【最新整理】材料力学第9章 梁的挠度和刚度计算
材料力学第9章--梁挠度和刚度计算

qx4
ql 12
x3
C x D 1
1
C 材料力学方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
6 梁的最大挠度:根据对称性
E Iw m a x E Iw |2 l 2 1 4 q 2 l 4 1 q 2 l 2 l 3 q 2 l4 3 2 l 3 5 8 q 4 lE 2 I
第9章 平面弯杆弯 曲 变 形与刚度计算 9.1 挠曲线 挠度和转角 9.2 挠曲线近似微分方程 9.3 积分法求梁的变形 9.4 叠加法求梁的变形 9.5 梁的刚度条件与合理刚度设计 9.6 用变形比较法解简单超静定梁
材料力学第9章--梁挠度和刚度计算
9.1 挠曲线 挠度和转角
1、梁的变形特点
平面假设
1 M z (x)
EI z * 思考:
1、若M常量
2、 若MM(x)
材料力学第9章--梁挠度和刚度计算
9.3 积分法求梁的变形
1、挠曲线方程(弹性曲线)
EIw (x)M (x)
EIw (x)M (x)dxC 1
E Iw (x ) (M (x )d x )d x C 1 x C 2
材料力学第9章--梁挠度和刚度计算
q
小变形(小挠度)
C
挠曲线
P x
w(x)
w(x)
C1
挠曲线:梁弯曲后,梁轴线所成的曲线
挠曲线方程
挠度:梁截面形心在垂直于梁的初始轴线方向的位移 w w(x)
转角:梁截面相对于变形前的位置转过的角度 qtanqdwx
材料力学第9章--梁挠度和刚度计算
dx
第9章__梁的挠度和刚度计算

第9章__梁的挠度和刚度计算在结构分析中,梁的挠度和刚度是非常重要的参数,它们能够帮助我们了解和评估梁的性能和稳定性。
本章主要介绍了梁的挠度和刚度的计算方法。
首先,我们需要了解梁的挠度是什么。
简单来说,梁的挠度指的是梁在承受荷载时的弯曲和垂直变形程度。
挠度大小反映了梁的柔软性和变形能力,对于结构工程来说,挠度必须在允许范围内,以保证结构的安全和稳定。
梁的挠度计算可以通过简化的工程解析方法或者数值计算方法来进行。
这里主要介绍两种常用的方法。
第一种方法是基于简化的工程解析方法,即梁的挠度计算公式。
根据梁的几何形状和受力情况,可以得到不同类型梁的挠度计算公式。
例如,对于简支梁,其挠度可以用以下公式计算:δ=(5*q*L^4)/(384*E*I)其中,δ是梁的最大挠度,q是梁的单位长度荷载,L是梁的长度,E是梁的弹性模量,I是梁的截面惯性矩。
对于其他类型的梁,如悬臂梁、连续梁等,也有相应的挠度计算公式。
通过这些公式可以得到梁的最大挠度。
第二种方法是使用数值计算方法,主要是有限元法。
有限元法是一种通过将结构分割成若干小单元,然后进行位移解和力学分析的方法。
通过有限元软件,可以模拟梁在荷载作用下的变形情况,并得到挠度的数值解。
此外,在梁的挠度计算中,还需要考虑梁的边界条件。
梁的边界条件决定了梁的约束程度,也会影响梁的挠度大小。
常见的边界条件包括简支、悬臂、固支等。
在梁的刚度计算中,主要考虑的是梁的弯曲刚度和剪切刚度。
弯曲刚度指的是梁在弯曲过程中对外力的抵抗能力,可以用弯矩-曲率关系来表示。
剪切刚度指的是梁在受剪力作用下的变形能力,可以用剪力-变形关系来表示。
梁的弯曲刚度和剪切刚度分别可以通过以下公式计算:弯曲刚度:EI=M/θ剪切刚度:GA=T/ϕ其中,E是梁的弹性模量,I是梁的截面惯性矩,G是梁的剪切模量,A是梁的横截面积,M是梁的弯矩,θ是梁的曲率,T是梁的剪力,ϕ是梁的剪应变。
通过计算弯曲刚度和剪切刚度,我们可以评估梁在荷载作用下的响应和变形情况,进一步判断结构的性能和稳定性。
梁挠度计算公式范文

梁挠度计算公式范文梁的挠度指的是梁的中点的竖直偏移量,通常用来描述梁的刚度和承载能力。
在工程设计中,梁的挠度是一个非常重要的参数,它关系到梁的安全性和使用性能。
梁的挠度可以通过公式计算得到,不同类型的梁有不同的挠度计算公式。
下面将介绍几种常见的梁的挠度计算公式。
1.简支梁的挠度计算公式:在简支梁的情况下,梁两端都可以自由转动,公式如下:δ=(5*q*L^4)/(384*E*I)其中,δ表示梁的挠度,q表示单位长度上的荷载,L表示梁的长度,E表示弹性模量,I表示截面惯性矩。
2.两端固定梁的挠度计算公式:在两端固定梁的情况下,梁两端都不可以转动,公式如下:δ=(q*L^4)/(8*E*I)其中,δ、q、L和E的含义与简支梁的公式相同。
3.悬臂梁的挠度计算公式:在悬臂梁的情况下,梁的一端固定而另一端自由,公式如下:δ=(q*L^4)/(8*E*I)其中,δ、q、L和E的含义与两端固定梁的公式相同。
4.混合支承梁的挠度计算公式:对于混合支承梁,即一端支承,一端固定δ=(q*L^4)/(8*E*I)+(5*q*a^4)/(384*E*I)其中,δ表示梁的挠度,q表示单位长度上的荷载,L表示梁的长度,E表示弹性模量,I表示截面惯性矩,a表示梁的支承长度。
这些挠度计算公式可以用于梁的静态分析,但需要注意的是,实际工程中的梁往往更加复杂,具体情况需要根据实际情况进行分析和计算。
同时,在计算挠度时,还需要对材料的弹性模量、截面惯性矩等参数进行准确的测量或估算。
总结起来,梁挠度的计算公式主要涉及到荷载和几何参数,根据梁的支承方式和边界条件的不同,可以选择相应的挠度计算公式。
在实际工程应用中,还需要根据具体情况进行修正和调整,确保计算结果的准确性和可靠性。
材料力学——第9章(平面弯曲杆件的变形与刚度计算)

a
A
x1
F C
b
Fa l
当 a>b 时——
6lEI
B
max
x2
Fab( l a ) max B 6lEI 当 a>b 时——最大挠度发生在AC段
0 x l 2 b2 3 a( a 2b ) 3
xa
最大挠度一定在左侧段
x x
max 1
2 Fb 1 ( x x ) ( l b 2 )3 9 3 EIl
19
Fb l
讨论:1、此梁的最大挠度和最大转角。 左 1 max 1 0 x1 0 右 2 max 2 0 x 2 l 侧 侧 Fab( l b ) Fab( l a ) 段: 1 max A 段: 2 max B 6lEI
§9-1 挠曲线 挠度和转角
§9-2 挠曲线的近似微分方程
§9-3 积分法求梁的变形 §9-4 叠加法求梁的变形 §9-5 梁的刚度条件与合理刚度设计 §9-6 用变形比较法解简单超静定梁
1
研究范围:等直梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核; ②解超静定梁(为变形几何条件提供补充方程)。
式中,C1、D1是积分常数,可通过梁的边界条件(支座 的约束条件)确定。
梁上有集中力、集中力偶以及间断性分布荷载作用时,弯 矩方程需分段写出,各梁段的挠曲线近似微分方程也不同。积 分常数还要利用连续性条件,才能求出。 7
二、位移边界条件
A F C B F D
支座位移条件: A 0 B 0 Nhomakorabea
18
⑸跨中点挠度及两端端截面的转角
x L 2
梁的变形与刚度计算

3、预加反弯度(预变形与受力时梁的变形方向相反,目的起到 一定的抵消作用)
B
查表,得
y
C
y4Biblioteka CqyCm
l
q
A
2 5ql ml 384EI 16 EI
()
Bq
θA θAq θAm
3 ml ql 24 EI 3EI
Aq
m
A
C y cq
(
)
Bm
Am
C ycm
θB θBq θBm
3 ml ql 24 EI 6 EI
(
梁的变形及刚度计算 一、基本概念(挠度、转角、挠曲线) 取梁的左端点为坐标原点,梁变形前的轴线为 x 轴 ,横截面的铅垂对称轴为 y 轴 , x y 平面为纵 向对称平面
x
A
y
B
一、基本概念(挠度、转角、挠曲线)
度量梁变形后横截面位移的两个基本量 1、挠度( y): 横截面形心 C (即轴线上的点)在垂直于 x
A C
B
x
C'
y
转角
y挠度
B
转角方程:一般各横截面的转角是不相同的,是位置x的 函数,称为转角方程,记做= (x)
一、基本概念(挠度、转角、挠曲线)
3、挠曲线 :梁变形后的轴线 称为挠曲线 。 挠曲线方程为 y y ( x) ——挠度方程
梁的变形及刚度计算

(3) 改善荷载的作用情况
在结构允许的情况下,合理地调整荷载的位置 及分布情况,以降低弯矩,从而减小梁的变形, 提高其刚度。如图所示,将集中力分散作用, 甚至 改为分布荷载,则弯矩降低,从而梁的 变形减小,刚度提高。
l /500,弹性模量E=2×105MPa ,试选择工字钢
的型号。
解 (1)按强度条件选择工字钢型号 梁的最大弯矩为:
M max
FP l 4
=
40 103 N 3103 mm 4
=3107 N mm
按弯曲正应力强度条件选截面
M max
W
W
M max
3107 N mm 160MPa
B
=
FPl 2 2EI
wm a x
=
FPl 3 3EI
2.悬臂梁 弯曲力偶作用在自由端
B
=
Ml EI
wm a x
=
Ml 2 2EI
续表
3.悬臂梁 均匀分布荷载作用在梁上
B
=
ql 3 6EI
wm a x
=
ql 4 8EI
4.简支梁 集中荷载作用跨中位置上
时 a = b = l 2
A
=-
B
=
FPl 2 16 EI
梁的刚度足够
所以,选用20a工字钢
3、提高梁抗弯刚度的措施
梁的挠度和转角与梁的抗弯刚度EI 、梁的跨 度L 、荷载作用情况有关,那么,要提高梁的 抗弯刚度可以采取以下措施:
(1) 增大梁的抗弯刚度EI 增大梁的EI值主要是设法增大梁截面的惯性矩I 值,一般不采用增大E 值的方法。
在截面面积不变的情况下,采用合理的截面形 状,可提高惯性矩I 。
梁的变形及刚度计算
材料力学第9章 梁的挠度和刚度计算-挠度例题

6 梁的最大挠度:根据对称性
EIwmax
EIw
|l
2
1 24
q
l
4
2
ql 12
l
3
2
ql 3 24
l 2
5ql 2 384EI
7 梁两端的转角
EIq A
EIq
|x0
ql 3 24
EIqB
EIq
|xl
1 6
ql 3
ql 4
l2
ql 3 24
ql 3 24
例9.3 集中力下的简支梁,EI已知,求挠曲线方程
when w1 0
Fb x2 Fb l2 b2 0 2l 6l
x
l2 b2
al b
a a 2b
3
3
3
if a b then x a
Fb
wmax w1( x ) 9 3EIl
l2 b2 2
if a b then x a
wmax
Fl 3 48EI
例、试用积分法求图示梁的转角方程和挠曲线方程,并求
F
x
a 3
EIw1(a) EIw2(a)
积分成数为
D1 D2 0
D1 D2
C2 x D2
C1
C2
Fb 6l
l2 b2
5 梁的转角方程和挠曲线方程
EIw1
Fb 2l
x2
Fb 6l
l2 b2
EIw2
Fb 2l
x2
1 2
F
x
a2
ቤተ መጻሕፍቲ ባይዱ
Fb l2 b2 6l
EIw1
Fb 6l
和转角方程,最大挠度及最大转角。 a
(完整word版)梁挠度计算公式

(完整word版)梁挠度计算公式(完整word版)梁挠度计算公式简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m)。
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2。
I 为钢的截面惯矩,可在型钢表中查得(mm^4)。
跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI)。
式中: Ymax 为梁跨中的最大挠度(mm)。
p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6。
81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6。
33pl^3/(384EI)。
式中:Ymax 为梁跨中的最大挠度(mm)。
p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2。
I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI)。
;Ymax =1pl^3/(3EI)。
q 为均布线荷载标准值(kn/m)。
;p 为各个集中荷载标准值之和(kn).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.3 积分法求梁的变形
1、挠曲线方程(弹性曲线)
EIw(x) M (x)
EIw(x) M (x)dx C1
EIw(x) ( M (x)dx)dx C1x C2
2、边界条件、连续条件
A
a
P
C
B
L
x
w
P
D
L
x
w
x 0,w 0
x L,w 0
x a , w1 w2 w1 w2
[f] L ~ L 500 600
普通机车主轴
[q ] 0.30
3,影响变形的因素
L 10时, Q的影响只有M的3% h
由小变形条件, x不计
4,计算变形的方法
积分法、 叠加法、 能量法、
………
9.2 挠曲线近似微分方程
1、挠曲线近似微分方程
1 M z (x)
EI z
M>0
d
2 w( x) dx2
x 0,w 0
x 0, w q 0
EIw(x) M (x)
* 注意问题
什么时候需要分段积分?
如何确定极值?
L1
A
C
L2
P
B
例9.1 求等截面直梁的弹性曲线、最大挠度及最大转
角。 弯矩方程
L
P
M (x) P(L x)
x
微分方程的积分
w
EIw(x) M (x) P(L x)
截面的转角和 C 截面的挠度。设 EI 常量。
解:1 确定反力
2 求出弯矩方程
M1
x
1 2
qx2
x
0,
l 2
M2
x
1 8
ql
3l 2
x
x
l 2
,
3l 2
A
BC
Dx
l/2
w
l/2 l/2
FB
ql 8
3 微分方程的积分
EIw1(
x
)
M1
x
1 2
qx 2
EIw2(
x)
M2
x
1 8
ql
3l 2
x3
Fb 6l
l2 b2
x
EIw2
Fb 6l
x3
1 6
F
x
a3
Fb l2 b2 x 6l
6 最大转角
EIq A
EIq
|x0
Fab 6l
l
b
EIqB
EIq
|xl
Fab 6l
l
a
if a b then
qmax
qB
Fab 6lEI
l
a
if a b then
qmax
Fl 2 16EI
6 最大挠度
0
小变形
3 2
w(x)
w2 1 w(x) M z (x)
o
EI z
M<0
d
2 w( x) dx2
x
0
w(x) M z (x) EI z
w( x)
挠曲线近似微分方程
EIw(x) M (x)
1 M z (x)
EIz
* 思考: 1、若M 常量
2、若M M(x)
w(x)
w(x)
C1
挠曲线:梁弯曲后,梁轴线所成的曲线
挠曲线方程
w w( x) 挠度:梁截面形心在垂直于梁的初始轴线方向的位移
转角:梁截面相对于变形前的位置转过的角度 q tanq dw x
dx
符号给定: 正值的挠度向下,负值的向上;正值的 转角为顺时针转相,负值的位逆时针转向
2,意义
工业厂房钢筋混凝土吊梁
和转角方程,最大挠度及最大转角。
a
解:1 确定反力
2 求出弯矩方程
A
M1 x
FAy x
Fb l
x
x 0,a
M2
x
Fb l
x
F
x
a
x a,l
3 微分方程的积分
l
FA
Fb l
EIw1(
x)
M1
x
Fb l
x
F D
B
FB
Fa l
EIw2(
x)
M
2
x
Fb l
x
F
x
a
积分一次:
4 边界条件、连续条件
EIw1
Fb 2l
F
x
a 3
EIw1(a) EIw2(a) 积分成数为 D1 D2 0
D1 D2
C2 x D2
C1
C2
Fb 6l
l2 b2
5 梁的转角方程和挠曲线方程
EIw1
Fb 2l
x2
Fb 6l
l2 b2
EIw2
Fb 2l
x2
1 2
F
x
a2
Fb l2 b2 6l
EIw1
Fb 6l
x
2
C1
EIw2
Fb 2l
x2
1 2
F
x
a2
边界条件 EIw1(0) 0
C2EIw2(l) 0
连续条件
D1 0
Fb l3 1 F l a3
6l 6 C2l D2 0
再积分一次:
EIw1(a) EIw2 (a) C1 C2
EIw1
Fb 6l
x3
C1x
D1
EIw2
Fb 6l
x3
1 6
when w1 0
Fb x2 Fb l2 b2 0 2l 6l
x
l2 b2
al b
a a 2b
3
3
3
if a b then x a
Fb
wmax w1( x ) 9 3EIl
l2 b2 2
if a b then x a
wmax
Fl 3 48EI
例、试用积分法求图示梁的转角方程和挠曲线方程,并求 A
EIw
1 2
P(L
x)2
C1
EIw
1 6
P(L
x)3
C1x
C2
边界条件、连续条件
EIw(0)
1 6
PL3
C2
0
EIw(0)
1 2
PL2
C1
0
C1
1 2
PL2
C2
1 6
PL3
弹性曲线方程
Px2 w(x) (3L x)
6EI
P L
x
最大挠度及最大转角
w
qmax
q (L)
PL2 2EI
wmax
w(L)
2
2 EIw(l) 0
EIw
1 6
qx3
ql 4
x2
C1
1 24
ql 4
ql 12
l3
C1l
D1
0
EIw
1 24
qx 4
ql 12
x3
C1x
D1
C1
ql 2 24
5 梁的转角方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
PL3 3EI
例9.2 均布荷载下的简支梁,EI已知,求挠度及两端
截面的转角。
q0
解:1 确定反力
A
B
2 求出弯矩方程
wmax
x
M x ql x 1 qx2
22
3 微分方程的积分
w
FA
ql 2
L
FB
ql 2
4 边界条件、连续条件
EIw(x) M x 1 qx2 ql x EIw(0) 0 D1 0
6 梁的最大挠度:根据对称性
EIwmax
EIw
|l
2
1 24
q
l
4
2
ql 12
l
3
2
ql 3 24
l 2
5ql 2 384EI
7 梁两端的转角
EIq A
EIq
|x0
ql 3 24
EIqB
EIq
|xl
1 6
ql 3
ql 4
l2
ql 3 24
ql 3 24
例9.3 集中力下的简支梁,EI已知,求挠曲线方程
第9章 平面弯杆弯 曲 变 形与刚度计算 9.1 挠曲线 挠度和转角 9.2 挠曲线近似微分方程 9.3 积分法求梁的变形 9.4 叠加法求梁的变形 9.5 梁的刚度条件与合理刚度设计
9.6 用变形比较法解简单超静定梁
9.1 挠曲线 挠度和转角
1、梁的变形特点
平面假设
q
小变形(小挠度)
C
挠曲线
P x
x
x
0,
l 2
x
l 2
,