,解得0.5x -,3210.50-<-<-<-<,故选项A符合题意.故选:A.3.【解答】解:20230x -,20230x-,20230x∴-=,2023x∴=,1y∴=,202312024x y∴+=+=,故选:C.4.【解答】解:A是最简二次根式,故本选项符合题意;B的被开方数的因数不是整数,不是最简二次根式,故本选项不符合题意;C不符合题意;D不是最简二次根式,故本选项不符合题意;故选:A .5.【解答】解:A ,故A 不符合题意;B =B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .6.【解答】解:A 、原式=,故A 不符合题意.B 、原式=B 不符合题意.C 、C 符合题意.D 、原式||a =,故D 不符合题意.故选:C .7.【解答】解:根据题意得:100x ≠⎪⎩, 解得0x .故选:B .8.【解答】解:AB 不是最简二次根式,故此选项不合题意;C D不是最简二次根式,故此选项不合题意; 故选:A .9.【解答】=式,故A 选项不符合题意;是最简二次根式,故B 选项符合题意;=C 选项不符合题意;,被开方数含能开得尽方的因式,不是最简二次根式,故D 选项不符合题意;故选:B .10.【解答】解:A A 不符合题意;B 、=B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .11.【解答】解:A 3=,故此选项不合题意;B 2=,故此选项符合题意;C =,故此选项不合题意;D .2(20-=,故此选项不合题意; 故选:B .12.【解答】解:ABC ∆的面积为212cm ,底边为,∴底边上的高为:122)cm ⨯÷=. 故选:B .13.【解答】解:A 故本选项不符合题意;B 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;C 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D 是最简二次根式,故本选项符合题意; 故选:D .14.【解答】解:由题意可得:1AB CA ==,则C点坐标为:11)2x=-=-故22x==.故选:D.15.【解答】解:y=,∴20 20xx-=⎧⎨-=⎩,20x∴-=,解得2x=,y∴=20202021()()x y x y∴+-20202020()()()x y x y x y=+--2020[()()]()x y x y x y=+--222020()()x y x y=--20201(2=⨯2=+故选:B.16.【解答】解:A|2|2=-=,故本选项不符合题意;B.24312=⨯=,故本选项不符合题意;CD.4(2=⨯=,故本选项符合题意;故选:D.17.【解答】解:A=B.=C=D 故选:A .18.【解答】解:A .2不是同类二次根式,故本选项不合题意;B =C =,与不是同类二次根式,故本选项不合题意;D = 故选:B .19.【解答】解:2=不是最简二次根式,=C 是最简二次根式;(0)D a >,因此不是最简二次根式; 故选:C .20.【解答】解:实数a 、b 在轴上的位置可知,0a b <<,且||||a b >, 0a b ∴-<,∴原式a b a =-+-2b a =-,故选:B .21.【解答】解:30b -=,即|3|3b b -=-,30b ∴-, 即3b ,故选:D .22.【解答】解:A =A 不符合题意;B 、B 符合题意;C =C 不符合题意;D=D不符合题意;故选:B.23.【解答】解:由题意得:10x-,解得:1x,故选:B.24.【解答】解:由题意得:20x-且30x-≠,解得:2x且3x≠,故选:D.25.【解答】解:A.原式=A选项不符合题意;B.3B选项不符合题意;C.原式C选项不符合题意;D.原式=,所以D选项符合题意.故选:D.26.【解答】解:A.3不能合并,所以A选项不符合题意;B B选项不符合题意;=,所以C选项不符合题意;C.原式3D.原式1=,所以D选项符合题意.5故选:D.27.【解答】解:原式===.故选:A.28.【解答】解:A不能合并,故此选项不符合题意;B、∴C、=,∴不是同类二次根式,不能合并,故此选项不符合题意;D、==,∴故选:B.29.【解答】解:|a=不是最简二次根式;C故选:D.30.【解答】解:由题意得,30a+,解得3a-,故选:C.31.【解答】解:A、原式=,故A不符合题意.B、原式3=,故B符合题意.2=,故C不符合题意.C、原式5D、原式1=,故D不符合题意.故选:B.32.【解答】解:A A不符合题意;B=B符合题意;C5,故C不符合题意;D D不符合题意;故选:B.,故选项A正确,符合题意;33.【解答】212=,故选项B错误,不符合题意;C错误,不符合题意;2,故选项D错误,不符合题意;故选:A.34.【解答】解:根据题意得:0∴+<,b c<<<,0c b a||+=---,b c b c a故选:C.35.【解答】==,故选项A错误,不符合题意;==C错误,不符合题意;不能合并,故选项D错误,不符合题意;故选:B.36.【解答】解:10->,a∴<,a∴二次根式0<,∴二次根式化简为故选:A.二.填空题37.【解答】解:最简二次根式∴+=,x25解得:3x=,故答案为:3.38.【解答】解:=,22∴,220∴-=,0∴=,0≠,∴0=,∴25a b ∴=,∴ 5035255b b b b b b++=-+ 5829b b =2=.39.【解答】解:原式11)=-2=,故答案为:2.40.【解答】解:原式2021=⨯⨯2021(1)=-⨯1=-⨯=, 故答案为:41.【解答】0)x y z =>>>,两边平方得:13x y z ++++ 比较系数得:13x y z ++=①,5xy =②,7xz =③,35yz =④,由②得:5x y =,代入③得:57z y=, 即:75y z =, 代入④得:225y =,5y ∴=,1x ∴=,7z =,∴原式.42.【解答】解:由题意得:230x -且20x -≠, 解得:32x 且2x ≠, 故答案为:32x且2x ≠. 43.【解答】解:根据题意,得310130x x -⎧⎨-⎩, 解得13x =,所以3y =,所以1313xy =⨯=.故答案为:1.44.【解答】解:(1t xy t ==,42x y t +==+,2206220220()2222022x xy y x y xy ∴++=++=,20(42)2222022t ∴++=,解得:2t =或3t =-(舍去)2t ∴=.故答案为:2.45.【解答】解:x ,y 满足6y =, ∴30620x x -⎧⎨-⎩, 解得3x =,6y ∴=,18x y ∴⋅=,x y ∴⋅的平方根为=±.故答案为:±46.【解答】解:=,=⑤23=∴②⑤. 故答案为:②⑤.47.【解答】解:|4|0b -=,即|3||4|0a b -+-=,3a ∴=,4b =, ∴该直角三角形的斜边长的平方22223425a b =+=+=, 故答案为:25.48.【解答】解:2022x ==654322x x x x ∴--+-+5432(2x x x x x =--+-+-54322x x x x =-+-+54322x x x x =-+-+-432[1]2x x x x =-+-+-4321]2x x x =-+-+432(202220211)2x x x =--+-+-322x x =-+2(2x x x =-+-22x x =+22x x =+[2]x x =+-2]x =+(202120222)x =-+x ==49.【解答】解:当1x =时,原式3=, 故答案为:3.50.【解答】解:38a b +=,8b +=,0a b ∴-+,0∴-=, a b ≠,∴≠∴3=,16a b ++=,7a b ∴+=,27∴-=,∴21=,∴原式32124=+=.故答案为:21.三.解答题51.【解答】解:(1)原式1=1=+(2)原式=+23=+5=.52.【解答】===当5x=,15y=时,原式===.53.【解答】=4=4=.54.【解答】解:(1)原式=÷==;2(2)原式=---+51911=.755.【解答】解:原式===56.【解答】解:原式==.57.【解答】解:(1==+-4=;4(2)747a2=⨯+a a747=147=20。

备战中考数学分点透练真题实数(含二次根式)(解析版)

备战中考数学分点透练真题实数(含二次根式)(解析版)

第一讲实数(含二次根式)命题1 实数的分类级正负数意义1.(2020•河池)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元【解答】解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.2.(2021•凉山州)在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个【解答】解:,0,,﹣1.414,是有理数,故选:D.3.(2021•河池)下列4个实数中,为无理数的是()A.﹣2B.0C.D.3.14【解答】解:A.﹣2是整数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.3.14有限小数,属于有理数,故本选项不合题意;故选:C.命题点2 相反数、倒数、绝对值4.(2021•沈阳)9的相反数是()A.B.﹣C.9D.﹣9【解答】解:9的相反数是﹣9,故选:D.5.(2021•内江)﹣2021的绝对值是()A.2021B.C.﹣2021D.﹣【解答】解:﹣2021的绝对值是2021,故选:A.6.(2021•宜昌)﹣2021的倒数是()A.2021B.﹣2021C.D.﹣【解答】解:﹣2021的倒数是.故选:D.命题点3 数轴7.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A 表示的数为()A.﹣3B.0C.3D.﹣6【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.8.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.9.(2021•威海)实数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.a•b>0D.>0【解答】解:依题意得:﹣1<a<0,b>1∴a、b异号,且|a|<|b|.∴a+b>0;a﹣b=﹣|a﹣b|<0;a•b<0;<0.故选:A.命题点4 科学计数法10.(2021•黔西南州)2021年2月25日,全国脱贫攻坚总结表彰大会在北京隆重举行.从2012年开始,经过七年多的精准扶贫,特别是四年多的脱贫攻坚战,全国现行标准下的9899万农村贫困人口全部脱贫,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,数9899万用科学记数法表示为()A.0.9899×108B.98.99×106C.9.899×107D.9.899×108【解答】解:9899万=98990000=9.899×107,故选:C.11.(2021•巴中)据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是()A.337×108B.3.37×1010C.3.37×1011D.0.337×1011【解答】解:337亿=33700000000=3.37×1010.故选:B.12.(2021•桂林)细菌的个体十分微小,大约10亿个细菌堆积起来才有一颗小米粒那么大.某种细菌的直径是0.0000025米,用科学记数法表示这种细菌的直径是()A.25×10﹣5米B.25×10﹣6米C.2.5×10﹣5米D.2.5×10﹣6米【解答】解:0.0000025米=2.5×10﹣6米.故选:D.命题点5 实数的大小比较13.(2021•朝阳)在有理数2,﹣3,,0中,最小的数是()A.2B.﹣3C.D.0【解答】解:∵﹣3<0<<2,∴在有理数2,﹣3,,0中,最小的数是﹣3.故选:B.14.(2021•常州)已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.命题点6 平方根、算术平方根、立方根15.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2【解答】解:=4,±=±2,故选:C.16.(2021•济南)9的算术平方根是()A.3B.﹣3C.±3D.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.17.(2021•抚顺)27的立方根为.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.18.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.命题点7 二次根式及其运算类型一二次根式的有关概念及性质19.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,不是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,是最简二次根式.故选:D.20.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.21.(2021•襄阳)若二次根式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x≥3C.x≤﹣3D.x>﹣3【解答】解:若二次根式在实数范围内有意义,则x+3≥0,解得:x≥﹣3.故选:A.22.(2021•日照)若分式有意义,则实数x的取值范围为.【解答】解:要使分式有意义,必须x+1≥0且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0.类型二二次根式的运算23.(2021•苏州)计算()2的结果是()A.B.3C.2D.9【解答】解:()2=3.故选:B.24.(2021•益阳)将化为最简二次根式,其结果是()A.B.C.D.【解答】解:==,故选:D.25.(2021•柳州)下列计算正确的是()A.=B.3=3C.=D.2【解答】解:A、与不是同类二次根式,不能合并,故A不符合题意.B、3与不是同类二次根式,不能合并,故B不符合题意.C、原式=,故C符合题意.D、﹣2与2不是同类二次根式,不能合并,故D不符合题意.故选:C.26.(2021•天津)计算(+1)(﹣1)的结果等于.【解答】解:原式=()2﹣1=10﹣1=9.故答案为9.27.(2021•山西)计算:+=.【解答】解:原式=2+3=;故答案为:5.类型三二次根式的估值28.(2021•营口)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:∵16<21<25,∴4<<5,故选:B.29.(2021•台州)大小在和之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵2<3<4<5,∴<<<,即<<2<,∴在和之间的整数有1个,就是2,故选:B.30.(2020•黔南州)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.命题点8 实数的运算类型一有理数的运算31.(2021•阜新)计算:3+(﹣1),其结果等于()A.2B.﹣2C.4D.﹣4【解答】解:3+(﹣1)=2.故选:A.32.(2021•聊城)计算:(﹣﹣)÷=.【解答】解:原式=(﹣)×=﹣,故答案为:﹣.33.(2021•雅安)若规定运算:a⊕b=2ab,aΘb=,a⊗b=a﹣b2,则(1⊕2)⊗(6Θ3)=.【解答】解:∵a⊕b=2ab,aΘb=,a⊗b=a﹣b2,∴(1⊕2)⊗(6Θ3)=(2×1×2)⊗=4⊗=4﹣()2=4﹣=,故答案为:.类型二实数的运算34.(2021•河池)计算:+4﹣1﹣()2+|﹣|.【解答】解:原式=2+﹣+=3.35.(2021•百色)计算:(π﹣1)0+|﹣2|﹣()﹣1+tan60°.【解答】解:原式=1+2﹣﹣3+=0.36.(2021•常州)计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.【解答】解:原式=2﹣1﹣1+=.。

第05讲 实数与二次根式(易错点梳理+微练习)(解析版)

第05讲 实数与二次根式(易错点梳理+微练习)(解析版)

第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。

易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。

易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。

易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。

易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。

易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。

考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。

2023年春季学期 二次根式专题复习

2023年春季学期  二次根式专题复习

专题01二次根式专题复习【8个考点知识梳理+题型解题方法+专题训练】考点一:二次根式的定义二次根式的定义:一般地,我们把形如a (a ≥0)的式子叫做二次根式.其中:①“”称为二次根号;②a 是被开方数,a ≥0,是一个非负数;【考试题型1】根据二次根式的形式准确判断二次根式【解题方法】判断形式,确定被开方数大于等于0。

例题讲解:1.下列式子一定是二次根式的是()A .2--x B .xC .22+x D .22-x 【考试题型2】根据被开方数大于等于0求未知数的值或范围。

【解题方法】利用被开方数大于等于0建立不等式,解不等式。

例题讲解:2.若x 31-是二次根式,则x 的值不可能是()A .﹣2B .﹣1C .0D .1考点二:二次根式有意义的条件二次根式有意义的条件:被开方数大于等于0。

即a 中,a ≥0。

【考试题型1】根据二次根式有意义的条件求取值范围【解题方法】利用式子中所有二次根式的被开方数都大于等于0建立不等式(组)求解集,同时若式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零。

例题讲解:3.若二次根式2-x 在实数范围内有意义,则x 的取值范围是()A .x >2B .x ≥2C .x ≤2D .x <2【考试题型2】利用二次根式有意义求式子【解题方法】利用二次根式有意义的条件求出相应字母的值,再带入需要求的式子。

例题讲解:4.已知y =322+-+-x x ,则x y 的值是()A .5B .6C .8D .﹣8考点三:二次根式的性质二次根式的基本性质:①二次根式的双重非负性。

即a ≥0;a ≥0.②(a )2=a (a ≥0)(一个数的算术平方根的平方等于它本身).③()()⎩⎨⎧≤-≥==002a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)。

【考试题型1】二次根式的非负性:几个非负数的和等于0,这个几个非负数分别等于0。

【解题方法】结合绝对值,偶次方,让被开方数,绝对值符号内的式子以及底数分别为0建立方程解方程即可。

中考复习 实数与二次根式-教师版

中考复习 实数与二次根式-教师版

第一章数与式§1.1实数与二次根式考点1实数的分类与实数的有关概念1.(2022舟山,1,3分)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-22.(2022绍兴,1,4分)实数-6的相反数是()A.-16B.16C.-6D.63.(2021杭州,1,3分)-(-2 021)= ()A.-2 021B.2 021C.-12 021D.12 0214.(2021湖州,1,3分)实数-2的绝对值是()A.-2B.2C.12D.−125.(2021丽水,1,3分)实数-2的倒数是()A.2B.-2C.12D.−12考点2实数的运算与实数大小的比较1.(2021温州,1,4分)计算(-2)2的结果是()A.4B.-4C.1D.-12.(2021宁波,1,4分)在-3,-1,0,2这四个数中,最小的数是()A.-3B.-1C.0D.23.(2022舟山,5,3分)估计√6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间4.(2022舟山,17(1),3分)计算:√83-(√3-1)0.5.(2022温州,17(1),5分)计算:√9+(-3)2+3-2-|−19|.6.(2022绍兴,17(1),4分)计算:6tan 30°+(π+1)0-√12.7.(2022金华,17,6分)计算:(-2 022)0-2tan 45°+|-2|+√9.8.(2021温州,17(1),5分)计算:4×(-3)+|-8|-√9+(√7)0.9.(2021丽水,17,6分)计算:|-2 021|+(-3)0-√4.考点3科学记数法1.(2022舟山,3,3分)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251 000 000人次,数据251 000 000用科学记数法表示为() A.2.51×108 B.2.51×107C.25.1×107D.0.251×1092.(2022绍兴,2,4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320 000吨二氧化碳.数字320 000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×1043.(2022金华,3,3分)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16 320 000吨,数16 320 000用科学记数法表示为()A.1 632×104B.1.632×107C.1.632×106D.16.32×1054.(2022湖州,2,3分)2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播.某一时刻观看人数达到3 790 000人.用科学记数法表示3 790 000,正确的是()A.0.379×107B.3.79×106C.3.79×105D.37.9×105考点4实数的开方与二次根式1.(2021湖州,2,3分)化简√8的正确结果是()A.4B.±4C.2√2D.±2√22.(2020杭州,1,3分)√2×√3= ()A.√5B.√6C.2√3D.3√23.(2020宁波,11,5分)实数8的立方根是.4.(2021丽水,12,4分)要使式子√x−3有意义,则x可取的一个数是.基础练一、选择题(每小题3分,共33分)1.(2022衢州开化一模,)22的相反数是()A.122B.−122C.22D.-222.(2022金华模拟,)-6的倒数是()A.6B.-6C.-16D.163.(2022衢州开化一模,)2022年北京冬奥会收视率创历届新高,某视频平台与北京冬奥会相关视频的播放总量突破6 000 000 000次,6 000 000 000用科学记数法可表示为() A.6×109 B.0.6×1010C.60×108D.6×10104.(2022衢州常山一模,)在-2,0,-1,2这四个数中,最小的数是()A.-2B.0C.-1D.25.(2022温州文成一模,)数√2,-2,0,3中为无理数的是()A.√2B.-2C.0D.36.(2022杭州西湖一模,)在下列各数中,比-2 021小的数是()A.2 022B.2 020C.-2 022D.-2 0207.(2022台州玉环一模,)如果向东走5米记作+5米,那么-3米表示()A.向东走5米B.向西走5米C.向东走3米D.向西走3米8.(2022金华婺城一模,)正数2的平方根可以表示为()A.22B.±√2C.√2D.−√29.(2022温州乐清一模,)计算(-3)×5的结果是()A.2B.-2C.15D.-1510.(2022福建,)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.-√2B.√2C.√5D.π11.(2022台州玉环一模,)小明在学习《实数》这一章时,用两个面积为1的正方形以如图所示的方式拼出一个面积为2的正方形,则这个面积为2的正方形的边长的值大约在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间二、填空题(每小题4分,共4分)12.(2022宁波余姚一模,)若二次根式√3−x有意义,则x的取值范围是.三、解答题(共33分) 13.(2022福建,)计算:√4+|√3-1|-2 0220.14.(2022嘉兴嘉善一模,)计算:2 0220+(12)−1−√18.15.(2022杭州上城一模,)计算:√9+22−√83.16.新考法(2021河北,)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元. (1)用含m ,n 的代数式表示Q ;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q 的值.提分练一、选择题(每小题3分,共15分) 1.(2022台州椒江一模,)若a 的相反数是2 022,则a 为( )A.-2 022B.2 022C.-12 022 D.12 022 2.(2022宁波江北二模,)无论x 取什么数,总有意义的代数式是( )A.√x 2B.4xx 3+1 C.1(x−2)2 D.√x +33.(2022杭州上城一模,)斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路.某人行横道全长24 m,小明以1.2 m/s的速度过该人处时,9秒倒计时灯亮了.小明要在倒计时结束前通过马路,他的速度行横道,行至13至少要提高到原来的()A.1.1倍B.1.4倍C.1.5倍D.1.6倍4.(2022杭州萧山二模,)已知a>0,a+b<0,则下列结论正确的是()>-1 D.a2+ab>0A.-a<bB.a-b<0C.ab5.(2022新疆,)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104二、填空题(每小题4分,共24分)6.(2022陕西,)实数a,b在数轴上对应点的位置如图所示,则a-b.(填“>”“=”或“<”)7.(2022杭州西湖一模,)如图,点A,B分别表示数-x+3,x,则x的取值范围为.8.(2021丽水三模,)在如图所示的方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格中的实数之积为 .9.(2021台州模拟,)观察下面的变化规律:21×3=1−13,23×5=13−15,25×7=15−17,27×9=17−19,……. 根据上面的规律计算:21×3+23×5+25×7+⋯+22 019×2 021= . 10.新考法(2022北京,)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的质量及包裹中Ⅰ号、Ⅱ号产品的质量如下:甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂. (1) 如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案 (写出要装运包裹的编号). 11.新设问(2022湖南长沙,)当今是大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力,看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1 000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1 000个方格中只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码.现有四名网友对2200的理解如下:YYDS (永远的神):2200就是200个2相乘,它是一个非常非常大的数; DDDD (懂的都懂):2200等于2002; JXND (觉醒年代):2200的个位数字是6;QGYW (强国有我):我知道210=1 024,103=1 000,所以我估计2200比1060大. 其中对2200的理解错误..的网友是 (填写网名字母代号). 三、解答题(共31分) 12.(2022温州洞头二模,)计算:√9+2×(-3)+|-4|-(√5)0.13.(2022宁波余姚一模,)计算:|-2|+(13)−1-(√3-2 022)0.14.(2022金华婺城一模,)计算:(3-π)0-2sin 30°-√12+|1−2√3|.15.(2021绍模拟,)【算一算】如图①,点A、B、C在数轴上,B为AC的中点,点A表示-3,点B表示1,则点C表示的实数为,AC的长为;【找一找】−1、如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数√22√2+1,Q是AB的中点,则点是这个数轴的原点;2【画一画】如图③,点A、B分别表示实数c-n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹).图①图②图③。

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
实数的概念与分类
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习 二次根式知识点归纳:一.实数:1. 数的分类:⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数(定义分) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数负无理数正有理数正实数实数(大小分)0 2. 平方根的性质:(1) 一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

(2) 算术平方根a 具有双重非负性,即:0,0≥≥a a .(3)⎩⎨⎧<-≥==)0()0(2a a a a a a )0()(2≥=a a a 3. 立方根的性质:(1) 正数的立方根是正数,负数的立方根是负数,0的立方根是0. (2)a a =33 a a =33)(二.二次根式:1.二次根式的概念:式子a ),0(≥a 叫做二次根式,具有双重非负性。

2.最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数不含开的尽方的整数和整式。

3.同类二次根式:化为最简二次根式后,被开方数相同。

4.分母有理化:把分母化为有理数的过程,即去分母中的根号的过程。

5.二次根式运算法则: 加减法:合并同类二次根式; 乘法:)0,0(≥≥=⋅b a ab b a除法:)0,0(>≥=b a baba 6.常见化简:⎪⎩⎪⎨⎧<-≥=)0()0(22a b a a ba b a )0(1>==a a a a a a a 或典型例题讲解及变式练习:例1 若一个数的平方根是2a-1和-a+2,求这个正数的平方。

练习:1. 已知某数有两个平方根,分别为a+3和2a-15,求这个数平方的倒数。

2. 已知13-+=m n m A 为m+3n 的算术平方根,121+-=n m B 为21m -的立方根,求A+B的值。

3.已知12-a 的平方根是3±,3a+b-1的立方根是4,求a+2b 的值。

练习:1.0)2(132=-++++c b a ,求12-+cb a 的算术平方根。

2.若12-++-b a b a 与互为相反数,求3222b a +的值。

3.已知55)12(22--=-++-+x x b a b a ,求a a x b -的值。

4. _________0|4|)2(71622==+++-n m m m n m ,则。

5. 已知x x x y 62112+-+-=,求132-+y x 的平方根。

例3 已知103+的小数部分是a ,103-的小数部分为b ,求b a +和b a -的值。

练习:已知137+的小数部分是a ,13-7的小数部分为b ,求b a +和2)(b a -的值。

1.化简=+-+-aa a 11122 。

2. 已知)10(1<<-=a a ax ,则x x 42+= 。

3. 已知21<<x ,则11244222-+-++--x x x x x x =_________。

例5 最简二次根式a 21+与22+a 是同类二次根式,则a 的值是_______. 练习: 1. 若a+b5b 与3a+2b 已化成最简二次根式,且被开方数相同,则a= ,b= 。

2.若62312与-+n n m 是同类最简二次根式,则n=_______,m=_______。

例6 已知实数a 满足a a a =-+-2010|2009|,则22009-a =_________。

例7 计算:133261236+++++1. 1-222-4-1-33-3653225+++ 2.123622++++例8 较下列每组数里两个数的大小:;的大小例9 化简求值:已知12,12+=-=y x ,求xyx y x y y x 33++++的值。

练习: 1. ()x x y y x y x y x y x++++-÷-+211,其中x =+23,y =-232. 设xy x y x +⎪⎪⎭⎫⎝⎛--+=+-=2222y ,2321,2321求的值。

3.已知:2420-=x ,求221xx +的值.4.已知)(131,131ab b a ab b a ++=-=求的值。

巩固训练:一.选择题:1.下列式子中最简二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个 2.下列计算正确的有 ( )①69494=-⋅-=--))((;②69494=⋅=--))((; ③345454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个 3.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 6.已知22-15--25x x =2,则 -252x +2-15x =( )A.3B.4C.5D.67.式子中,无论x 为何值,一定有意义的式子的个数是( )个.(A)1 (B)2 (C)3 (D)48. 如果最简根式3b b a -和22b a -+是同类二次根式,那么a ,b 的值是( ) A. a =0,b =2B. a =2,b =0C. a =-1,b =1D. a =1,b =-29.化简二次根式a a a-+12的结果是( ) A. --a 1B. ---a 1C. a +1D. --+a 110.已知:ab>0,bc<0,化简-a c b333的结果为( ) A.acbabc 2B.acbabc 2- C. --acbabc 2D. -acbabc 211.已知:a b =-=+152152,,则a b 227++的值。

A. 3B. 4C. 5D. 612.已知a<b, )A 、-B 、-C 、D 、13. 如果y x x y +=322,那么y x xy+的值等于( ) A.32B.52C.72D.9214. 若a =-121,b =+21,则a 、b 的关系是( ) A. 互为倒数B. 互为相反数C. 相等D. 互为有理化因式二. 填空题:1. 若a 的算术平方根是12,则a =________ 2. 64的平方根为__________;--=2723_________ 3. 若x ≤0时,则||12--=x x _______4. 当a<1且a ≠0时,化简a a a a2221-+-=__________ 5. 请你观察思考下列计算过程: 11121121112=∴=,; 同样 11112321123211112=∴=,, 由此猜想12345678987654321=_________ 6. 已知xy =3,那么xy x y xy+的值为_________ 7. 实数a 在数轴上的位置如图所示,化简||()a a -+-=122________8. 计算12327613++-=_______9. 若y x x x=-+-+36633,则10x +2y 的平方根为_________ 10. 根式:y 2,m n 2,23x y ,622()a b -,7533x y ,x y 22+,22a a 中,最简根式有__________个 11.. 代数式x x --12在实数范围内有意义,则x 的取值范围是__________ 12. 32-的相反数是__________,倒数是__________14. 当x x x x+-=+-2929时,x 的取值范围是_________ 15.6273-分母有理化的结果是___________17. 已知()||x xy xy z -++-+--=253302,则x y z -=_________ 18. 在150********,,,中,与12是同类二次根式的是________ 19. 如果最简二次根式3b b a -和22b a -+是同类二次根式,那么a b=_______ 20. 已知:xy =3,那么xy x y xy+的值是_________ 21. 已知:a b ab +==54,,则a ba b-+=_________22. 在实数范围内分解因式:a a a 5356--=________23. 已知x>0,y>0,且x x y y --=560,则x xy y x xy y-++-=22________24. 若式子x x x ---2232有意义,则x 的取值范围是__________25. 当0<x<1时,化简式子x x x+-=12_______ 26. 观察下列各式:113213214314315415+=+=+=;;;将你猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________ 三.解答题1. 化简-a b3(b>0)2. 计算:a bb a a b b a bb a bbab ++⋅--+÷-()13. 用简便方法计算:已知x =+512,求x x x 331++的值。

四.中考链接1.(08遵义)若20a -=,则2a b -= .8.(08宁波)若实数x y ,2(0y =,则xy 的值是 .9.(08自贡)写出一个有理数和一个无理数,使它们都是小于-1的数 。

10.(08中山)已知等边三角形ABC 的边长为33+,则ΔABC 的周长是__________11.(2007===请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________. 12. (08云南)下列计算正确的是( )A .326a a a ⋅=B .0( 3.14)1π-=C .11()22-=- D 3± 13. (08郴州)下列计算错误的是( )A .-(-2)=2B =.22x +32x =52x D .235()a a =14.(08聊城)下列计算正确的是( )A .=B =C 3=D 3=-15.(08重庆)计算28-的结果是( )A 、6B 、6C 、2D 、224.(08湖北荆州)下列根式中属最简二次根式的是( )25.(08广东中山市)下列根式中不是最简二次根式的是( )A B C D 26.(08桂林)在下列实数中,无理数是( )A 、 51.0 B 、 π C 、 4- D 、72227.(08常州) 下列实数中,无理数是( )B.2π C.13D.1228.(08宜昌)从实数-2,-31,0,л,4中,挑选出的两个数都是无理数的为( ) A. -31,0 B. л,4 C. -2,4 D. -2,л29.(08宁波)大的实数是( )A .5-B .0C .3D31.(08永州) 下列判断正确的是( ) A .23<3<2 B . 2<2+3<3 C . 1<5-3<2 D . 4<3·5<532.(08益阳) 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间33.(08芜湖) ). A.6到7之间 B.7到8之间C.8到9之间D.9到10之间38.(08大连)若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a -39.(08常州)若式子5x +在实数范围内有意义,则x 的取值范围是( ) A.x >-5B.x <-5C.x ≠-5D.x ≥-540.(08常州) 化简:0611822⎛⎫-- ⎪⎝⎭ 41。

相关文档
最新文档