实数和二次根式的基本概念
八年级数学实数之二次根式知识点总结

一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。
2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。
3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。
二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。
2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。
3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。
一个正数a 的正的平方根就是它的算术平方根。
三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。
开平方运算是已知指数和幂求底数。
2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。
3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。
考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。
2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。
3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。
5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。
二次根式知识点

二次根式知识点二次根式是初中数学中一个重要的知识点。
在学习二次根式之前,我们首先来了解一下根式的定义。
一、根式的概念根式是代表求根运算的一种表示方法。
其中,被开方数叫做被开方数,开方的次数叫做指数,开方的运算叫做根号运算。
开方的基本性质有三个:非负性、唯一性、封闭性。
1. 非负性:对于任意的实数a,当a≥0时,a的平方根存在且唯一。
2. 唯一性:对于任意的实数a,其平方根是唯一的。
3. 封闭性:平方根的运算封闭在非负实数集合内。
二、二次根式的定义二次根式是指指数为2的根式,也即平方根。
如果a≥0,那么二次根式√a就是等于非负实数b的平方根。
例如,√9 = 3,√16 = 4,√25 = 5等。
三、二次根式的化简在计算二次根式时,有时需要对二次根式进行化简。
化简的目的是为了得到最简形式的二次根式。
二次根式的化简原则如下:1. 提出因式:如果二次根式中有完全平方因子,可以将其提出根号外部。
2. 合并同类项:如果根式中有相同的根号,则可以将其合并并进行运算。
3. 分解质因数:如果根式中的被开方数可以分解为质因数的乘积,那么可以在根号内部进行分解。
化简二次根式的过程需要掌握一定的分解质因数的技巧,并且需要熟练掌握平方数的求法。
四、二次根式的运算规则在二次根式的运算过程中,需要掌握以下几个基本的运算规则。
1. 加减运算:二次根式之间可以进行加减运算,但要求被开方数、指数相同。
2. 乘法运算:二次根式之间可以进行乘法运算,运算后仍然是二次根式。
3. 除法运算:二次根式之间可以进行除法运算,运算后仍然是二次根式。
4. 有理化:如果二次根式中含有分母,可以通过有理化的方法将其变为无理数的形式。
掌握了这些运算规则,我们可以在计算中利用它们进行简化和优化,使得计算更加方便和高效。
五、二次根式的应用二次根式在数学中有广泛应用,在解决实际问题时也经常会用到。
1. 几何应用:在几何中,二次根式常常用来表示长度、距离等概念。
二次根式与实数之间的关系

二次根式与实数之间的关系根据数学的定义,二次根式是指一个数的平方根,表示为√a,其中a为非负实数。
实数是对现实生活中的数量进行抽象的数学概念,包括有理数和无理数。
二次根式与实数之间存在着密切的关系,本文将探讨这种关系。
1. 二次根式的定义二次根式是指一个实数的平方根。
对于非负实数a,√a表示a的正平方根,即满足b² = a的实数b。
例如,√4 = 2,因为2² = 4。
二次根式可以表示为分数形式或小数形式,如√9 = 3,或√2 ≈ 1.414。
2. 二次根式的性质二次根式具有一些重要的性质,这些性质与实数之间的关系密切相关:- 非负实数的二次根式均为实数。
例如,√9 = 3是一个实数。
- 负实数没有实数的二次根式。
例如,对于-9来说,不存在一个实数b,使得b² = -9。
- 实数的二次根式满足乘法性质。
即若a和b都是非负实数,则√(ab) = √a × √b。
3. 二次根式与有理数的关系有理数是可以表示为两个整数的比值的数,包括整数、分数和小数(有限小数和循环小数)。
二次根式与有理数之间的关系如下:- 若一个非负实数的平方是一个有理数,那么它的二次根式就是一个有理数。
例如,√4 = 2,4是一个有理数,因此2也是一个有理数。
- 若一个非负实数的平方不是一个有理数,那么它的二次根式就是一个无理数。
例如,√2是一个无理数,因为2的平方不是一个有理数。
4. 二次根式与无理数的关系无理数是不能表示为两个整数的比值的数,包括无理代数数和无理超越数。
二次根式与无理数之间的关系如下:- 像√2、√3这样的二次根式是无理数。
它们无法用有限小数或循环小数形式表示。
- 无理数的二次根式仍然是无理数。
例如,√(√2) = (√2)^(1/2) =2^(1/4) 是一个无理数。
综上所述,二次根式与实数之间存在着重要的关系。
实数的二次根式可以是有理数或无理数,具体取决于实数的平方是否是一个有理数。
二次根式总结归纳

二次根式总结一、引言二次根式是数学中的一个重要概念,也是初等代数中一个基础的内容。
它在解方程、求根、化简表达式等问题中起着重要作用。
本文将对二次根式进行全面、深入的总结,包括重要观点、关键发现和进一步思考。
二、基本概念1. 二次根式的定义二次根式是指形如√a的表达式,其中a为非负实数。
当a为正实数时,√a有两个实数解;当a为零时,√0=0;当a为负实数时,√a没有实数解。
2. 二次根式的性质•非负实数的平方根仍为非负实数;•平方根具有唯一性,即对于任意非负实数a,√a唯一确定。
3. 二次根式的运算•加减法:对于两个二次根式√a和√b,如果它们的被开方数相同,则可以直接相加或相减;如果被开方数不同,则需要化简后再运算。
•乘法:对于两个二次根式√a和√b,它们的乘积可以化简为√ab。
•除法:对于两个二次根式√a和√b,它们的商可以化简为√a√b =√ab,其中b不能为零。
三、重要观点1. 二次根式的化简化简二次根式是解题中常见的操作。
可以利用平方根的性质,将二次根式化简为最简形式。
√8=√4⋅√2=2√2。
2. 二次根式的应用二次根式在解方程、求根、化简表达式等问题中经常出现。
在解关于x的方程时,可能会遇到形如x2=5的方程,需要求得x=±√5。
3. 二次根式与无理数二次根式通常是无理数。
无理数是指不能表示为两个整数的比值的实数。
π和e都是无理数。
而对于正实数a来说,如果其平方不是有理数,则其平方根一定是无理数。
四、关键发现1. 二次根式的图像二次根式的图像是一个开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
图像关于x轴对称。
2. 二次根式的大小比较对于两个非负实数a和b,如果a<b,则√a<√b。
但当a<0时,√a没有实数解。
3. 二次根式的近似值可以使用计算器或牛顿迭代法等方法求得二次根式的近似值。
可以利用牛顿迭代法逼近√2的值。
二次根式的基本概念

二次根式的基本概念
二次根式是指一个数的平方根形式表示的数,一般形式为√a,其中a为非负实数,称为被开方数。
二次根式中的根号√表示平方根,它是求平方根的数学符号。
二次根式的基本概念包括以下几个方面:
1. 二次根式的定义:二次根式是指形如√a的数,其中a为非负实数。
2. 被开方数:二次根式中的a被称为被开方数,它表示要进行开方的数。
3. 平方根:二次根式中的√表示平方根,它代表被开方数的非负平方根,即√a的平方等于a。
4. 化简:二次根式的化简是指将二次根式表示为最简形式,即去除根号下的平方因子,并将不能再提取平方根的因子提取出来。
5. 运算规则:二次根式的运算遵循一些规则,如同底数相同就可以直接合并,当两个二次根式相互乘除时,可以将根号下的因子相乘或相除。
二次根式在数学中经常出现,它具有广泛的应用,例如在平面几何中用于求解长度、面积等问题,在代数中用于求解方程、求解二次函数的根等。
掌握二次根式的基本概念能够帮助我们更好地理解和应用相关的数学知识。
数学天地二次根式与实数运算

数学天地二次根式与实数运算数学天地:二次根式与实数运算数学是一门精确而又广泛应用的学科,其中二次根式与实数运算是数学中的重要概念之一。
本文将介绍二次根式的定义与性质,以及实数运算的基本规则和应用。
一、二次根式的定义与性质1. 二次根式的定义二次根式是指形如√a的数,其中a为一个非负实数。
二次根式的特点是结果是一个实数,且满足以下性质:(1)非负数的二次根式,结果是非负实数;(2)零的二次根式,结果仍为零;(3)负数的二次根式,结果是虚数,无实数解。
2. 二次根式的化简化简二次根式是将根号里的数尽可能提取出来,以便更方便进行实数运算。
常见的化简规则包括:(1)同底数相乘或相除:√a * √b = √(a * b),√a / √b = √(a / b);(2)同底数相加或相减:√a + √b ≠ √(a + b),√a - √b ≠ √(a - b);(3)乘方:(√a)² = a。
二、实数运算的基本规则和应用1. 实数运算的基本四则运算实数运算包括加法、减法、乘法和除法。
其基本规则如下:(1)加法规则:a + b = b + a;(2)减法规则:a - b ≠ b - a;(3)乘法规则:a * b = b * a;(4)除法规则:a / b ≠ b / a。
2. 实数运算的应用实数运算在现实生活中有着广泛的应用,例如:(1)计算金融相关问题:利率计算、投资回报率等;(2)物理学中的力、速度、加速度等问题的计算;(3)几何学中的长度、面积、体积等问题的计算;(4)经济学中的成本、销售额、利润等问题的计算。
总结:本文介绍了数学中的二次根式与实数运算的基本概念与应用。
二次根式是一种特殊的根式,其结果为实数,但在处理负数时会得到虚数。
实数运算是数学运算的基本规则,其四则运算在现实世界中有着广泛的应用。
数学天地广阔而深奥,希望本文能够为读者提供一些有关二次根式与实数运算的基本了解,并能够在实际问题中运用数学的方法解决难题。
初中数学二次根式的知识点汇总

初中数学二次根式的知识点汇总二次根式是代数中的一个重要概念,它是一个含有平方根的表达式。
在初中数学中,学生将会学习有关二次根式的一些基本知识,以及如何进行运算和简化。
以下是一些关于初中数学二次根式的知识点的汇总。
一、二次根式的定义和表示方法1.二次根式是一个非负实数的平方根或一组二次根目标。
它可以表示为√a或±√a。
2.在二次根式中,a被称为根式的被开方数,表示所求的数;√a被称为二次根号,表示开方操作。
3.如果a是一个非负实数,那么二次根式√a表示的是非负的实数。
如果a是一个负实数,那么二次根式√a没有实数解。
4.二次根式的定义域是非负实数集合[0,∞)。
二、二次根式的比较大小1.二次根式的大小比较可以通过比较根式的被开方数来进行。
2.如果a和b是两个非负实数,且a>b,则有√a>√b。
3.如果a和b是两个非负实数,且a=b,则有√a=√b。
4.如果a和b是两个非负实数,且a<b,则有√a<√b。
三、二次根式的加减法运算1.只有具有相同的被开方数的二次根式才能进行加减法运算。
2.二次根式的加减法运算可以通过合并同类项的方式进行。
3.合并同类项时,需要注意二次根式的正负号是否一致。
四、二次根式的乘法运算1.二次根式的乘法运算可以通过乘法分配律进行。
2.二次根式的乘法运算可以通过提取同类项的方式进行。
3.提取同类项时,需要注意二次根式的正负号是否一致。
五、二次根式的除法运算1.二次根式的除法运算可以通过乘以倒数的方式进行。
2.二次根式的除法运算可以通过有理化的方式进行,即将分母有理化为无二次根式的形式。
六、二次根式的化简1.将一个二次根式化简为最简形式时,需要将其内部的二次根式去除。
2.二次根式化简的基本原则是尽量将被开方数的因式分解为平方数的积。
3.化简二次根式时,需要注意遵循二次根式的定义域,确保结果是有意义的。
七、二次根式的应用1.二次根式广泛应用于几何、物理和计算机科学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数和二次根式的基本
概念
Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
一.实数的基本概念
1.无理数的概念:
(1)定义:无限不循环小数叫做无理数.
(2)解读:
1)无理数的两个重要特征:①无限小数;②不循环.
2)无理数的常见类型:
①具有特定意义的数。
如π等;
②……(每相邻两个1之间依次多一个2)等;
③开方开不尽的数,如2,34等. 那么,是否所有带根号的数都是无理数呢
3)有理数与无理数的区别:有理数总可以表示为有限小数或无限循环小数,反之,有限小数和无限循环小数也必定是有理数;而无理数是无限不循环小数,无限不循环小数也必定是无理数. 2.实数的概念及分类:
(1)定义:有理数和无理数统称为实数.
(2)分类:
①按定义分:
⎧⎧
⎨
⎪
⎨⎩
⎪
⎩
整数
有理数
实数分数---有限小数或无限循环小数无理数-------无限不循环小数
知识点睛
实数、二次根式的基本概念
②按性质分:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩
正有理数正实数正无理数实数负有理数负实数负无理数
(3)实数的性质:
①相反数:a 与b 互为相反数0a b ⇔+=.
②绝对值:,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩或,0,0a a a a a ≥⎧=⎨-<⎩或,0,0a a a a a >⎧=⎨-≤⎩ (4)实数和数轴上的点是一一对应的.
π是一个超越数,用尺规作图的方法是不能在数轴上表示的;可以用物理方法来表示:用一个直径为1的圆形从数轴的零点开始转动,正好转一圈的那个点就是π,因为直径为1的圆的周长为π。
(5)实数的运算顺序:先算乘方、开方、再算乘除、最后算加减,同级运算按照从左到右的顺序进行,有括号的先算括号里的。
(6)实数中非负数的四种形式及其性质: 形式:①0a ≥;②20a ≥
0≥(0a ≥
0a ≥.
性质:①非负数有最小值0;②有限个非负数之和仍然是非负数;③几个非负数之和等于0,则每个非负数都等于0.
(7)实数中无理数的常见类型:
①所有开不尽的方根都是无理数,且不可认为带根号的数都是无理数;
②圆周率π及含有π的数是无理数,例如:21π+等;
③…….
(一)根据实数的定义解题:
【例1】下列各数,哪些是有理数,哪些是无理数哪些是正实数
- 131…, π,
, 23,
, ,
…(相邻两个2之间0的个数逐次加1
),
.
【例2
】在实数010.1235中无理数的个数是( ) A .0 B .1 C .2 D .3
【拓展】22π 3.140.614140.10010001000017,,,,这7个实数中,无理数的个数 是( )
A .0
B .1
C .2
D .3
【例3】下面有四个命题:
①有理数与无理数之和是无理数.
②有理数与无理数之积是无理数.
③无理数与无理数之和是无理数.
④无理数与无理数之积是无理数.
请你判断哪些是正确的,哪些是不正确的,并说明理由。
【例4】判断正误,在后面的括号里对的用 “√”,错的记“×”表示,并说明理由.
(1)无理数都是开方开不尽的数.( )
(2)无理数都是无限小数.( )
(3)无限小数都是无理数.( )
(4)无理数包括正无理数、零、负无理数.( )
(5)不带根号的数都是有理数.( )
(6)带根号的数都是无理数.( )
(7)有理数都是有限小数.( )
(8)实数包括有限小数和无限小数.( )
(二)实数的绝对值:
【例5】求下列各数的相反数及绝对值:
(1)364- (2)π-3
【例6】已知一个数的绝对值是3,求这个数.
【拓展】|x |=|-π|,求x 的值。
【例7】若01<<b 则2b ,b ,1b
这四个数有下列关系( ) A. b b b b 21
<<< B. b b b b 21<<<
C. 12
b b b b <<< D. b b b b <<<12
【例8】比较下列各组数的大小:
(1)7和
二.二次根式的概念
1. a≥0)的式子叫做二次根式
2. 二次根式应满足两个条件:
第一,有二次根号。
第二,被开方数是正数或0。
第三,二次根式a(a≥0)表示非负数a的算术平方根。
3.性质
(1)2)
(a=a(a≥0).
(0)
(0)
a a
a
a a
≥
⎧
==⎨
-<
⎩
a
a=
2(a≥0)a
a-
=
2(a<0)
(a≥0,b≥0)a≥0,b≥0)
a≥0,b>0)a≥0,b>0)
【例1】下列各式中哪些是二次根式,请作出判断。
【例2】当x在实数范围内有意义【拓展1】x为何值时,下列各式在实数范围内有意义
(1);
【拓展2】x取何值时,下列各式有意义
;; (3) )12-
【拓展3】x取何值时,下列格式有意义:
;;
3.最简二次根式
a≥)中的a称为被开方数.满足下面条件的二次根式我们称为最简
二次根式:
(1)被开方数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含二次根式。
二次根式的计算结果要写成最简根式的形式.
【例1】判断下列各式中哪些是最简二次根式,哪些不是
a>b)
【例2】下列二次根式中,最简二次根式的个数是().
.
个个个个
【例3
中,最简
二次 根式有____________________。
【练习】下列根式2231282
xy ab xy x y -,,,,,中式最简二次根式的有( ) A .2个 B .3个 C .4个 D .5个
【例4】把下列各式化成最简二次根式。
(1)24 (2)375a (3)()3225500x x x +≥
同类二次根式
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式。
合并同类二次根式:()a x b x a b x +=+.同类二次根式才可加减合并.
【例1】下列各组中的两个根式是同类二次根式的是( )
A 52x 和3x
B 12ab 和
13ab C x 2y 和xy 2 D a 和1a 2 【例2】在27 、1
12 、112 中与 3 是同类二次根式的个数是( )
A. 0
【巩固】下列二次根式中,哪些是同类二次根式(字母均为正数)
1275;48;20-;11252;1y x x ;x y y
. 【例3】下列各组二次根式中,属于可以合并的是( )
A .12与72
B .63与28
C .34x 与22x
D .18与
23
【例4】若a+b 4b 与3a +b 是同类二次根式,则a 、b 的值为( ) A a=2 , b=2 B a=2 , b=0 C a=1 , b=1 D a=0 , b=2 或a=1 , b=1
【巩固】若4a b b +与最简二次根式3a b +为同类二次根式,其中a ,b 为整数,则a =______,b =________;
【例5】若最简二次根式35a -与3a +是可以合并的二次根式,则____a =。
【例6】下列二次根式中,与a 是可以合并的是( )
A .2a
B .23a
C .3a
D .4a
【例7】若最简二次根式22a b a b a b +++与是同类根式,求2b a -的值.
课后作业
1. 把下列各数分别填入相应的集合里83,,-3π,,
722-23,-87,……,,-7 (1)正有理数集合:{ ……}
(2)有理数集合:{ ……}
(3)无理数集合:{ ……}
(4)实数集合: { ……} 2. x 取何值时,下列各式有意义:
3.求下列各数的相反数、倒数和绝对值. (1)5- (2)327
8 (3) 1-π 4.下列判断(1) 12 3 和13 48 不是同类二次根式;(2)
1
45 和1
25 不是同类二次根式;(3)8x 与8
x 不是同类二次根式,其中错误的个数是( )
A. 3
B. 2 C .1 D. 0
5.下列二次根式中,是最简二次根式的是( ) A. 8x B.x 2-3 C. x -y x
D. 3a 2b
6.x 的取值范围是( )
A .12x ≥
B .12
x ≤ C .12x = D .x 可取一切值
7.x 的取值范围是( ) A .3x -≥且0x ≠ B .3x ≤且0x ≠ C .0x ≠ D .3x -≥ 8.x 是怎样的实数时,下列二次根式有意义
(1)
9.下列哪些是二次根式,哪些不是二次根式
(1) )3x ≤)0x ≤。